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We briefly review statistical models for the probability distribution of money developed in the
econophysics literature since the late 1990s. In these models, economic transactions are modeled
as random transfers of money between the agents in payment for goods and services. We focus
on conceptual foundations for this approach, on the issues of money conservation and debt, and
present new results for the energy consumption distribution around the world.

“Money, it’s a gas.” Pink Floyd, Dark Side of the Moon

I. INTRODUCTION

Econophysics is an interdisciplinary field applying
mathematical methods of statistical physics to social,
economical, and financial problems [1]. The term was
first introduced by the statistical physicist Eugene Stan-
ley at the conference Dynamics of Complex Systems in
Kolkata in 1995 [2] and printed in its proceedings [3].

A puzzling social problem is the persistent economic in-
equality among the population in any society. In statisti-
cal physics, it is very well known that identical (“equal”)
molecules in a gas spontaneously develop a widely un-
equal distribution of energies as a result of random en-
ergy transfers in molecular collisions. By analogy, a very
unequal probability distribution of money can develop
spontaneously as a result of random money transfers
between economic agents. This idea was proposed by
several econophysicists around 2000 [4–7] and much ear-
lier by the sociologist John Angle [8]. The subsequent
progress is reviewed in [9–12] and popular articles [13–
15]. This novel approach has virtually no counterpart
in the economic literature. Only the economist Miguel
Molico [16] recently studied the probability distribution
of money within the search theory of money [17]. Econo-
physics ideas are gradually starting to receive recognition
from the economists and social scientists [18].

Econophysics papers typically focus on calculations
and analysis of intricate details of mathematical models,
but not on conceptual foundations. This shortcoming
was criticized by the economists [19]. In this article, we
present an extended discussion of the conceptual founda-
tion underlying the models of random money transfers.
We focus on the often-contentious issues of money con-
servation and debt, and also present new results on the
energy consumption distribution around the world. For a
more comprehensive survey of the literature, please refer
to the review papers cited above.

II. THE BOLTZMANN-GIBBS DISTRIBUTION

OF ENERGY

The fundamental law of equilibrium statistical physics
is the Boltzmann-Gibbs distribution of energy [20]. It

states that the probability P (ε) of finding a physical sys-
tem or subsystem in a state with the energy ε is given by
the exponential function

P (ε) = c e−ε/T . (1)

Here c is a normalizing constant, and T is the temper-
ature, which is equal to the average energy per particle:
T ∼ 〈ε〉, up to a coefficient of the order of 1.

A derivation of Eq. (1) involves the two main ingredi-
ents: statistical character of the system and conservation
of energy ε [20]. One of the shortest derivations can be
summarized as follows. Let us divide the system into two
(generally unequal) parts. Then, the total energy is the
sum of the parts: ε = ε1 + ε2, whereas the probability
is the product of probabilities: P (ε) = P (ε1)P (ε2). The
only solution of these two equations is the exponential
function (1). Eq. (1) can be also derived by maximizing
the entropy S = −

∑
k Nk ln(Nk/N) of the system for a

fixed total energy E =
∑

k Nkεk, where Nk is the number
of particles having the energy εk.

These derivations are very general, so one may expect
that the exponential distribution (1) would apply to other
statistical systems with a conserved quantity.

III. CONSERVATION OF MONEY

The economy is a big statistical system with millions
of participating agents, so it is a promising target for ap-
plications of statistical mechanics. Is there a conserved
quantity in the economy? Drăgulescu and Yakovenko
[5] argued that such a conserved quantity is money m.
Indeed, the ordinary economic agents can only receive
money from and give money to other agents. They are
not permitted to “manufacture” money, e.g., to print dol-
lar bills. Let us consider an economic transaction be-
tween agents i and j. When the agent i pays money
∆m to the agent j for some goods or services, the money
balances of the agents change as follows

mi → m′

i = mi −∆m,

mj → m′

j = mj +∆m. (2)
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The total amount of money of the two agents before and
after transaction remains the same

mi +mj = m′

i +m′

j , (3)

i.e., there is a local conservation law for money. The
transfer of money (2) is analogous to the transfer of en-
ergy in molecular collisions, and Eq. (3) is analogous to
conservation of energy. Conservative models of this kind
are also studied in some economic literature [16, 17].
We should emphasize that the transfer of money from

one agent to another represents payment for goods and
services in a market economy. However, Eq. (2) only
keeps track of money flow, but does not keep track of
what goods and service are delivered. One reason for
this is that many goods, e.g., food and other supplies,
and most services, e.g., getting a haircut or going to a
movie, are not tangible and disappear after consump-
tion. Because they are not conserved, and also because
they are measured in different physical units, it is not
practical to keep track of them. In contrast, money is
measured in the same unit (within a given country with
a single currency) and is conserved in local transactions
(3), so it is straightforward to keep track of money flow.
It is also important to realize that an increase in mate-
rial production does not result in an automatic increase
in money supply. The agents can grow apples on trees,
but cannot grow money on trees.
Enforcement of the local conservation law (3) is cru-

cial for successful functioning of money. If the agents
were permitted to “manufacture” money, they would be
printing money and buying all goods for nothing, which
would be a disaster. The purpose of the conservation
law is to ensure that an agent can buy goods from the
society only if he or she contributes something useful to
the society and receives monetary payment for these con-
tributions. Money is an accounting device, and, indeed,
all accounting systems are based on the conservation law
(2). The physical medium of money is not essential as
long as the conservation law is enforced. The fiat money
(declared to be money by the central bank) may be in the
form of paper currency, but more often it is represented
by digits on computer accounts. So, money is just bits of
information, and monetary system constitutes an infor-
mational layer of the economy. Monetary system inter-
acts with physical system (production and consumption
of material goods), but the two layers cannot be trans-
formed into each other because of their different nature.
Unlike, ordinary economic agents, a central bank or a

central government can inject money into the economy,
thus changing the total amount of money in the system.
This process is analogous to an influx of energy into a
system from external sources. As long as the rate of
money influx is slow compared with the relaxation rate
in the economy, the system remains in a quasi-stationary
statistical equilibrium with slowly changing parameters.
This situation is analogous to slow heating of a kettle,
where the kettle has a well defined, but slowly increasing,
temperature at any moment of time.

Another potential problem with conservation of money
is debt, which will be discussed in Sec. V. Most of econo-
physics models, such as [4–6], and some economic models
[16, 17] do not permit debt. Thus, money balances of the
agents cannot drop below zero: mi ≥ 0 for all i. Trans-
action (2) takes place only when an agent has enough
money to pay the price: mi ≥ ∆m. An agent with
mi = 0 cannot buy goods from other agents, but can
receive money for delivering goods or services to them.
In a big statistical ensemble of agents, monetary trans-

actions (2) take place between many different agents.
Although purposeful and rational for individual agents,
these transactions can be treated as effectively random
for the whole ensemble. This is similar to statistical
physics, where each atom follows deterministic equations
of motion, but the whole system is effectively random.
We are interested in the probability distribution of

money P (m) among the economic agents resulting from
the random transfers (2). For this purpose, it is appropri-
ate to make the simplifying macroeconomic idealizations,
as described above, in order to ensure overall stability of
the system and existence of statistical equilibrium. The
concept of “equilibrium” is a very common idealization in
economic literature, even though the real economy might
never be in equilibrium. We extend this concept to a sta-
tistical equilibrium, characterized by a stationary prob-
ability distribution P (m), in contrast to a mechanical
equilibrium, where the “forces” of demand and supply
balance each other.

IV. PROBABILITY DISTRIBUTION OF

MONEY

Having recognized the principle of local money con-
servation, Drăgulescu and Yakovenko [5] argued that the
distribution of money P (m) should be given by the expo-
nential Boltzmann-Gibbs function analogous to Eq. (1)

P (m) = c e−m/Tm . (4)

Here c is a normalizing constant, and Tm is the “money
temperature”, which is equal to the average amount of
money per agent: T = 〈m〉 = M/N , where M is the total
money, and N is the number of agents.
To verify this conjecture, Drăgulescu and Yakovenko

[5] performed agent-based computer simulations of
money transfers between agents. Initially all agents were
given the same amount of money, say, $1000. Then, a
pair of agents (i, j) was randomly selected, the amount
∆m was transferred from one agent to another, and the
process was repeated many times. Time evolution of the
probability distribution of money P (m) is shown in com-
puter animation videos [21] and [22]. After a transitory
period, money distribution converges to the stationary
form shown in Fig. 1. As expected, the distribution is
well fitted by the exponential function (4).
In the simplest model [5], the transferred amount was

fixed to a constant ∆m = $1. Computer animation [21]
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FIG. 1: Histogram and points: Stationary probability dis-
tribution of money P (m) obtained in the random transfers
model [5]. Solid curves: Fits to the exponential distribution
(4). Vertical line: The initial distribution of money.

shows that the initial distribution of money first broad-
ens to a symmetric Gaussian curve, typical for a diffusion
process. Then, the distribution starts to pile up around
the m = 0 state, which acts as the impenetrable bound-
ary, because of the condition m ≥ 0. As a result, P (m)
becomes skewed (asymmetric) and eventually reaches the
stationary exponential shape, as shown in Fig. 1. The
boundary at m = 0 is analogous to the ground-state en-
ergy in statistical physics. Without this boundary con-
dition, the probability distribution of money would not
reach a stationary state. Computer animations [21, 22]
also show how the entropy of money distribution, defined
as S/N = −

∑
k P (mk) lnP (mk), grows from the initial

value S = 0, where all agents have the same money, to
the maximal value at the statistical equilibrium.

Drăgulescu and Yakovenko [5] studied different ad-
ditive rules for ∆m. Other papers studied multiplica-
tive rules, such as the proportional rule ∆m = γmi

[4, 8], the saving propensity [6], and negotiable price [16].
These models produce Gamma-like distributions, as well
as a power-law tail for a random distribution of saving
propensities. Despite some mathematical differences, all
these models demonstrate spontaneous development of
a highly unequal probability distribution of money as a
result of random money transfers between the agents.
Many papers use the term “wealth” instead of “money”.
We believe that these terms have different meanings and
should not be used interchangeably [5, 9].

It would be very interesting to compare these theoret-
ical results with empirical data on money distribution.
Unfortunately, it is very difficult to obtain such data.
The probability distribution of balances on deposit ac-
counts in a big enough bank would be a reasonable ap-
proximation for money distribution among the popula-
tion. However, such data are not publicly available. In

contrast, plenty of data are available on income distribu-
tion from the tax agencies. Quantitative analysis of such
data for the USA [9] shows that the population consists
of two distinct social classes. Income distribution follows
the exponential law for the lower class (about 97% of pop-
ulation) and the power law for the upper class (about 3%
of population). Although social classes have been known
since Karl Marx, it is interesting that they can be rec-
ognized by fitting the empirical data with simple math-
ematical functions. The computer scientist Ian Wright
[23, 24] has demonstrated emergence of two classes in
sophisticated agent-based simulations of initially equal
agents. This work is further developed in the book [25],
integrating economics, computer science, and physics.

V. MODELS OF DEBT

Now let us discuss how the results change when debt is
permitted. From the standpoint of individual economic
agents, debt may be considered as negative money. When
an agent borrows money from a bank [26], the cash bal-
ance of the agent (positive money) increases, but the
agent also acquires a debt obligation (negative money),
so the total balance (net worth) of the agent remains
the same. Thus, the act of money borrowing still sat-
isfies a generalized conservation law of the total money
(net worth), which is now defined as the algebraic sum
of positive (cash M) and negative (debt D) contribu-
tions: M − D = Mb, where Mb is the original amount
of money in the system, the monetary base [27]. When
an agent needs to buy a product at a price ∆m exceed-
ing his money balance mi, the agent is now permitted
to borrow the difference from a bank. After the trans-
action, the new balance of the agent becomes negative:
m′

i = mi −∆m < 0. The local conservation law (2) and
(3) is still satisfied, but now it involves negative values
of m. Thus, the consequence of debt is not a violation of
the conservation law, but a modification of the bound-
ary condition by permitting negative balances mi < 0, so
m = 0 is not the ground state any more.
If the computer simulation with ∆m = $1 is repeated

without any restrictions on the debt of the agents, the
probability distribution of money P (m) never stabilizes,
and the system never reaches a stationary state. As time
goes on, P (m) keeps spreading in a Gaussian manner
unlimitedly toward m = +∞ and m = −∞. Because of
the generalized conservation law, the first moment of the
algebraically defined money m remains constant 〈m〉 =
Mb/N . It means that some agents become richer with
positive balances m > 0 at the expense of other agents
going further into debt with negative balances m < 0.
Common sense, as well as the experience with the cur-

rent financial crisis, tell us that an economic system can-
not be stable if unlimited debt is permitted [28]. In this
case, the agents can buy goods without producing any-
thing in exchange by simply going into unlimited debt.
Arguably, the current financial crisis is caused the enor-



4

-50 0 50 100 150

0

10

20

30

40

-50 0 50 100 150

0.1

1

10

 

 

lo
g

(P
(m

))
 (

1
x

1
0

-3
)

Monetary Wealth,m

 

 
P

ro
ba

bi
lit

y,
P

(m
) (

1x
10

-3
)

Monetary Wealth,m

FIG. 2: The stationary distribution of money [29] for the re-
quired reserve ratio R = 0.8. The distribution is exponential
for both positive and negative money with different “temper-
atures” T+ and T

−
, as shown in the inset on log-linear scale.

mous debt accumulation in the system, triggered by sub-
prime mortgages and financial derivatives based on them.

Detailed discussion of the current economic situation
is not a subject of this paper. Going back to the idealized
model of money transfers, one would need to impose a
modified boundary condition in order to prevent unlim-
ited growth of debt and to ensure overall stability of the
system. Drăgulescu and Yakovenko [5] considered a sim-
ple model where the maximal debt of each agent is limited
to md. In this model, P (m) again has the exponential
shape, but with the new boundary condition atm = −md

and the higher money temperature Td = md+Mb/N . By
allowing agents to go into debt up to md, we increase the
amount of money available to each agent by md.

Xi, Ding, and Wang [29] considered a more realistic
boundary condition, where a constraint is imposed on
the total debt of all agents in the system. This is ac-
complished via the required reserve ratio R [27]. Banks
are required by law to set aside a fraction R of the
money deposited into bank accounts, whereas the re-
maining fraction 1−R can be lent. If the initial amount
of money in the system (the money base) is Mb, then,
with repeated lending and borrowing, the total amount
of positive money available to the agents increases to
M = Mb/R, where the factor 1/R is called the money
multiplier [27]. This is how “banks create money”. This
extra money comes from the increase in the total debt
D = Mb/R −Mb. Given the two constraints on M and
D, we expect to find the exponential distributions of pos-
itive and negative money characterized by two different
temperatures: T+ = Mb/RN and T− = Mb(1−R)/RN .
This is exactly what was found in computer simulations
[29] shown in Fig. 2.

However, in the real economy, the reserve requirement

is not effective in stabilizing debt in the system, because
it applies only to deposits from general public, but not
from corporations. Moreover, there are alternative in-
struments of debt, including derivatives and various un-
regulated “financial innovations”. As a result, the total
debt is not limited in practice and can reach catastrophic
proportions. Here we briefly discuss several models with
non-stationary debt. Drăgulescu and Yakovenko [5] stud-
ied a model with different interest rates for deposits into
and loans from a bank. Computer simulations show that,
depending on the choice of parameters, the total amount
of money in circulation either increases or decreases in
time. The interest amplifies the destabilizing effect of
debt, because positive balances become even more posi-
tive and negative even more negative. A macroeconomic
model studied by the economist Steve Keen [30, 31] ex-
hibits a debt-induced breakdown, where all economic ac-
tivity stops under the burden of heavy debt and cannot
be restarted without a “debt moratorium”. The inter-
est rates were fixed in these models and not adjusted
self-consistently. Cockshott and Cottrell [32] proposed
a mechanism, where the interest rates are set to cover
probabilistic withdrawals of deposits from a bank. In an
agent-based simulation, they found that money supply
increases first, and then the economy crashes under the
weight of accumulated debt.

Bankruptcy is a mechanism for debt stabilization. It
erases the debt of an agent (the negative money) and re-
sets the balance to zero. However, somebody else (a bank
or a lender) counted this debt as a positive asset, which
also becomes erased. In the language of physics, creation
of debt is analogous to particle-antiparticle generation
(creation of positive and negative money), whereas can-
cellation of debt corresponds to particle-antiparticle an-
nihilation (annihilation of positive and negative money).
The former and latter dominate during economic booms
and busts and represents monetary expansion and con-
traction. Bankruptcy is the crucial mechanism for stabi-
lization of money distribution, but it is often overlooked
by the economists. Interest rates are meaningless without
a mechanism specifying when bankruptcy is triggered.

Numerous failed attempts were made to create alter-
native community money from scratch. In such a sys-
tem, when an agent provides goods or services to another
agent, their accounts are credited with positive and neg-
ative tokens, as in Eq. (2). However, because the initial
global money balance is zero in this case, the probability
distribution of money P (m) is symmetric with respect to
positive and negative m. Unless a boundary condition is
imposed on the lower side, P (m) never stabilizes. Some
agents accumulate unlimited negative balances by con-
suming goods and services and not contributing anything
in return, thus undermining the system. A capitalist so-
ciety imposes a lower bound on money balances, whereas
a socialist one may consider an upper bound [33].
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FIG. 3: Cumulative distribution functions of the energy con-
sumption per capita around the world for 1990, 2000, and
2005. The solid curve is the exponential function.

VI. PROBABILITY DISTRIBUTION OF

ENERGY CONSUMPTION

While money is the informational side of the economy,
material standards of living are controlled by the phys-
ical layer. They are primarily determined by the level
of energy consumption and are widely different around
the globe. Using the data from the World Resources
Institute, Banerjee and Yakovenko [34] found that the
probability distribution of energy consumption per capita
around the world approximately follows the exponential
law, as shown in Fig. 3. The limited energy resources
in the world (predominantly fossil fuels) are partitioned
among the world population. As in Sec. II, maximization
of the entropy with the constraint results in the exponen-
tial distribution of energy consumption.
The world average energy consumption per capita is

about 2.2 kW, compared with 10 kW in USA and 0.6 kW
in India [34]. However, if India and other countries were
to adopt the same energy consumption level per capita as
in USA, there would not be enough energy resources in
the world to do that. The global energy consumption in-
equality results from the constraint on energy resources.
Fig. 4 shows the Lorenz curves for the global energy

consumption in 1990, 2000, and 2005 [34]. The hori-
zontal axis in Fig. 4 represents the cumulative popula-
tion ranked by the energy consumption per capita, and
the vertical axis represents the cumulative energy con-
sumption of this population. The black solid line is the
theoretical curve y = x + (1 − x) ln(1 − x) for an ex-

ponential distribution [9]. In the Lorenz plot for 1990,
one can notice a kink or a knee indicated by the ar-
row, where the slope of the curve changes appreciably.
This point represents the boundary between developed
and developing countries. Mexico, Brazil, China, and In-
dia are below this point, whereas Britain, France, Japan,
Australia, Russia, and USA are above. Thus, the differ-
ence between developed and developing countries lies in
the degree of energy consumption and utilization, rather
than in the more ephemeral monetary measures, such as
dollar income per capita. However, the Lorenz curve for
2005 is closer to the exponential curve, and the kink is
less pronounced. It means that the energy consumption
inequality and the gap between developed and develop-
ing countries have decreased, as also confirmed by the
decrease in the Gini coefficient G listed in Fig. 4. We at-
tribute this result to the rapid globalization of the world
economy in the last 20 years. Ultimately, the energy con-
sumption distribution in a well-mixed globalized world
economy is expected to be exponential and not equal.

The energy/ecology and financial/economic crises are
the biggest challenges faced by the mankind today. There
is an urgent need to find ways for a manageable and
realistic transition from the current breakneck growth-
oriented economy, powered by the ever-expanding use
of fossil fuels, to a stable and sustainable society, based
on renewable energy and balance with the Nature. Un-
doubtedly, both money and energy will be the key factors
shaping up the future of human civilization.
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