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A Wigner crystal formed with trapped ion can undergo structural phase transition, which is
determined only by the mechanical conditions on a classical level. Instead of this classical result, we
show that through consideration of quantum and thermal fluctuation, a structural phase transition
can be solely driven by change of the system’s temperature. We determine a finite-temperature phase
diagram for trapped ions using the renormalization group method and the path integral formalism,
and propose an experimental scheme to observe the predicted temperature-driven structural phase
transition, which is well within the reach of the current ion trap technology.
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Ions trapped in a linear Paul trap or a planar Pen-
ning trap have become a very useful platform [1], with
exciting applications in both quantum information sci-
ence [2] and precision measurements [3]. Trapped ions
also provide a controllable system to simulate and study
many-body phase transitions [4]. A well-known phase
transition that can be observed in a small ion crystal
is the structural phase transition of the Wigner crystal
formed with trapped ions, which has raised significant in-
terest and been extensively studied [5–16]. For instance,
a linear crystal in a Paul trap can be squeezed to a zigzag
shape with change of the aspect ratio between the trans-
verse and the axial trapping frequencies. The structural
phase transition for trapped ions so far is formulated on
a classical level, determined by the mechanical equilib-
rium conditions. On a classical level, quantum and ther-
mal fluctuation of the ion positions play no role in the
structural phase transition, and this transition is thus
independent of the system’s temperature.

In this paper, we develop a theoretical formalism to
take into account quantum and thermal fluctuation in the
structural phase transition, and show for the first time
that a structural phase transition can be driven solely by
change of the system temperature. The structural phase
transition is induced by condensation of phonons into
the soft mode (the lowest frequency collective oscillation
mode of the ion crystal). Anharmonic coupling between
different phonon modes intrinsic in the Coulomb interac-
tion leads to renormalization of the soft mode frequency
which affects the phase transition point. We calculate
the system’s partition function using the path integral
approach, and gradually integrate out the high frequency
modes with the renormalization group (RG) method to
construct the RG flow for the soft mode frequency. With
this formalism, we can calculate the finite-temperature
phase diagram for the ion crystal. Using the linear ion
crystal in a Paul trap as an example, we propose an ex-
perimental scheme to detect the predicted temperature-
driven linear-to-zigzag structural phase transition and
show that the requirements in observing this transition
fits well with the current status of the experimental tech-
nology.

We consider N ions of mass m subject to external har-
monic potentials in both axial (z) and transverse (x, y)
directions. To be concrete, we take a linear Paul trap as
an example with the trapping frequencies ωy > ωx > ωz
(the method can be extended easily to other type of
traps). We consider the system near the linear-to-zigzag
transition point, with the ions distributed along the z
direction with a tendency towards the zigzag transition
in the x − z plane. To describe this phase transition, it
suffices to consider the ion interaction Hamiltonian in the
x− z plane, given by

H =

N∑
i=1

∑
α=x,z

[
p2iα
2m

+
1

2
mω2

αα
2
i ] +

∑
i>j

κ

|ri − rj |
, (1)

where κ is the Coulomb interaction rate. We assume
the temperature of the system is significantly below the
melting temperature of the ion crystal, which is typically
of the order of 0.1 − 1K [17]. This condition is satisfied
straightforwardly in experiments with laser cooling. The
ions have well-defined equilibrium positions ri, and we
expand ri around the equilibrium positions up to the
fourth order of the displacement operators δri ≡ ri −
ri. Up to the second order of δri, the quadratic part of
the Hamiltonian can be diagonalized to get the normal
phonon modes. For N ions in the x− z plance, there are
in total 2N normal modes, and we label them from 1 to
2N in the ascending order of the mode eigen-frequencies.
Expressed with the coordinates of the normal modes, the
Hamiltonian has the form

H =

2N∑
i=1

p2i
2m

+
1

2
mω2

zz
2
0

( 2N∑
i=1

ω2
i q

2
i

+

2N∑
ijk

Bijk qiqjqk +

2N∑
ijkl

Cijkl qiqjqkql

)
(2)

where pi and qi are the canonical momentum and co-
ordinate for the ith phonon modes and ωi denotes the
corresponding eigen-frequency. We have factorized out
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ωz (axial trap frequency) and z0 ≡ (2κ/mω2
z)1/3 (typi-

cal distance between the ions) as the frequency and the
length units (ωi, qi, Bijk, Cijkl are thus all dimensionless).
The terms with Bijk and Cijkl represent the cubic and
quartic terms in the expansion of the Coulomb potential,
and we need to keep both of them as they lead to the
same order of correction to the phase transition point in
the following renormalization calculation. The values for
ωi, Bijk, and Cijkl are determined numerically through
expansion of the Hamiltonian in Eq. (1) and diagonal-
ization of its quadratic components [18].

The structural phase transition is caused by phonon
condensation in the lowest normal mode (soft mode, or
mode 1 in our notation, which corresponds to the zigzag
mode for an ion chain). This happens when the effec-
tive frequency ω1eff of the soft mode crosses zero. In
the classical treatment [15], interaction and fluctuation
of the phonon modes are neglected and the effective fre-
quency ω1eff is just given by the bare frequency ω1 in
the Hamiltonian (2). As ω1 is determined simply through
expansion and diagonalization of the trapping and the
Coulomb potentials, it is apparently determined only by
the mechanical conditions and has no dependence on
the system’s temperature. Here, we take into account
the phonon interaction and derive the effective frequency
ω1eff through a renormalization group treatment of the
partition function corresponding to the Hamiltonian (2)
in the path integral formalism. As a qualitatively new
result from this treatment, we show that the structural
phase transition is not purely mechanical any more and
becomes a thermodynamic transition depending on the
system temperature.

In the path integral formalism, the partition function
of the system Z = e−H/(kBT ) (where T is the system
temperature) can be written as [19]

Z =

∮ 2N∏
i=1

Dqie−S , (3)

where the action

S =

∫ ~ωz/(kBT )

0

dτ

~ωz
1

2
mω2

zz
2
0

{
2N∑
i=1

[
(∂qi/∂τ)2 + ω2

i q
2
i

]
+
∑
ijk

Bijk qiqjqk +
∑
ijkl

Cijkl qiqjqkql

 . (4)

The RG method provides a way to work out this parti-
tion function and to find the effective frequency ω1eff of
the lowest mode [20]. The basic idea of the RG method
is to integrate out the high frequency modes in the path
integral step by step to get a renormalized action for the
lower frequency modes. We start from the highest mode
2N , and the integration over this mode can be done in a
perturbative manner with Gaussian integration over the
variable q2N (τ), where τ is the imaginary time in the unit
of 1/ωz. We define a small parameter ε = δz/z0, where
the length scale δz = (~/mωz)1/2 characterizes the ion

oscillation amplitude for a single ion in a trap with fre-
quency ωz. We consider renormalization correction to the
effective parameters up to the order of ε2 (which is the
order of Cijkl term in the action). Following the standard
procedure to calculate the path integral, we find that af-
ter integration of the mode 2N , the action for the modes
1 to 2N−1 still takes the form of Eq. (4) up to the order
ε2, with the effective parameters renormalized to

ω′ij = ωij + ε2
[
f1
Ci,j,2N,2N

2ω2N
− f2

Bi,2N,2NBj,2N,2N
8ω3

2N

]
C ′ijkl = Cijkl +

Bi,j,2NBk,l,2N
4ω2

2N

+O(ε2)

B′ijk = Bijk +O(ε2) (5)

f1 = coth(
~ωzω2N

2kBT
)

f2 = coth(
~ωzω2N

2kBT
) +

~ωzω2N

2kBT

[
sinh(

~ωzω2N

2kBT
)

]−2
where ωij and ω′ij denote the coefficients before the

quadratic term qiqj in the action (ωij = ω2
i δij in Eq. (4)),

and for the coefficients written as Ci,j,2N,2N or Bi,2N,2N ,
summation over all possible permutations of the indices
are implicitly assumed. After the renormalization, we
re-diagonalize the quadratic term from

∑
ij ω
′
ijqiqj to∑

i ω
′2
i q
′2
i and make the corresponding changes to B′ijk

and C ′ijkl through change of coordinates from qi to q′i.
With this step, the action then takes the same form as
in Eq. (4), with the mode index summarizing from 1
to 2N − 1 and the coefficients renormalized to ω′i, B

′
ijk,

and C ′ijkl. Then we can continue with integration of the
next highest mode until we finally integrate out all the
modes except for the soft mode 1. The transformation

(ωi, Bijk, Cijkl) →
(
ω′i, B

′
ijk, C

′
ijkl

)
defines the RG flow

equations, and after integration of all the modes from
mode N to mode 2, the last ω′1 gives the effective fre-
quency ω1eff . By numerically solving the RG flow equa-
tions, the structural phase transition point can be deter-
mined by the criterion ω1eff = 0. Since the RG flow
equations (see Eq. (5)) depend on the system temper-
ature T , and so does ω1eff , structural phase transition
can be possibly driven solely by temperature under a
fixed aspect ratio of the trap.

The temperature related functions f1 and f2 can be
well approximated at temperature T � ~ωzω2N/kB (the
latter corresponds to a pretty low temperature compared
to Doppler cooling limit) by:

f1 '
2kB

~ωzω2N
T, f2 ' 2f1, (6)

so the renormalization correction to ω1eff is linear in T
for a wide range of temperature. As a result, the critical
exponent for temperature induced linear-to-zigzag phase
transition should be 1, as long as the critical temperature
is above ~ωzω2N/kB . The magnitude of the correction to
ωij at each step is of the order of kBT/

(
mωzz

2
0

)
, which is
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FIG. 1: (a) Change of the soft mode frequency during the
renormalization process with the aspect ratio α ≡ ωx/ωz =
4.6. Different curves correspond to different temperature, and
the number of the renormalization steps represent the number
of high frequency modes that have been integrated out.

a small quantity representing the ratio of system temper-
ature to melting temperature. It is also worth mentioning
that even for zero temperature, the renormalization cor-
rection to ω1eff is nonzero as f1 = f2 = 1 when T = 0,
providing correction from quantum fluctuation to this
structural phase transition.

In the following, we carry out some explicit numeri-
cal calculation to show that it is realistic to observe the
predicted temperature driven structural phase transition
in the current experimental system. In our calculation,
we take 10 ions as an example with the mass of ions set
as same as Y b+ ions. The axial trap frequency is set to
100 kHz and the aspect ratio ωx/ωz is chosen around the
classical critical value 4.59 [13]. Temperature is varied on
the order from µK to mK. Fig. 1 shows the change of
soft-mode frequency during the process of renormaliza-
tion (the RG flow for ω1) at different temperatures. We
find that each renormalization step (integration of one
normal mode) increases slightly the soft mode frequency,
and the change after 2N−1 renormalization steps can be
quite significant. The change clearly increases with the
temperature, as the thermal fluctuation of the ion posi-
tions deviate the system from the classical limit where
each ion is assumed fixed at its equilibrium position.

To characterize the phase transition, we calculate the
order parameter, which is taken as the transverse dis-
placement of the zigzag mode (the mean value of q1) for
the linear-to-zigzag transition. Fig. 2 shows the value
of the order parameter and the corresponding phase dia-
gram as a function of both temperature and aspect ratio.
The phase boundary has a slope there, which shows that
a structure phase transition can be driven vertically at
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FIG. 2: The map of the order parameter (with value in unit
of µm) as a function of temperature and aspect ratio in the
linear-to-zigzag phase transition for N = 10 ions. The dashed
line marks the phase boundary where the order parameter
crosses zero.
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FIG. 3: The change of value of the order parameter as a
function of the aspect ratio when temperature is cooled from
10mK to 1mK. By tuning the aspect ratio of the confining
trap to an optimum value, cooling the ions can give rise to a
change of the order parameter as large as 5µm, resulting in a
fairly noticeable transition from linear to zigzag pattern.

a fixed aspect ratio solely by change of the system tem-
perature. From the figure, we also see that the order
parameter is more sensitive to the aspect ratio than to
the temperature. Tuning the aspect ratio by about 1%
(4.59 to 4.54 for example) at a fixed temperature (around
1 mK) will result in a change of the order parameter by
about 5 µm, while the same change with a fixed aspect
ratio around 4.54 requires one to cool the temperature
from 10 mK to 1 mK.
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Experiment done in Ref. [10] has successfully observed
the classcial linear-to-zigzag phase transition in a trapped
ion crystal by changing the radial trap frequency with an
accuracy of 2 kHz (0.5% for aspect ratio). With such
an accuracy (and probably better nowadays), one can
pick an optimum value for aspect ratio to maximize the
change of order parameter based on the numerical calcu-
lation shown in Fig. 3. The CCD camera used in Ref.
[10] has a resolution of 0.3 − 1 µm, which is enough to
tell the transition point as the change of order parameter
is apparently larger than 1µm for a relatively wide range
of aspect ratios (see Fig. 3).
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FIG. 4: Plot of ions’ probability density in x − z plane (in
unit of µm for both axes) due to thermal fluctuation. The
upper figure shows the position and the probability density of
10 ions at high temperature (5mK), which characterizes the
linear phase. The lower figure is simulating the ion’s position
after cooling the temperature to 1mK, and the zigzag pattern
clearly emerges. The aspect ratio is tuned at about 4.57.

In real experiments carried out at finite temperature,
the thermal fluctuation of the ions’ positions will blur the

image of ions. In this case, we need to calculate whether
the image of ions are still sharp enough to show the tem-
perature driven structural phase transition for the ion
chain. We calculate the thermal fluctuation of ions’ axial
and transverse positions, and plot the probability density
of the ions’ wave-packets above and below the critical
temperature (See Fig. 4), with the aspect ratio tuned
near classical critical value. Here we only demonstrate
the case with a few ions (N=10) where the transverse
displacement of all ions can be roughly treated as the
same as the order parameter calculated above, but our
calculation method works for larger number of ions as
well. Our simulation shows that one can clearly observe
the structural phase transition from linear to zigzag pat-
tern, as the thermal fluctuation of ions’ transverse posi-
tion in the considered temperature range is much smaller
than the change of order parameter across the transition
point.

In summary, we have developed a method to character-
ize the temperature driven structural phase transition in
a trapped ion crystal, taking into account contributions
from both quantum and thermal flucatuation. We use
renormalization group method to calculate the effective
soft mode frequency under finite temperature for a given
number of ions and show that the system have an inter-
esting phase diagram with respect to the system temper-
ature and aspect ratio. Our predictions can be verified
under current experimental conditions, as shown by our
explicit calculations taking account of the experiemntal
imperfections.
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