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Abstract. - The typical behavior of optimal solutions to portfolio optimization problems with
absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated
by S. Ciliberti and M. Mézard [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet
developed an approximate derivation method for finding the optimal portfolio with respect to
a given return set. In this study, an approximation algorithm based on belief propagation for
the portfolio optimization problem is presented using the Bethe free energy formalism, and the
consistency of the numerical experimental results of the proposed algorithm with those of replica
analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the
optimal solutions with the absolute deviation model and with the mean-variance model have the
same typical behavior, is verified using replica analysis and the belief propagation algorithm.

Introduction. – Portfolio optimization is one of the
most fundamental frameworks of risk diversification man-
agement. Its theory was introduced by Markowitz in 1959
and is one of the most important areas being actively in-
vestigated in financial engineering [1–3]. In their theo-
retical research, Ciliberti and Mézard assessed the typi-
cal behavior of optimal solutions to portfolio optimization
problems, in particular those described by the absolute de-
viation and expected shortfall models, using replica anal-
ysis, one of the most powerful approaches in disordered
systems. With this approach, they showed that the phase
transitions of these optimal solutions were nontrivial [2].
However, they did not develop an effective algorithm for
finding the optimal portfolio with respect to a fixed re-
turn set. This requires a rapid algorithm for resolving the
optimal portfolio problem with respect to a large enough
in-sample set.

As a first step in such a research direction, we propose
an algorithm based on belief propagation, which is well-
known as one of the most prominent algorithms in proba-
bilistic inference, to resolve the microscopic averages of the
optimal solution in a feasible amount of time for a fixed
return set. We also confirm whether the numerical exper-
imental results of our novel algorithm are consistent with
the ones of replica analysis. Furthermore, the conjecture

of Konno and Yamazaki, that if the return at each period
is independently and identically drawn from the normal
probability distribution [3], the optimal portfolio of the
mean-variance model is consistent with that of the abso-
lute deviation model, is supported using replica analysis
and belief propagation.

Model Setting. – Let us define the model setting for
our discussion. A portfolio of N assets and the return at
period µ are represented by ~w = {w1, w2, · · · , wN}T ∈ RN

and ~xµ = {x1µ, x2µ, · · · , xNµ}T ∈ RN , respectively, where
wk is the position of asset k, and we assume for simplicity
that the mean of the return of asset k in period µ, xkµ,
is zero. The notation T indicates matrix transposition.
Given a return set for p periods as reference, the problem is
to minimize the following cost function (i.e., Hamiltonian)
for the portfolio:

H (~w) =

p
∑

µ=1

R

(

~wT~xµ√
N

)

, (1)

where R(u) represents a cost function, such as u2

2 in the
mean-variance model and |u| in the absolute deviation
model, respectively. Furthermore, since the budget is as-
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sumed to be finite, the following global constraint is set:

N
∑

k=1

wk = N. (2)

One of our aims is to develop an effective general algo-
rithm for solving this problem; in particular, our aim is
an algorithm that works for all cost functions R(u) and
all probability distributions of the returns.
As a basis for the proposed algorithm, following exam-

ples in statistical mechanics, we set the joint probability
of portfolio ~w used in Eq. (1) using finite inverse absolute
temperature β as follows:

P (~w) ∝ P0(~w) exp [−βH (~w)]

∝
p
∏

µ=1

[

P0(~w)g

(

~wT~xµ√
N

)]

P 1−p
0 (~w), (3)

where g(u) = e−βR(u) is the likelihood function and

prior probability P0(~w) ∝ exp
[

m̃
(

∑N
k=1 wk −N

)]

for sufficiently large N . Notice that the par-
tition function of this posterior probability Z =
∑

~w

∏p
µ=1

[

P0(~w)g
(

~wT~xµ√
N

)]

P 1−p
0 (~w) is implicitly ignored

in this analysis because intuitively it is possible to eval-
uate the first- and second-order moments of portfolio wk

approximately without the partition function by the fol-
lowing procedure. An arbitrary test probability of portfo-
lio is defined as follows:

Q (~w) ∝
p
∏

µ=1

bµ (~w)

N
∏

k=1

b1−p
k (wk), (4)

where the reducibility condition on beliefs bk(wk) and
bµ(~w),

bk(wk) =
∑

~w\wk

bµ (~w) , (5)

must hold and ~w \ wk denotes a subset of ~w from which
wk is excluded. The Kullback-Liebler divergence (KLD)

KL(Q|P ) =
∑

~w Q(~w) log Q(~w)
P (~w) provides a useful guideline

for deriving the belief propagation algorithm. However,
since it is too complicated to directly assess KLD except in
specific graphical models, we here approximate the Bethe
free energy denoted as follows:

FBethe =

p
∑

µ=1

∑

~w

bµ(~w) log





bµ(~w)

P0(~w)g
(

~wT~xµ√
N

)





+(1− p)

N
∑

k=1

∑

wk

bk(wk) log

(

bk(wk)

P0k(wk)

)

,(6)

where P0k(wk) ∝ em̃wk is used. The purpose of this step
is to derive the optimal portfolio using the beliefs bk(wk)
and bµ(~w) that minimize the Bethe free energy under the

reducibility condition of Eq. (5). By adding the term
∑p

µ=1

∑N
k=1

∑

wk
λkµ(wk)

[

∑

~w\wk
bµ(~w)− bk(wk)

]

to the

right-hand side of Eq. (6), it is possible to maximize the
Bethe free energy with respect to the beliefs to obtain

bk(wk) ∝ P0k(wk) exp

[

1

1− p

p
∑

µ=1

λkµ(wk)

]

,

bµ(~w) ∝ P0 (~w) g

(

~wT~xµ√
N

)

exp

[

−
N
∑

k=1

λkµ(wk)

]

.

Furthermore, for simplicity, we set λ̃kµ(wk) =
1

1−p

∑p
µ=1 λkµ(wk) + λkµ(wk) as novel auxil-

iary functions, and then bk(wk) and bµ(~w)
can be rewritten using 1

1−p

∑p
µ=1 λkµ(wk) =

∑p
µ=1 λ̃kµ(wk) and λkµ(wk) = −∑

ν( 6=µ) λ̃kν (wk)

as bk(wk) ∝ P0k(wk) exp
[

∑p
µ=1 λ̃kµ(wk)

]

and

bµ(~w) ∝ P0(~w)g
(

~wT~xµ√
N

)

exp
[

∑N
k=1

∑

ν( 6=µ) λ̃kν(wk)
]

.

Moreover, applying the cumulant generating functions

φk(θk) = log
∑

wk

bk(wk)e
wkθk , (7)

φµ

(

~θ
)

= log
∑

~w

bµ(~w)e
~wT~θ, (8)

the first and second moments of wk have the compact

forms mwk = ∂φk(θk)
∂θk

=
∂φµ(~θ)
∂θk

and χwk = ∂2φk(θk)
∂θ2

k

=

∂2φµ(~θ)

∂θ2
k

at ~θ = {θ1, · · · , θN}T → 0. This allows us to disre-

gard the calculation of the partition function. Then, our
proposed algorithm for sufficiently large N comprises the
following:

mwk = χwk (hwk + m̃) , (9)

hwk =
1√
N

p
∑

µ=1

xkµmuµ + χ̃wkmwk, (10)

χ̃wk =
1

N

p
∑

µ=1

x2
kµχuµ, (11)

χwk =
1

χ̃wk

, (12)

muµ =
∂

∂huµ

log

∫ ∞

−∞
Dzg

(

z
√

χ̃uµ + huµ

)

, (13)

huµ =
1√
N

N
∑

k=1

xkµmwk − χ̃uµmuµ, (14)

χ̃uµ =
1

N

N
∑

k=1

x2
kµχwk, (15)

χuµ = − ∂2

∂h2
uµ

log

∫ ∞

−∞
Dzg

(

z
√

χ̃uµ + huµ

)

,(16)

where Dz = dz√
2π

e−
z2

2 is used. Note that if λ̃kµ(wk) is

redefined as λ̃kµ(wk) = − γkµ

2 w2
k + h̃kµwk, then χ̃wk =

p-2
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∑p
µ=1 γkµ and hwk =

∑p
µ=1 h̃kµ [4, 5]. In addition,

χ̃wkmwk and χ̃uµmuµ describe the Onsager reaction terms
in the literature of spin glass theory (respectively [6, 7]).
Four points should be noticed here. First, the calcula-

tion of this procedure is reduced from O(N3) to O(N2).
For instance, in the case of the mean-variance model, al-
though we are required to calculate the inverse matrix
of the correlation matrix of return set XXT ∈ MN×N ,
where return matrix X = {~x1, · · · , ~xp} ∈ MN×p, in order
to assess the optimal solution rigorously, it is well-known
that this calculation is O(N3). Moreover, fortunately it is
found that in the case of the mean-variance model, this al-
gorithm derives the exact optimal solution (see appendix
A for details). Second, only Eqs. (13) and (16) are depen-
dent on the likelihood function g(u) = e−βR(u), and the
variables of index u are the only model dependent ones.
Furthermore, m̃ is determined by Eqs. (2) and (9). Third,
the randomness of return is not assumed to be sampled
from specific distributions. Because it is plausible that
the assumption on the Bethe free energy approximation
works correctly if the return at each period is asymptoti-
cally not correlated with other returns . Lastly, we expect
that in the limit as β → ∞, the estimate of the portfolio of
asset k, mwk, asymptotically corresponds to the optimal
portfolio with respect to the given return set.

Application. – In order to confirm the effectiveness
of our method, the numerical experimental results of the
proposed algorithm and those of the replica analysis for
the case of the Markowitz model are shown in Figs. 1 and
2, where xkµ are independently and identically drawn from
the normal distribution with mean and variance 0 and 1,
respectively. The numerical experimental result of belief
propagation is assessed from 102 samples of the number
of assets N = 100 and is denoted by error bars and the
result of replica analysis is denoted by a solid line. Both
findings indicate that the two approaches are consistent
with each other.
With regard to the conjecture of Konno and Yamazaki,

the variables in Eqs. (13) and (16), in the case of the
mean-variance model

muµ = − β

1 + βχ̃uµ

huµ, (17)

χuµ =
β

1 + βχ̃uµ

(18)

and the absolute deviation model

muµ = β tanh









βhuµ +
1

2
log

H

(

β
√

χ̃uµ +
huµ√
χ̃uµ

)

H

(

β
√

χ̃uµ − huµ√
χ̃uµ

)









,

(19)

χuµ = −∂muµ

∂huµ

, (20)

are assessed exactly using H(u) =
∫∞
u

Dz. Because

H(u) ≃
(√

2πu
)−1

e−
u2

2 in the case of u ≫ 1, muµ ≃
−huµ

χ̃uµ
and χuµ ≃ 1

χ̃uµ
are estimated; that is, this finding

indicates that the conjecture of Konno and Yamazaki is
valid in part in the sense of the belief propagation ap-
proach. See appendices for details.

Conclusion. – In conclusion, we have discussed an
effective algorithm for finding the optimal solution of the
portfolio optimization problem with respect to an arbi-
trary cost function according to Ciliberti and Mézard [2].
With loss of generality, applying the likelihood function
g(u) defined by the cost function R(u) dependent on the
risk diversification problem, we proposed a novel approxi-
mation derivation method based on one of the most power-
ful estimation methods in probabilistic inference. In addi-
tion, since two types of Onsager reaction terms are derived
in Eqs (10) and (14), our algorithm provides the Thouless,
Anderson, and Palmer approach rather than the mean-
field approximation in the literature of spin glass theory.
One advantage of our algorithm is that it rapidly converges
by excluding the effect of self-response. In order to con-
firm the effectiveness of the proposed approach, we have
described the case of the mean-variance model. Further-
more, we have shown that the conjecture of Konno and
Yamazaki is supported by employing both approaches de-
veloped in cross-disciplinary research involving statistical
mechanics and information sciences. In future work, we
will assess the properties of R(u) and the randomness of
return that make solving the portfolio optimization prob-
lem using belief propagation possible.
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Appendix A: Proof of Exactness. – We here con-
firm the exactness of the proposed belief propagation al-
gorithm for the case of the Markowitz model. Our discus-
sion is restricted to α > 1 for simplicity. From Eqs. (14),
(17), and (18), we obtain ~mu = − β√

N
XT ~mw, where ~mu =

{mu1, · · · ,mup}T ∈ Rp and ~mw = {mw1, · · · ,mwN}T ∈
RN . Furthermore, m̃~e = − 1√

N
X~mu follows immediately

from Eqs. (9), (10), and (12), where ~e = {1, · · · , 1}T ∈
RN . Thus, substituting ~mw = Nm̃

(

βXXT
)−1

~e into the
constraint N = ~eT ~mw gives the exact optimal solution

~mw =
N(XXT)−1

~e

~eT(XXT)−1~e
.

Appendix B: Replica Analysis. – According to
Ciliberti and Mézard and Varga-Hoszonits and Kondor
[2,8], replica symmetry solution of the portfolio optimiza-
tion problem, where xkµ is independently and identically
distributed with N(0, 1), is derived as the following ex-

p-3
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tremum:

−βf = lim
N→∞

1

N
[logZ]q

= Extr
q,χ

{

q − 1

2χ
+

1

2
logχ

+α

∫ ∞

−∞
Dy log

∫ ∞

−∞
Dzg (z

√
χ+ y

√
q)

}

, (21)

where Z =
∑

~w P0(~w)
∏p

µ=1 g
(

~wT~xµ√
N

)

is the partition

function and the notation [· · ·]q denotes the quenched av-
erage over the return set. Moreover, the quenched over-
lap parameters become qab = 1

N

∑N
k=1 wkawkb = χ + q

if a = b and q otherwise by employing replica indices
a, b = 1, 2, · · · , n and the assumption of replica symmetry.
Furthermore, for large N and p, α = p/N ∼ O(1) remains
finite and plays an important role as a control parameter
with respect to phase transition phenomena. If g(u) =

e−
β

2
u2

, then q =
(

1− 1
α

)−1
and χ = (β(α− 1))

−1
can be

exactly calculated in the case α > 1 and q → ∞, and
χ → ∞ otherwise. This analytical finding is also verified
in by the following. It is well known that the eigenvalue
distribution of the correlation matrix C = 1

N
XXT in the

limit of N → ∞ is asymptotically close to the Marčhenko-

Pastur law ρ(λ) = [1− α]+ δ(λ) +

√
[λ−λ

−
]+[λ+−λ]+

2πλ with

λ± = (1±√
α)

2
and [u]

+
= max {u, 0} [9]. There-

fore, q =
〈

1
λ2

〉 〈

1
λ

〉−2
and one degree of the cost function

ε = limN→∞
1
N
[H(~w)]q = 1

2

〈

1
λ

〉−1
are obtained straight-

forwardly using 〈f(λ)〉 =
∫∞
−∞ dλρ(λ)f(λ). Applying

Marčhencko-Pastur law, that
〈

1
λ

〉

= λ++λ
−

4
√

λ+λ
−

− 1
2 = 1

α−1

and
〈

1
λ2

〉

=

√
λ+λ

−

2π × π
2

(

1
2

(

1
λ
−

− 1
λ+

))2

= α
(α−1)3 if

α > 1 and approach infinity otherwise follows directly
[10–13]. This is consistent with the findings of replica
analysis.

In general, the order parameters are derived as follows:

χ = −
√
q

αη
, (22)

q = 1 + αχ2δ, (23)

η =

∫ ∞

−∞
Dyy









∫ ∞

−∞
Dzg′ (z

√
χ+ y

√
q)

∫ ∞

−∞
Dzg (z

√
χ+ y

√
q)









, (24)

δ =

∫ ∞

−∞
Dy









∫ ∞

−∞
Dzg′ (z

√
χ+ y

√
q)

∫ ∞

−∞
Dzg (z

√
χ+ y

√
q)









2

. (25)

From Eqs. (22) and (23),

q =

(

1− 1

α

δ

η2

)−1

(26)
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Fig. 1: The reference ratio α = p/N (horizontal axis) versus
the quenched overlap parameter q (vertical axis). The numer-
ical experimental results from the proposed algorithm (error
bars) are assessed from 102 experiments using N = 100 assets.
Comparing with the results of replica analysis (solid line), the
effectiveness of proposed algorithm is verified.
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Fig. 2: The reference ratio α (horizontal axis) versus one degree
of the cost function ε (vertical axis). This result also indicates
that the approximation approach based on probabilistic infer-
ence works correctly.

is obtained. In the limit of sufficiently large β of g(u) =

e−β|u|, if we assess η ≃ −
√
q

χ
and δ ≃ q

χ2 asymptotically,
then the conjecture of Konno and Yamazaki is confirmed
as correct in the sense of replica analysis.

Appendix C: The Conjecture of Konno and Ya-

mazaki. – This conjecture is related to the assessment
of an annealed system in the context of spin glass the-
ory. If the return at period µ, ~xµ, is independently
and identically drawn from N (0,Σ), where Σ ∈ MN×N

is variance-covariance matrix and ~w is fixed, the novel

variable z =
~wT~xµ√

N
is distributed as N

(

0, s2(~w)
)

with

s2(~w) = 1
N
~wTΣ~w ∈ R. With respect to fixed ~w, em-

ploying one degree of the cost function of the annealed

optimization problem ε(~w) =
[

1
N

∑p
µ=1 R

(

~wT~xµ√
N

)]

q
=

p-4
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α
∫∞
−∞ DuR (us(~w)), which becomes εMV(~w) = α

2 s
2(~w)

in the case of the mean-variance model and εAD(~w) =
2α√
2π

|s(~w)| in the absolute deviation model. This implies

that the optimal portfolios of the annealed situations of
the two models are consistent with each other. Note
that one degree of the cost function in the case of the
annealed portfolio problem with the expected shortfall

model, εES(~w) = minv≥0 α
{

vγ +H
(

v
s(~w)

)}

with γ > 0

can also be assessed [14]. If s(~w) ≤ 1√
2πγ

, then this opti-

mal solution is identical to those of the previous mentioned
models. This finding, that is, argmin~wT~e=N εMV(~w) =
argmin~wT~e=N εAD(~w), is one part of the contributions re-
ported by Konno and Yamazaki.

However, they optimistically assumed ~wMV = ~wAD with
respect to a given return set X without any mathematical
proof, using

~wMV = arg min
~wT~e=N

1

2N

p
∑

µ=1

N
∑

i=1

N
∑

k=1

wiwkxiµxkµ,(27)

~wAD = arg min
~wT~e=N

p
∑

µ=1

∣

∣

∣

∣

∣

1√
N

N
∑

k=1

wkxkµ

∣

∣

∣

∣

∣

. (28)

As explained above, argmin~wT~e=N εMV(~w) =
argmin~wT~e=N εAD(~w) with respect to the annealed opti-
mization problem strictly holds; however, ~wMV = ~wAD

is not always satisfied. For example, in the simple case
of N = p = 2 for the two returns ~x1 = {a, c}T and

~x2 = {b, d}T, their assumption ~wMV = ~wAD does not
hold, except under specific special situations.

Although this is apparently contradictory to these ob-
tained findings from both approaches, it is necessary to
recognize that the relation ~wMV = ~wAD with a fixed re-
turn set is equivalent to the sufficient condition qMV =
qAD, where qMV = limN→∞

1
N

[

~wT
MV ~wMV

]

q
and qAD =

limN→∞
1
N

[

~wT
AD ~wAD

]

q
are quenched averages of overlap

parameters. Moreover, although ~wMV = ~wAD does not
hold in general, it is expected that the inner product
~wT
MV ~wAD

|~wMV||~wAD| is approximately 1 because 1
N

∑

µ>ν xkµxjν →
0 in the case of sufficiently large N [15].
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