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Abstract

In this paper we analytically study the pricing of the arithmetically averaged Asian

option in the path integral formalism. By a trick about the Dirac delta function, the

measure of the path integral is defined by an effective action whose potential term is

an exponential function, i.e. the Liouville Hamiltonian, which can be explicitly solved.

After working out some auxiliary integrations involving Bessel and Whittaker functions,

we arrive at the spectral expansion expression of the value of an Asian option.
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1 Introduction

It has been known for a long time that the path integral formalism can be applied to

the pricing of financial securities. The more standard methods in quantitative finance are

the stochastic calculus and partial differential equations. In almost all cases the relevant

equations are diffusion type, whose solution is determined by the heat kernel. It is well-

known that [1] the heat kernel can be written in terms of a path integral. This is the

starting point for the financial applications of the path integral formalism. In [2, 3] it has

been applied to the European options and the one-factor term-structure models. In [4, 5]

it is shown how the pricing of path-dependent options can be incorporated into the path

integral formulation. It is applied in [6] to models with stochastic volatility, and in [7]

by the same author to the Heath-Jarrow-Morton model of forward interest rates. See e.g.

[8]-[15] for more works in this direction.

Among many exotic options in the financial market, the asian option is a very popular

one. Its payoff depends on the arithmetic average of the price of the underling asset

during the life of this option contract. The Asian options has the advantage that it is

usually less expensive than standard options due to its smaller volatility, and its value is

harder to be manipulated by a large market participant. So it is more safe to hold it.

On the theoretical side, the exact pricing of the arithmetically averaged Asian option is

a challenging problem, since the arithmetical average of a stochastic variable, which is

logarithmic-normal, is not logarithmic-normally distributed any more. In the pioneering

work [16], Geman and Yor derived a closed form expression for the Laplace transformation

of the value of the Asian option. In [17] Linetsky obtained a spectral expansion expression

of its value in terms of confluent hypergeometric functions. This is the main motivation

of the present paper.

In this paper we will study the the arithmetically averaged Asian option in the path

integral formalism. In section 2, we review the path integral formulation for a gen-

eral path-dependent option. For the Asian option, the resulting effective action is the

(imaginary-time) Liouville quantum mechanics. In section 3, we obtain the correspond-

ing heat kernel by solving the differential equation it satisfies. We work out two auxiliary

integrals in the following section 4 and 5. In section 6, we specify the payoff function and

study the value of the put and call options. For the put option we can directly calculate

its value, which is equivalent to the result of [17], while for the call option we have to

reply on the put-call parity relation.
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2 Path integral formulation

If S denotes the price of a stock, it is commonly assumed that X := log S follows the

rule of a Brown motion. A stock option is a kind of financial derivative whose value O
depends on the behavior of the underlining stock price [18]. For a general path-dependent

option, its payoff function Φ[X ] is a functional of X . That is the final yield of this option

contract depends on the whole history of the stock price before its maturity. The usual

European option is just a special case, whose payoff functional is local, i.e. only depends

on the stock price at the maturity day.

The value of a (newly written) stock option can be written in a path integral form as

O = e−rt

∫

∞

−∞

dx′
∫ X(t)=x

X(0)=x′

DX exp

{

− 1

2σ2

∫ t

0

(

dX

dt
+ µ

)2

dt

}

Φ[X ] . (2.1)

In the above equation, r denoted the risk-free interest rate, σ is the volatility of the stock

price, and µ := r − σ2/2. All of these parameters are assumed to be constant. The

meaning of t is the remaining time of this option contract, with t = 0 denote the maturity

day. By introducing the following dimensionless combinations

R =
r

σ2
, τ = σ2t , ν =

2µ

σ2
, (2.2)

we can simplify the above equation as

O(τ, x) = e−Rτ

∫

∞

−∞

dx′ eν(x
′−x)/2−ν2τ/8

∫ X(τ)=x

X(0)=x′

DX exp

{

−1

2

∫ τ

0

Ẋ2 dτ

}

Φ[X ] . (2.3)

If the payoff functional takes the form Φ[X ] = φ (V [X ]) with 1

V = V [X ] =

∫ τ

0

eXdτ , (2.4)

then we have

Φ[X ] =
1

τ

∫

∞

0

δ(ξ − V )φ(ξ) dξ

=
1

τ

∫

∞

0

dξ φ(ξ)× 1

2πi

∫ ǫ+i∞

ǫ−i∞

eqξ−qV dq . (2.5)

We can restrict the integration range to (0,∞) in the first line because the functional

V = V [X ] is always positive. In the second line we have use the Laplace transformation

1In this paper we will call this kind of options as arithmetically averaged Asian-type option or simply

Asian option. In principle our formalism applies for any payoff function φ.
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of the Dirac delta function with ǫ being any positive real number. Inserting (2.5) into

(2.3) we have

O(τ, x) =
e−Rτ

2πiτ
e−νx/2−ν2τ/8

∫

∞

−∞

dx′ eνx
′/2

∫

∞

0

dξ φ(ξ)

∫ ǫ+i∞

ǫ−i∞

dq eqξ

×
∫ X(t)=x

X(0)=x′

DX exp

{

−
∫ τ

0

(

1

2
Ẋ2 + q eX

)

dτ

}

. (2.6)

This is our path integral formulation of the valuation of the Asian option. We see that

the system is driven by an effective action

Aeff [X ] =

∫ τ

0

(

1

2
Ẋ2 + q eX

)

dτ , (2.7)

which is called (imaginary-time) Liouville quantum mechanics [19].

3 Heat kernel

Define the heat kernel

K(τ, x, x′; q) :=

∫ X(t)=x

X(0)=x′

DX exp

{

−
∫ τ

0

(

1

2
Ẋ2 + q eX

)

dτ

}

. (3.1)

By use of Feynmann-Kac theorem, it satisfies the following initial value problem

−∂K
∂τ

= −1

2

∂2K
∂x2

+ q exK ,

K|τ=0 = δ(x− x′) . (3.2)

Actually this is the (imaginary-time) Schrödinger equation of the effective action (2.7).

We may use the method of spectral expansion to construct the heat kernel K(τ, x, x′; q).

Firstly we solve the following eigenvalue/eigenfunction problem

− 1

2

∂2ψu

∂x2
+ q exψu =

u2

8
ψu . (3.3)

For q ∈ C with |arg q| < π, the normalized eigenfunction is

ψu(x) =
1

π

√

u sinh(πu) Kiu(
√

8q ex/2) , u > 0 , (3.4)

where Kiu is the modified Bessel function of the second kind. Then the heat kernel can

be written as

K(τ, x, x′; q) =

∫

∞

0

e−u2τ/8 ψu(x)ψu(x
′) du

=
1

π2

∫

∞

0

e−u2τ/8Kiu(
√

8q ex/2)Kiu(
√

8q ex
′/2) sinh(πu) u du . (3.5)
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It can be explicitly proved that, when q > 0, (3.5) is indeed the solution of (3.2). That

it satisfies the differential equation can be easily checked. In the appendix we will show

that it also satisfies the initial condition, i.e. the completeness of {ψiu(x) |u > 0}. Due

to the inverse Laplace transformation in (2.6), we need q to be complex with Re q > 0.

Since the solution of (3.2) should be a holomorphic function in the complex q-plane cut

open along the negative real axis, we can insert (3.5) into (2.6) to calculate the option

value, and the result turns out to be correct. Therefore the expression of the option value

becomes

O(τ, x) =
e−Rτ

2πiτ
e−νx/2−ν2τ/8

∫

∞

−∞

dx′ eνx
′/2

∫

∞

0

dξ φ(ξ)

∫ ǫ+i∞

ǫ−i∞

dq eqξ

× 1

π2

∫

∞

0

e−u2τ/8Kiu(
√

8q ex/2)Kiu(
√

8q ex
′/2) sinh(πu) u du . (3.6)

4 Integrating out x′

In this section we will consider the integration over the variable x′. Define

M(τ, x ; q) :=

∫

∞

−∞

eνx
′/2 K(τ, x, x′; q) dx′ , (4.1)

which satisfies the following initial value problem

−∂M
∂τ

= −1

2

∂2M
∂x2

+ q exM ,

M|τ=0 = eνx/2 . (4.2)

To solve this problem we use the following expansion of the initial configuration [21]

eνx/2 =
2−1−ν/2

π2 qν/2

∫

∞

0

∣

∣

∣

∣

Γ

(

ν + iu

2

)
∣

∣

∣

∣

2

Kiu(
√

8q ex/2) sinh(πu) u du

+
21−ν/2

qν/2

[−ν/2 ]
∑

n=0

(−ν − 2n)

n! Γ(−ν − n+ 1)
K−ν−2n(

√

8q ex/2) . (4.3)

Note that when ν is not positive, the function eνx/2 is not in L2(R), so the above equation

cannot be argued by just the orthogonality. Since eigenfunctions evolve independently,

the solution of (4.2) is

M(τ, x ; q) =
2−1−ν/2

π2 qν/2

∫

∞

0

e−u2τ/8

∣

∣

∣

∣

Γ

(

ν + iu

2

)
∣

∣

∣

∣

2

Kiu(
√

8q ex/2) sinh(πu) u du

+
21−ν/2

qν/2

[−ν/2 ]
∑

n=0

(−ν − 2n)

n! Γ(−ν − n+ 1)
e(ν+2n)2τ/8K−ν−2n(

√

8q ex/2) . (4.4)
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Therefore the option value can be written as

O(τ, x) =
e−Rτ

2πiτ
e−νx/2−ν2τ/8

∫

∞

0

dξ φ(ξ)

∫ ǫ+i∞

ǫ−i∞

dq e ξqM(τ, x ; q) . (4.5)

Let us define the pricing kernel P(τ, x, ξ) by

P(τ, x, ξ) :=
1

2πi

∫ ǫ+i∞

ǫ−i∞

4 e ξq e(1−ν/2)x−ν2τ/8M(τ, x ; q) dq (4.6)

=
21−ν/2

π2
e(1−ν/2)x

∫

∞

0

du sinh(πu) u e−(u2+ν2)τ/8

∣

∣

∣

∣

Γ

(

ν + iu

2

)
∣

∣

∣

∣

2

× 1

2πi

∫ ǫ+i∞

ǫ−i∞

e ξq q−ν/2Kiu(
√

8q ex/2) dq

+23−ν/2 e(1−ν/2)x

[−ν/2 ]
∑

n=0

(−ν − 2n)

n! Γ(−ν − n+ 1)
en(ν+n)τ/2

× 1

2πi

∫ ǫ+i∞

ǫ−i∞

e ξq q−ν/2K−ν−2n(
√

8q ex/2) dq . (4.7)

Then the option value becomes

O(τ, x) =
e−Rτ

4 τ ex

∫

∞

0

P(τ, x, ξ)φ(ξ) dξ . (4.8)

From this formula we can see that P(τ, x, ξ) is essentially the probability density transition

function of the stochastic process Vτ =
∫ τ

0
eXdτ .

5 Integrating out q

In this section we will work out the inverse Laplace transformation in (4.7). For this we

consider the following integration

I :=
1

2πi

∫ ǫ+i∞

ǫ−i∞

e ξq q−ν/2Kρ(
√

8q ex/2) dq . (5.1)

To calculate this inverse Laplace transformation, we use the contour as in Figure 1. It

can be shown that the integration along C±

Λ tend to zero as Λ → ∞. When ν+ |Re ρ| < 2

the integration along Cδ also vanishes as δ → 0. Therefore the original integration along

L is related to the integration along L+ and L−. Nevertheless it can be checked that

the result we obtain in this way is still true for more general ν. Note that due to the
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Figure 1: The integration contour for the calculation of the inverse Laplace transformation

(5.1). The radius of C±

Λ and Cδ are Λ and δ, respectively.

multivaluedness of the integrand, its values along L+ and L− are not same. We choose

arg q = π on L+, while arg q = −π on L−. Explicitly we have

I = − 1

2πi

(
∫

L+

+

∫

L−

)

e ξq q−ν/2Kρ(
√

8q ex/2) dq

= − 1

2πi

{
∫ 0

∞

(−dr) e−ξr(reiπ)−ν/2Kρ(
√
8ex r1/2eiπ/2)

+

∫

∞

0

(−dr) e−ξr(re−iπ)−ν/2Kρ(
√
8ex r1/2e−iπ/2)

}

= − 1

2πi

{

e−iπν/2

∫

∞

0

dr e−ξrr−ν/2Kρ(
√
8ex r1/2eiπ/2)

− eiπν/2
∫

∞

0

dr e−ξrr−ν/2Kρ(
√
8ex r1/2e−iπ/2)

}

=
1

2π

ξ(ν−1)/2

√
8ex

e−ex/ξ Γ

(

2− ν + ρ

2

)

Γ

(

2− ν − ρ

2

)

×
{

e−iπν/2W ν−1
2

, ρ
2

(

2 ex

ξ
eiπ

)

+ eiπν/2W ν−1
2

, ρ
2

(

2 ex

ξ
e−iπ

)}

. (5.2)
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In the last line above we have used the formula (6.643.3) of [20] to evaluate the integration

in terms of the Whittaker function Wκ,µ(z). Note that z = 0 is the branch point of

Wκ,µ(z), so Wκ,µ(ze
iπ) 6= Wκ,µ(ze

−iπ). To further simplify (5.2), we use the relation

between Wκ,µ(z) and the other Whittaker function Mκ,µ(z)

Wκ,µ(z) =
Γ(−2µ)

Γ
(

1
2
− κ− µ

)Mκ,µ(z) +
Γ(2µ)

Γ
(

1
2
− κ+ µ

)Mκ,−µ(z) , (5.3)

and the Kummer’s relationMκ,µ(z e
±iπ) = e±iπ(µ+1/2)M−κ,µ(z) to take out the minus sign,

together with Γ(1/2 + z) Γ(1/2− z) = π/ cos(πz), then we have

I =
1√
8ex

ξ(ν−1)/2 e−ex/ξ W 1−ν
2

, ρ
2

(

2 ex

ξ

)

(5.4)

Therefore the pricing kernel P(τ ; x, ξ) in (4.7) is

P(τ, x, ξ) =
1

2π2

∫

∞

0

e−(u2+ν2)τ/8 e−ex/ξ

(

2 ex

ξ

)(1−ν)/2

× W 1−ν
2

, iu
2

(

2 ex

ξ

)
∣

∣

∣

∣

Γ

(

ν + iu

2

)
∣

∣

∣

∣

2

sinh(πu) u du (5.5)

+

[−ν/2 ]
∑

n=0

2(−ν − 2n)

n! Γ(−ν − n+ 1)
en(ν+n)τ/2 e−ex/ξ

(

2 ex

ξ

)(1−ν)/2

W 1−ν
2

,− ν
2
−n

(

2 ex

ξ

)

.

6 Integrating out ξ

In this section we will specify payoff functions for put and call options and then study

their values.

6.1 Put options

The payoff function for the asian put option is

φP (ξ) = (Kτ − ξ) θ(Kτ − ξ) , (6.1)

where θ(·) is the Heaviside step function. According to (4.8) its value is

OP =
e−Rτ

4 τ ex

∫ Kτ

0

(Kτ − ξ) P(τ, x, ξ) dξ . (6.2)
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By investigate the expression (5.5) of the pricing kernel P(τ, x, ξ), we see that we need to

consider the following type integration

IP =

∫ Kτ

0

(Kτ − ξ)

(

2 ex

ξ

)(1−ν)/2

exp

(

−e
x

ξ

)

W 1−ν
2

, ρ
2

(

2 ex

ξ

)

dξ

= 4 e2x(2k)(3+ν)/2

∫

∞

1

(1− y) y−3+(1−ν)/2 exp
(

− y

4k

)

W 1−ν
2

, ρ
2

( y

2k

)

dy

= 4 e2x(2k)(3+ν)/2 exp

(

− 1

4k

)

W
−

3+ν
2

, ρ
2

(

1

2k

)

, (6.3)

where k = Kτ/(4ex), and we have use the formula (7.623.7) of [20] in the last line.

Therefore the value of an Asian call option is

OP =
eRτ+x

2π2τ

∫

∞

0

e−(u2+ν2)τ/8(2k)(3+ν)/2 e−1/(4k)W
−

3+ν
2

, iu
2

(

1

2k

)

×
∣

∣

∣

∣

Γ

(

ν + iu

2

)
∣

∣

∣

∣

2

sinh(πu) u du (6.4)

+
eRτ+x

τ

[−ν/2 ]
∑

n=0

2(−ν − 2n)

n! Γ(−ν − n + 1)
en(ν+n)τ/2(2k)(3+ν)/2 e−1/(4k)W

−
3+ν
2

,− ν
2
−n

(

1

2k

)

.

By using the relation (see (9.237.3) of [20] 2)

W
−

3+ν
2

,− ν
2
−n(z) = (−1)n n! z−n−(3+ν)/2 e−z/2 L−ν−2n

n (z) (6.5)

with L−ν−2k
n (z) being the generalized Laguerre polynomial, and

Wµ−1/2, µ(z) = z1/2−µ ez/2 Γ(2µ, z) (6.6)

with Γ(2µ, z) the incomplete Gamma function, it can be shown that (6.4) is exactly

equal 3 to the result obtained in [17] through a different approach. [17] is based on an

equivalence between two stochastic process, while our method seems more elementary,

just doing integrations. Actually we can derive that equivalence by using the formulation

in this paper.

6.2 Call options

Now we consider the Asian call option, whose payoff function is

φC(ξ) = ( ξ −Kτ) θ( ξ −Kτ) . (6.7)

2The factor n! is missed in [20].
3Need the replacement τhere = 4τthere and exhere = S0 there.
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The integration we need to do is

IC =

∫

∞

Kτ

( ξ −Kτ)

(

2 ex

ξ

)(1−ν)/2

exp

(

−e
x

ξ

)

W 1−ν
2

, ρ
2

(

2 ex

ξ

)

dξ

= 4 e2x(2k)(3+ν)/2

∫ 1

0

(1− y) y−3+(1−ν)/2 exp
(

− y

4k

)

W 1−ν
2

, ρ
2

( y

2k

)

dy

= 4 e2x(2k)(3+ν)/2 exp

(

− 1

4k

)

W
−

3+ν
2

, ρ
2

(

1

2k

)

. (6.8)

We have used the formula (6.623.8) of [20] in the last line. Note that, unlike (6.3) is always

true, (6.8) is convergent only under the condition ν + |Re ρ| < −2. For the integration

part of the pricing kernel P(τ, x, ξ) to be convergent, we should require ν < −2. Then

there are at least n = 0, 1 two terms in the finite summation part of (5.5). But these two

terms are both divergent since ν+(−ν−2n) ≥ −2 for n = 0, 1. Therefore for call options

we cannot naively interchange the order of the integrations over u and ξ. In the theory

of finance we have so-called put-call parity relation [16]

OC = OP +
1− e−Rτ

Rτ
ex − e−RτK . (6.9)

We can use this relation to obtain the value of Asian call options from that of put options.

However it is interesting to find a direct calculation method of this result.

A The completeness proof

In this appendix we will show that, for q > 0,

I(x, x′) :=
1

π2

∫

∞

0

Kiu(
√

8q ex/2)Kiu(
√

8q ex
′/2) sinh(πu) u du = δ(x− x′) . (A.1)

Since the integrand is an even function due to Kiu = K−iu, we can extend the integration

range to (−∞,∞). Therefore

I(x, x′) =
i

2π2
lim
Λ→∞

∫ iΛ

−iΛ

Kν(
√

8q ex/2)Kν(
√

8q ex
′/2) sin(πν) ν dν . (A.2)

By using the relation Kν(z) = 2−1π(I−ν(z) − Iν(z))/ sin(πν), we decompose I(x, x′) into

three terms

I(x, x′) =
i

8
lim
Λ→∞

{
∫ iΛ

−iΛ

ν dν

sin(πν)
Iν(z) Iν(z

′) +

∫ iΛ

−iΛ

ν dν

sin(πν)
I−ν(z) I−ν(z

′)

−
∫ iΛ

−iΛ

ν dν

sin(πν)
[ Iν(z) I−ν(z

′) + I−ν(z) Iν(z
′) ]

}

, (A.3)
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where z =
√
8q ex

′/2 and z′ =
√
8q ex

′/2. The first two terms are actually equal by

interchanging ν and −ν. Since the integrands are holomorphic in the complex ν-plane,

we can deform the integration path to a semicircle CΛ := {Λ eiφ|− π
2
≤ φ ≤ π

2
}. Therefore

I(x, x′) =
i

8
lim
Λ→∞

{

2

∫

CΛ

ν dν

sin(πν)
Iν(z) Iν(z

′)

−
∫

CΛ

ν dν

sin(πν)
[ Iν(z) I−ν(z

′) + I−ν(z) Iν(z
′) ]

}

. (A.4)

When the order ν is large and z is fixed, we have

Iν(z) ∼ 1

Γ(1 + ν)

(z

2

)ν

, |ν| → ∞ , |argz| < π . (A.5)

By carefully analyzing the asymptotic behavior along CΛ when Λ → ∞, it can be shown

that [22] the first term of (A.4) actually tends to zero. So we have

I(x, x′) = − i

8
lim
Λ→∞

∫

CΛ

ν dν

sin(πν)

{

(

z
2

)ν

Γ(1 + ν)

(

z′

2

)−ν

Γ(1− ν)
+

(

z
2

)−ν

Γ(1− ν)

(

z′

2

)ν

Γ(1 + ν)

}

= lim
Λ→∞

Λ

8π

∫ π
2

−
π
2

{

( z

z′

)Λeiφ

+
( z

z′

)−Λeiφ
}

eiφ dφ

= lim
Λ→∞

Λ

8π

∞
∑

n=0

{

(x−x′

2
)nΛn

n!
+ (−1)n

(x−x′

2
)nΛn

n!

}

∫ π
2

−
π
2

ei(n+1)φdφ

=
1

2
lim
Λ→∞

sin(Λ (x−x′)
2

)

π (x−x′)
2

=
1

2
× δ

(

x− x′

2

)

= δ(x− x′) . (A.6)

In the second line we have used Γ(1 + ν) Γ(1− ν) = πν/ sin(πν), and in the last line the

limit representation of the Dirac delta function

lim
Λ→∞

sin(Λu)

πu
= δ(u) . (A.7)

Therefore we have proved the completeness relation (A.1).
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