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Abstract. The mathematical physics literatures as well as quantum mechanics textbooks
on spherically symmetric potentials are enormous. Despite of these there is no unique
point of view about the boundary behavior of the radial function at the origin, in
particular, for singular potentials.  Since at least the work of K.Case , it has been known
that Weyl limit-point, limit-circle analysis provides the right way to understand the
boundary conditions at the origin. This is now textbook   material, as discussed in books
of Reed and Simon, for example. But these books are very difficult to understand for
students. Despite of this in our opinion there is no necessity of deepening into such
profound mathematics. Strict derivation of radial Schrodinger equation shows an
appearance of new delta function term during reduction of Laplace operator in spherical
coordinates. As a result, regardless of behavior of potential, an additional constraint is
imposed on the radial wave function in form of a vanishing boundary condition at the
origin.
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I. INTRODUCTION

According to general principles of quantum mechanics wave functions of physical states
must obey certain requirements, such as continuity (more precisely,   two-fold
differentiability), uniqueness and square integrability. In many quantum mechanical
problems the knowledge of the behavior of wave function is needed at points where the
potential under consideration has some singularities (e.g. wells and so on). Below we
consider problems in central symmetric fields, for which the separation of variables
performed in spherical coordinates. It is well known that the transition to spherical
coordinates is singular transformation with respect to the origin. Indeed the transition from
Cartesian to spherical coordinates is not unambiguous, because the Jacobean of this
transformation equals to sin2rJ  and it is singular at 0r  and  ,...2,1,0 nn .
Angular part is unambiguously fixed by the requirements of continuity and uniqueness.1 It
gives the unique spherical harmonics   ,m

l .
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We also note that though 0r
 is an ordinary point in full Schrodinger equation, it is a

point of singularity in the radial equation and thus, knowledge of specific boundary
behavior is required.

For this, at the first sight simple problem, there is no definite answer in the framework of
general principles. We have in mind the radial wave function  ru , for which the equation
consists of only the second derivative

           021
22
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From this equation the behavior of the radial wave function at the origin will depend upon
behavior of potential, in particular, whether it is regular or singular. Whereas for regular
potentials there exist a relatively definite answer, for singular potentials situation is totally
unclear.2

Our aim is to elucidate things in this problem. Therefore we reconsider derivation of
radial equation in more detail. We show that the status of radial equation in itself is
depended on the behavior of  ru   at the origin.

This article is organized in the following manner: In section II we consider consequences
of general principles. We will show that there is no unambiguous answer. In section III we
consider the transition to the radial equation carefully and obtain the new delta-like term,
elimination of which provides definite constraint on the radial wave function at the origin.
Only after fulfillment of this constraint the equation takes its usual form (1). At the same
time this constraint has the form of boundary condition for radial wave function at the
origin. In section IV we give concluding remarks, while in the Appendix we remember
how the delta function appears.

II. BOUNDARY CONDITION AT THE ORIGIN ACCORDING TO GENERAL
REQUIREMENTS OF QUANTUM MECHANICS

The question is what is the maximal singularity that the radial function )(rR or
   rrRru  can have   at the origin 0r . We remember here some of definitions:

Full 3-dimensional wave function is presented as
      ,m

lrRr 
 ;  20;0;0 r   (2)

and the equation for full radial function )(rR  takes form

     0122
22
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rdr

Rd                                     (3)

The traditional change of variables in quantum mechanics eliminates the first
derivative term from this equation by the following substitution

r

ru
rR

)()(  ,                                                                    (4)

which in turn, gives the equation (1) for the new radial wave function  ru . This well
known equation plays an important role in quantum mechanics since its birth.

From the continuity of wave function )(rR  at 0r it follows that   00 u  insuring the
finiteness of probability at this point.3 However one can weaken this condition by requiring
the finiteness of differential probability in the spherical slice  drrr ,
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 drdrRdW 22                                                 (5)

Then, if at origin srR ~ , it follows that 1s , or   00 u .
    Another generalization is to require a finiteness of total probability inside of sphere with
a small radius a

 
a

drrR
0

22                                                                  (6)

In this case more singular behavior is permissible, namely
   



2/1

00
limlim rru
rr

  (7)

The same follows from the finiteness of the norm.

 



0

22
drrrR                                                 (8)

One can use also more strong argument by Pauli4 namely, time independence of the norm.
To explore it we proceed below in analogy to the book by Blokhincev.5

In quantum mechanics the norm of wave function is independent of time

   0dV
dt

d

dt

dN                                                     (9)

Using the time dependent Schrodinger equation we transform previous relation into

    0)( ** dVHH
i

dt

dN 


(10)

Therefore, time independence of probability means that the Hamiltonian must be Hermitian
(symmetric) operator. By introducing the density of probability current





   



im

h
J Re ,                                                        (11)

it is easy to show that

       HH
i

Jdi



 (12)

Therefore the equation of conservation of probability takes form (after using the Gauss
theorem)

   dSJdVJdivdV
dt

d
N


                                              (13)

Let us propose that at 0r  the Hamiltonian has a singular point. At this point the Gauss
theorem in the previous form is not applicable. We must exclude this point from the
integration volume, surrounding it by small sphere of radius a . In this case the surface
integral is divided into two parts: infinitely separated surface, which envelops the total
volume, and the surface of sphere of radius a :

 



 0lim 2

0
dsJdJa Na

a
                                                    (14)

In the first integral we have expressed the surface element of sphere as  dads 2 , where
d is an element of body angle. Because of vanishing of wave functions at infinity, the
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second term turns to zero. Substituting
ar

a rrm
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sr
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   This condition is fulfilled if 1s . It follows that the wave function  rR does not rise
at infinity more quickly than sr/1 , with 1s , which means that   0limlim 1

00
 



s

rr
rru .

We see that the different arguments lead to different conclusions for wave function
behavior at the origin. Finiteness of the norm allows divergent growth of  ru at the origin,
but time independence of the norm gives vanishing behavior.
    The following question arises naturally: Does the boundary behavior at the origin have
some physical meaning? For this reason let us start from the radial equation (1) and
consider the well known example of regular potential

  0lim 2

0



rVr

r
                                                                   (16)

   For this case after substitution at the origin aru ~ from indicial equation it follows, that
   11  llaa , which gives two solutions ll

r
rcrcu 


 2

1
1

0
~ . For nonzero l  the second

term is not locally square integrable and is ignored usually. But for 0l , many authors
discuss how to deal with this solution,6,7 which is square integrable at origin. Messiah7 in
his book writes: “The foregoing argument does not apply when 0l . But in that case, the
corresponding wave function 0  ( 0R  in our notation) does not satisfy the Schrodinger

equation [condition (a)]. In fact, 0  behaves as  r/1 at the origin, and since

   rr
4/1  ,

   r
m

EH
 

2

0
2

 (17)

  One must therefore keep only so-called “regular” solutions, that is, the solutions
satisfying the condition   00 u . With such a solution we can be sure that the function

m
l  is a solution of the Schrodinger equation everywhere, including the origin; moreover,

since the normalization integral converges at the origin, the condition that m
l  or its

eigen differential belong to Hilbert space depends solely upon the behavior of this solution
at infinity”.
     However this solution corresponds only to the case of regular potential. Things change
drastically when potential is singular. Indeed, let consider the case of so-called transitive
singular potential

  constVrVr
r


 0

2

0
lim                                              (18)

00 V corresponds to the attraction, while 00 V - to repulsion.
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For this potential the indicial equation takes form     0211 mVllaa  , which has two

solutions: 0

2

2
2
1

2
1

mVla 





  . Therefore

0
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2
2
1

1
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2
2
1;~ mVlPrcrcu
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r
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




 




                             (19)

It seems that both solutions are square integrable near the origin as long as 10  P .
Exactly this range is studied in most papers in connection with self-adjoint extension of the
radial Hamiltonian.8,9  It corresponds to the case (6) above. On the other hand, in case (5)
this parameter is restricted as follows 2/10  P . The difference is essential. Indeed, in
this notation the radial equation takes the form

      024/1
2

2




 rmEuru
r

P
ru                                                (20)

Depending on whether P  exceeds 1/2  or not, the sign in front of the fraction changes and
one can derive attraction in case of repulsive potential and vice versa, whereas the
condition (5) forbids this undesirable solution with 12/1  P .
    It seems that the choice   00 u is more preferable. But this condition does not follow
directly from the equation (1). Therefore we think that there is a reason to reconsider the
derivation of eq. (1) in more detail.

II. MORE PROFOUND DERIVATION OF THE RADIAL EQUATION
OR WHEN IS THE RADIAL EQUATION VALID?

Now we return to the rigorous derivation of radial equation for  ru . Note that after
substitution of representation (3) into the equation (2) the following equation follows

         021121221
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We write equation in this form deliberately, showing action of radial part of Laplacian on
relevant factors explicitly. It seems that the first derivatives of  ru cancelled and we are
faced with the following equation

     021121
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Now if we differentiate the second term “naively”, we’ll derive zero. But it is true
only in case, when 0r  . Below we show that in general this term is proportional to the
3-dimensional delta function. Indeed, taking into account that

rdr

d
r

dr

d

rdr

d

rdr

d







 2

22

2 12                        (23)

is the radial part of the Laplace operator and therefore10(See also Appendix)
   r

rrr

3411 












                                             (24)

we obtain the equation for  ru
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We see the extra delta-function term appears in the equation (25). It’s presence in the
radial equation has no  physical meaning  and thus it must be eliminated.  Note that when

0r , this extra term vanishes owing to the property of the delta function and if, in this
case, we multiply this equation by r , we’ll obtain the ordinary radial equation (1).

However if 0r , multiplication by r  is not permissible and this extra term remains in
Eq. (25). Therefore one has to investigate this term separately and find another ways to
discard it.

The term with 3-dimensional delta-function must be comprehended as being integrated
over  dddrrrd sin23  . On the other hand10

         r
J

r
13 

                                                         (26)

Taking into account all the above mentioned relations, one is convinced that extra term
still survives, but now in the one-dimensional form

      rrurru  
3)( (27)

    Its appearance as a point-like source breaks many fundamental principles of physics,
which is not desirable. The only reasonable way to remove this term without modifying
Laplace operator or including compensating delta function term in the potential  rV , is to
impose the requirement

  00 u       (28)
(note, that multiplication of Eq. (25) by r  and then elimination of this extra term owing
the property   0rr  is not legitimated procedure, because effectively it is equivalent to
multiplication of this term on zero).
     Therefore we conclude that the radial equation (1) for  ru  is compatible with the full
Schrodinger equation (2) if and only if the condition   00 u  is satisfied. The radial
equation (1) supplemented by the condition ( 28) is equivalent to the full Schrodinger
equation (2). It is in accordance with the Dirac requirement11, that the solutions of the
radial equation must be compatible with the full Schrodinger equation. It is remarkable to
see that the supplementary condition (28) has a form of boundary condition at the origin.

  We already seen above that there is some ambiguity in formulation of boundary
condition for radial wave function from general principles of quantum mechanics.
Therefore various boundary behaviors were considered in physical literature, especially
for singular potentials. Now we have proven that the radial equation is valid only together
with condition (28) independently of the potential, whether it is regular or singular.

It seems very curious that this fact (appearance of Delta function while reduction of
Schrodinger equation) was unnoted until now.
 Therefore it is interesting to know what will be the influence of this observation on
physical results obtained previously.
    It is evident, that papers, in which this boundary condition was explored, are correct.
On the other hand, papers without this boundary condition are not correct from physical
point of view.
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 It is well known that in most textbooks only regular potentials are considered with this
boundary condition. Therefore all those results are correct. The only exclusion concerns
to the above mentioned 0l  state, refined attention by A.Messiah7 , and may be, by
others. But we practically proven his assumption, because of that the second solution
must be ignored for any l , including 0l .
     More far-reaching consequences follow in case of singular potentials, which recently
are the subjects of active interest, in connection with the self-adjoint extension. Many
authors neglected boundary condition entirely and were satisfied only by square
integrability. But this treatment, after leakage into the forbidden regions and through a
self-adjoint extension procedure, sometimes yields curious unphysical results.

IV. CONCLUSIONS

We have shown that a rigorous reduction of the Laplace operator in spherical
coordinates leads to the previously unnoticed delta function term.   Careful investigation
of this term gives a definite constraint on the radial function behavior at the origin. This
constraint has a boundary condition form,   00 u . Therefore a unique boundary
condition follows for both regular and singular potentials in the radial Schrodinger
equation. Only the character of turning to zero depends on the behavior of potential at the
origin.

As we noted in the ABSTRACT, since at least the work of K.Case,12 it has been
known that Weyl limit-point, limit-circle analysis provides the right way to understand
the boundary conditions for Eq. (1) at the origin13. We have nothing against these strong
mathematical treatments; however it follows from above considerations that the radial
wave equation is valid only together with condition   00 u .Therefore, a self-adjoint
extension, performed in many papers without this condition, has only mathematical
importance and has nothing in common with physics without above mentioned boundary
condition.

Lastly, we note that the same holds for radial reduction of the Klein-Gordon equation,
because in three dimensions it has the following form

        rrVErm
  22                               (29)

and the reduction of variables in spherical coordinates will proceed to absolutely same
direction as in Schrodinger equation.
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APPENDIX:  HOW THE DELTA FUNCTION APPEARS
Let us remember appearance of delta function. In this aim below we’ll follow to the

book10.
Let us consider following differentiation
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By naive calculation we get zero. But separate terms in this expression are highly
singular, therefore we  must regularize them. Let us choose the following regularization
near the origin

220

1lim1
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If we differentiate now, we get
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It is well behaved everywhere for nonvanishing a , but as 0a  it becomes infinite at
0r and vanishes for 0r . So it seems that we are close to the Delta function. Indeed,

integration over sphere gives

 


 drr
ar

a 2
2/522

234

Let us divide full volume of integration into two parts: sphere with center at the origin
of radius R and outside region. Imagine that that Ra  and tending to zero.  Then
integral from the exterior of the sphere will vanish like 2a as 0a .
We thus need consider only the contribution from inside the sphere. Here we can neglect

2r  in the numerator, because the integrand varies very slowly with r .
After this the integral becomes equal to

  1
3

3
5

53

2/52

2


a

aa

a

a

 Thus we have all properties of the Delta function.
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