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Abstract

Futures trading is the core of futures business, and is deresi as a typical complex system.
To investigate the complexity of futures trading, we empog analytical method of complex
networks. First, we use real trading records from ShangiairEs Exchange to construct futures
trading networks, in which vertices are trading particiggamnd two vertices have a common
edge if the two corresponding investors simultaneouslgapn at least one trading record as a
purchaser and a seller respectively. Then, we conduct aredrapsive statistical analysis on the
constructed futures trading networks, and empirical teshiow that the futures trading networks
exhibit such features as scale-free structure with inteig@®dd-even-degree divergence in low
degree region, small-worldtect, hierarchical organization, power-law betweennestsibiition,
and shrinkage of both average path length and diameterasmetize increases. To the best of
our knowledge, this is the first work that uses real data tdystutures trading networks, and we
argue that the research results can shed light on the ndtreraldutures business.
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1. Introduction

Since the works of Watts & Strogat][and Barabasi & Albertad] were published, com-
plex networks, as a new scientific area, have caught a tremosn@mount of interesBf7].
Complex networks can describe a wide range of real-lifeesystin nature and society, and
show various non-trivial topological characteristics noturring in simple networks such as
regular lattices and random networks. There are a numbereqfiéntly cited examples that
have been studied from the perspective of complex netwdamkkjding World Wide Web §—
11], Internet [L2], metabolic networks13], scientific collaboration networkd.f], online social
networks [L5, 16], public transport networksl[z, 18], airline flight networks 19] and human
language network2pD-22]. Empirical studies on these networks mentioned above lzagely
motivated the recent curiosity and concern about this neeareh area so that a number of tech-
nigues and models have been explored to improve peoplespton of topology and evolution
of real complex system®B-28]. As growing in importance and popularity, complex network
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theory becomes a powerful tool with intuitive anfilextive representations to analyze complex
systems in a variety of fields, including financial mark29][

In the literature, a number of papers have been dedicatedyiag financial market from
the perspective of complex networks. The majdfedence among these works lies in the types
of networks to be constructed from financial data for cha@nhg the organization and struc-
ture of financial market. Some existing works constructedishetworks whose connectivity is
defined by the correlation between any two time series okgtoices B0-34]. Some others es-
tablished directed networks of stock ownership describiiegelationship between stockholders
and companies3p, 36]. Networks of market investors based on transaction ictema between
the investors were also investigated. For example, Frahké analyzed irregular trading be-
haviors of users in an experimental stock marld,[ while Wang et al studied the evolving
topology of such a network in an experimental futures exgbdBg].

The study on financial investor networks can provide cluesteal the true complexity in
financial market, especially futures market. In a real fesumarket, the futures trading model
serves as a matching engine to execute all eligible ordens frarious market participants, and
the interactions among the participants form a complex axgk network, which is termed as
futures trading network (FTN in short) in this paper. Simply, a FTN consists of a setrafling
participants, each of which has at least one connectionrettdéxchange action to another on
the futures contracts.

In this paper, we try to provide a comprehensive study on lagacteristics of futures trading
networks established with genuine trading data from Shainghtures Exchange. To the best
of our knowledge, this is the first work that uses real futdrading data to construct networks.
So we think the empirical results may unveil the financiadlitng behavior and shed light on the
nature of futures market.

The rest of this paper is organized as follows. FTN conswacanethod is introduced in
Section2, including trading data set and the detail of network cartdion. SectiorB8 presents
the empirical results of FTNs. Sectidrconcludes the paper.

2. Construction of Futures Trading Networks

In this section, we first introduce the real trading data f@&imanghai Futures Exchange, which
will be used to construct futures trading networks, and hesent the detail of futures trading
networks construction.

2.1. Dataset

To construct futures trading networks, we use real tradewprds from Shanghai Futures
Exchange, which is the largest one in China’s domestic &stunarket and has considerable
impact on the global derivative market. Trade records anegged by matching orders or quotes
from buyers and sellers according to a certain rule of piirce priority (first price, then time)
in the electronic trading platform of the futures exchanddere are hundreds of thousands
of matching results reported from the exchange in one typiading day. We use a dataset
involving all futures commodities in the derivative marketm July to September of 2008. For
the trading records, we use virtual and unique IDs to repitetbe trading participants, and all
other information is filtered for privacy preservation reas
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2.2. Network Construction

Since a trading record contains the IDs of both the buyer bhadseller, we are able to es-
tablish a futures trading network. The construction predssas follows. A vertex represents
a participant in a trading record, and an edge, meaning & teldtion, is established between
two participants if their IDs appear in the same trading réat least once. An example of FTN
comprising nine records is shownfaig. L Here, A-H are IDs of trading participants. Each row
in the right part of Fig. 1represents a trading record, and the Seller and Buyer caamathe
IDs of seller and buyer in each trading record.
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Fig. 1. An example of futures trading network constructed from askett with nine trading records.

Following the above process, we first create the largestor&twith the whole dataset con-
taining three months’ trading records, this network is dedas FTN-all. Then, we construct
three sub-networks based on three subsets of the wholestlatas/e according to futures com-
modity classification of Shanghai Futures Exchange. Thesetsub-networks are termed as
FTN-met, FTN-rub and FTN-oil, which involve only futuresramodity metal (concretely in-
cluding copper, aluminum, zinc and gold), natural rubbet frel oil respectively. Thus, we
have totally four FTNSs, their detailed information is givieriTable 1

Table 1. The details of the four FTNs. FTN-all is based on the wholaskit containing three months’
trading records from July to September of 2008, FTN-met, Fiibland FTN-oil are three sub-networks
of FTN-all, they correspond to three subsets that involMg trading records of futures commodity metal,
natural rubber and fuel oil respectively.

Label Futures Commodity Number of vertices Number of edges
FTN-all all 100994 8068676
FTN-met metal 75262 3226119
FTN-rub natural rubber 55828 3364557
FTN-ail fuel oil 52208 1657268




3. Propertiesof Futures Trading Networks

In what follows, we study the characteristics of FTNs camngied above, our focus is on
topological features and dynamical properties. Externsiapirical results are presented.

3.1. Scale-free Behavior

Degree distributiorP(k) is one of the most import statistical characteristics of @avnek, and
one of the simplest properties that can be measured diredilyse definition is the probability
that a random vertex in a network has exadétlgdges. In many real complex networlXKk)
decays withk in a power law, followingP(k) ~ k=*. A network owning such a property is called
scale-free network?].

The degree distributions of FTN-all, FTN-met, FTN-rub and@N-oil are shown in
Fig. 2a), (b), (c) and (d). We can see that ) of all the four networks follows power-law
distribution with the sama value, which is about 1.5. This implies that highly conndoter-
tices have larger chances of occurring and dominating theextivity. Actually, these vertices
correspond to a few active speculators who send numeroessotal the exchange, and conse-
guently obtain more opportunities to make deals with theisth Their trading behaviors also
account for the fact that FTNs dynamically expand in accocdavith the rule of preferential
attachment by continuously adding new vertices duringifeérhe of the networks.
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Fig. 2. Degree distributions of FTN-all, FTN-met, FTN-rub and FDN- All the four fitting lines in the
subplots have the same slope and folBk) ~ k=1°.
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In Fig. 2 we also can see the fact that in low-degree region, the piliyaof even degree is
larger than that of odd degree following the former, whichre a divergence. As the degree
increases, the two branches gradually converge and ffexatice is averaged out. The branch
of even degree conforms to power law more than that of the deut. this observation, one
reasonable explanation is that most participants with dlsraeber of trading transactions are
unwilling to hold the positions long term, which are open loolg ago, and close them soon. To
a certain extent, due to the randomicity of counter partrdytiie execution, two matches (open
and close) of a participant are more possible to be involretifferent counter parties, thus two
degrees will be added to the corresponding vertex. Thisrgaten reveals that there are few
hedgers with long-term position in real trading, which isisistent with the fact of low delivery
ratio in the futures market.

Now let us consider weighted futures trading networks wiveréex strength is a significant
measure39]. In this paper, the vertex strength is defined as followgpg®se that the weight of
an edge between two vertices is the number of times they ajpp#ae same trade record, the
strengthSof a vertex is defined as the total weight of all edges conngdti As shown inFig. 3,
the relationship between the strength and degree of alicesrtn FTN-all shows a nontrivial
power law scalings ~ k%, which demonstrates the fact that active market parti¢ggat more
active. Such a scale-free behavior being correlated to ticercence frequency of a trading
participant provides another justification for the powasldegree distribution of the networks.

106 T T T T

10 P P P P A
0 1 2 3 4 5

10 10 10 10 10 10
k

Fig. 3. Plot of the vertex strengt8as a function of degreein FTN-all, the slope is about 1.18.
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3.2. Small-world Effect

For complex networks, average path length and clusteriefficiznt are two important mea-
sures of small-world féect.

In a network, the average path length ($3ys defined as the number of edges in the shortest
path between any two vertices, averaged over all pairs dicest It plays an important role in
transportation and communication in a network. We can alita¢ (2/n(n - 1)) 3. dij. The
longest shortest path among all pairs of vertices is calleditameter of the network.

The clustering coicientC; of a vertex is defined as the ratio of the total numteeof edges
that actually exist between all its immediate (nearest) neighbors and the nunkigr — 1)/2
of all possible edges between them, thals= 2g/ki(ki — 1). The clustering cd&cientC of
the whole network is the average Gf over all vertices, i.e.C = (1/n) >, C;. The clustering
codficient measures the probability that two neighbors of a xexte connected and reveals the
local cliquishness of a typical neighborhood within a netwo

In recent empirical studies, many real systems show smallevefect by two crucial factors:
average path length and diameter is relatively small desggien the large network size, which
grows nearly logarithmically with the number of verticesdahe clustering cd&cient is larger
than that of a comparable random network having the same euoflvertices and edges as the
real network.

We also notice small-worldfiect in FTN-all. On one hand, the average path lerigdnd
diameterD are small, their values are 2.470 and 6 respectively, whdesalues are 2.774 and 4
in an equivalent random network with the same parametersh®nther hand, the network is
highly clustered. The clustering dbeient of FTN-all is 0.0480, which is larger than that of the
random network (the value is 0.0016). These results arepted inTable 2

Table 2. Small-world dfect shows in FTN-all with large clustering d&ieient C and small average path
lengthL and diameteD, contrary to a random network with similar parameters (totanber of vertice¥,
total number of edgel or average number of edges per vertek >)

Label \ E <k> Kimax C L D
FTN-all 100994 8068676 159.8 36878 0.0480 2.470 6
random - - - 218 0.0016 2.774 4

The ratio ofCern-a1 @ndCiang is relatively small in comparison with other real systeris [
This implies no adequate evidence of local cliquishnesstgpizal neighborhood within FTN-
all, which may be due to the randomicity of counter part dym@xecution. Furthermore, the
smallL andD is because of 1) the existence of hub vertices (conformiriggdarge maximum
degreekmy in Table 9, which are bridges betweenfléirent vertices separated in the network;
and 2) new connections generated between the existingeerttiithout direct links previously,
which provide more shortcuts to the network. The shortett gistribution inFig. 4 shows that
most of the shortest paths are 2 or 3, which helps to explaistiell-world &ect.

3.3. Hierarchical Organization

To examine the hierarchical organization feature of a ndtywwe checkC(k), the average
clustering coéicient of all vertices with the same degreelf C(k) follows a strict scaling law,
the network is viewed as the presence of hierarchical orgéion. Some real networks, such as
World Wide Web, actor network and Internet, display the diehical topology40].
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Fig. 4. Shortest path distribution indicating that most of the &sirpaths are 2 or 3.



For FTN-all, as indicated ifig. 5 the main part oC(k) obeys a scaling law d€-%8, which
implies that the network has a hierarchical architecturéhough the majority of bargainers
making a few deals have a few links (Idg; most of these links join hub vertices that connect
to each other, resulting in a b@(k). The highk vertices are hub bargainers, and their neighbors
being lowk vertices are seldom linked to each other, leading to a sm@(ld. This implies
that ordinary investors are part of such clusters with highesiveness and dense interlinking
except the hubs that play a bridging role to connect manyragmamall communities together
into a complete network. To some extent, the hub investousiflb the market and improve the
market’s liquidity.
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Fig. 5. Clustering co#icientC(k) as a function of the vertex degrkevith a exponent of -0.80

3.4. Betweenness Distribution

Betweenness is a measure of the centrality of a vertex inveonketand also a measure of the
influence a vertex has over the spread of information thrabgmetwork f1].

The betweenness of a vertex is defined to be the fraction afedigaths between pairs of
vertices in a network that go through it. If there is more tlome shortest path between two
vertices, the value of each such path is weighted by one beenimber of shortest paths. To
be precise, the definition is as follows(i) = > bjk(i)/bjk wherebj(i) is the number of geodesic
paths fromj to k containingi, while by is the total number of geodesic paths linkingndk.
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By exploring the betweenness distributiBtb) of FTN-all, we find it following a power law
function, i.e.,P(b) ~ b™ with w=0.8. The result is illustrated iRig. 6.

Information communication (e.g. money or asset transfeistg in FTNs, and money flow
is considered as the index of marke. The power-law disiobuiemonstrates that the vertices
having high betweenness own such a potential to contralimétion flow passing between vertex
pairs of the network. Accordingly, the participants withbetweenness centrality play decisive
role in promoting market boom and enhancing financial fuorcti

P(b)

10° 10° 10 10° 10° 10"

Fig. 6. Betweenness distribution following a power law functiorttw®(b) ~ b°8

3.5. Power-Law Evolution

We have now explored topological properties in static FTNsre we will check some dy-
namic characteristics of the FTN-all network by considgiits evolutional process, which can
characterize the real trading behaviors of futures market.

Like many real-life systems1p, 12, 13], FTN-all also shows accelerated growth2]
in Fig. 7(a), which manifests that the number of edges increasesr fiémstn the number of ver-
tices. Furthermore, the relationship between the numbedgés and the number of vertices in
FTN-all follows a power law functiore(t) ~ v(t)*, wheree(t) andv(t) respectively denote the
numbers of edges and vertices of the network at tina@da is the exponent. Such relationship
is termed densification power law by Leskoverc et 48[ We can see that the fitting curve
in Fig. 7(a) consists of two segments withfidirent slopes, 1.8 and 3.3 respectively. We notice
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that the critical point of the broken fitting line exactly btes at the end of the first trading day,
meaning that the mechanism of intraday edge’s growth in BN totally different from that
after the first day.

Besides, we observe that the average degree and densityNe&lFSuper-linearly grow with
the network size, and both show broken lines in the logaiithpoiots ofFig. 7(b) and (c), similar
to Fig. 7(a). The variations of both average degree and density owerare directly related to
the change of edges’ number. The average dddteand densityl(t) are respectively evaluated
by k(t) = 2e(t)/v(t) andd(t) = 2e(t)/v(t)(v(t) — 1), and thus we obtaik(t) ~ v(t)*~* andd(t) ~
v(t)22. In Fig. 7(b), the two slopes of the broken line are 0.8 and 2.3 respygtand inFig. 7(c)
they are -0.2 and 1.3 respectively, which explains why ttekdm line of the density first falls
and then rises. According féig. 7(a), (b) and (c), FTN-all is becoming denser as the network
size increases.

In Fig. 7(d), the maximum degrde(t) of FTN-all grows in power lawkmax(t) ~ v(t)’ where
the slopeB is 1.7. This observation illustrates that the active pardnts in the futures market
keep vigorous all the time, and the day traders (these wiyuémrtly buy and sell futures within
the same trading day so that all positions will customaréyctosed before the market close’s on
that day) constitute the core part of the active participant

In some real complex networkg,[9], the average path length scales logarithmically with the
number of vertices, and the diameter slowly grows with netvgize. However, in FTN-all we
notice that the average path length deceases as the numbertioés increases, so does the
diameter. The average path length decays in a power law witbpe of -0.27 in Fig. 7(e),
while the diameter of FTN-all deceases as showhRig 7(f). With the network size’s growing,
the simultaneous shrinkage of both the average path lengtth@ diameter in FTN-all provides
another evidence of densification in the network.

The exposed properties above indicate that the vertice3 &l become closer with each
other as the network size grows. These properties attributee real trading behavior of futures
market. The deals are resulted from two sources: tradingwfinvestors who just enter the
market, and transactions between the existing participdrite new investors make a few deals
because of caution and carefulness, while the existingczahts, especially the day traders,
generate a large number of transactions. The latter prowaigy chances to make deals between
the participants without any trading relationship befavhich results in the new links between
the vertices that have no direct connections previouslyfiNfall, and consequently accounts for
the properties mentioned above. Additionally, th&etent dominant sources of edge addition
determine the discontiguous slopes in the logarithmicsplért the first trading day, almost all
investors are newcomers, so the edge growth from new imgeistéhe dominant factor. After
that day, the number of new investors and their transactenmto remain steady, and the edges
generated between the existing participants outnumbsethenerated by the new investors. The
conversion of the edge growth’s driving factors explaireseRistence of two dierent exponents
in the power law underlying the network’s evolution.

4. Conclusion

Futures trade networks in financial business have beenzgthfyom the perspective of com-
plex network. We constructed FTNs by using real trading mes@overing three months’ op-
eration in Shanghai Futures Exchange. We found a hnumbeterkeisting statistical properties
of the networks, including scale-free behavior, smallddeftfect, hierarchical organization and
power-law evolution characteristics. Some unique featofedhe FTNs are possibly due to the
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Fig. 7. (a) The number of edges vs. the number of vertices in log-tadesfor FTN-all, a power law is
witnessed with the slopes of 1.8 and 3.3 respectively in Wodudon process. The critical point locates
at the end of the first trading day. (b) Average degree supeadly grows in a power law with the slopes
of 0.8 and 2.3 respectively. (c) Density changes over timeniapproximate power law of the slopes -0.2
and 1.3, and the slope values account for the reason why the fitst falls and then rises. The conversion
of edge growth’s driving factors results in thefdrent slopes in the power law underlying the network’s
evolution. (d) Maximum degree grows in a power law with rear network size, and the slope is 1.7. (e)
Average path length decays in a power law with a slope of -0 Diameter decreases as the number of
vertices increases.
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randomicity of counter part during deal execution and thgicoous generation of new links be-
tween previously-unconnected vertices, which play imgratrtoles in determining the structures
of futures trade networks.

As only undirected graphs are considered in this paperitoighy of further studying the
directed FTNs based on trading direction, such as from kayssller, which reflects information
flow, for example, money flow. In Sectia®1, we simply established the weighted FTN-all
to demonstrate that active market participants get moieeadiut it is obviously not enough.
Actually, we can construct weighted FTNs or weighted an@éaad FTNs to investigate the
market behavior of active parts. Moreover, the generatiodehof FTNs is also an important
issue for further exploration, as it can provide valuabght on financial trade monitoring and
risk control.
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