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RECOVERY RATES IN INVESTMENT-GRADE POOLS OF CREDIT ASSETS:

A LARGE DEVIATIONS ANALYSIS

KONSTANTINOS SPILIOPOULOS AND RICHARD B. SOWERS

Abstract. We consider the effect of recovery rates on a pool of credit assets. We allow the recovery rate
to depend on the defaults in a general way. Using the theory of large deviations, we study the structure
of losses in a pool consisting of a continuum of types. We derive the corresponding rate function and show
that it has a natural interpretation as the favored way to rearrange recoveries and losses among the different
types. Numerical examples are also provided.

1. Introduction

Understanding the behavior of large pools of credit assets is currently a problem of central importance.
Banks often hold such large pools and their risk-reward characteristics need to be carefully managed. In
many cases, the losses in the pool are (hopefully) rare as a consequence of diversification. In a number of
papers [Sowa, Sowb], we have used the theory of large deviations to gain some insight into several aspects
of rare losses in pools of credit assets. Our interest here is the effect of recovery. While a creditor either
defaults or doesn’t (a Bernoulli random variable), the amount recovered may in fact take a continuum of
values. Although many models assume that recovery rate is constant—i.e., a fixed deterministic percentage
of the par value, in reality the statistics of the amount recovered should be a bit more complicated. The
statistics of the recovered amount should depend on the number of defaults; a large number of defaults
corresponds to a bear market, in which case it is more difficult to liquidate the assets of the creditors. Our
goal is to understand how to include this effect in the study of rare events in large pools. We would like to
look at these rare events via some ideas from statistical mechanics, or more accurately the theory of large
deviations. Large deviations formalizes the idea that nature prefers “minimum energy” configurations when
rare events occur. We would like to see how these ideas can be used in studying the interplay between default
rate and recovery rate.

Our work is motivated by the general challenge of understanding the effects of nonlinear interactions
between various parts of complicated financial systems. One of the strengths of the theory of large deviations
is exactly that it allows one to focus on propagation of rare events in networks. Our interest here is to see
how this can be implemented in a model for recovery rates which depend on the default rate.

This work is part of a growing body of literature which applies the theory of large deviations to problems of
rare losses in credit assets; cf. [Pha07] and [DDD04]. Our work is most closely related to [LMS09], where the
dynamics of a configuration of defaults was studied. There, the recovery rate was assumed to be independent
of the defaults. Our work here is explicitly interested in dependence. Furthermore, the framework of our
efforts is a continuum of “types”, whereas [LMS09] was focussed primarily on a model of one type, with a brief
treatment of finite types. The case of a continuum of types requires slightly more topological sophistication.
We also note that issues of recovery have been considered in the economics literature; see [SH09] and the
references therein.

The paper is organized as follows. In Section 2 we introduce our model and establish some notation.
In Section 3 we study the “typical” behavior of the loss of our pool; we need to understand this before
we can identify what behavior is “atypical”. In Section 4, we present some formal sample calculations and
examples. These calculations are indicative of the range of possibilities and they illustrate the main results.
Furthermore, we state our main result, Theorem 4.5, and present numerical several examples which illustrate
some of the main aspects of our analysis. In particular, we use the structure of our work to understand some
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aspects of implied recovery. The proof of Theorem 4.5 is in Sections 5, 6 and 7. Section 8 contains an
alternative expression of the rate function, which is a variational formula which optimizes over all possible
configuration of recoveries and defaults, and which leads to a Lagrange multiplier approach which can be
numerically implemented. Lastly, Section 9 contains the proofs of several necessary technical results.

The model at the heart of our analysis is in fact very stylized. Since our primary interest is the interaction
between default rates and recovery rates, our model focusses on this effect, but simplifies a number of
other effects. In particular, we assume that the defaults themselves are independent. Notwithstanding this
simplification, our model does capture some aspects of empirically observed relations between default and
implied recovery (see subsection 4.1). Hopefully, more realistic models (e.g., which include a systemic source
of risk) can be analyzed by techniques which are extensions of those developed here.

2. The Model

Let’s start by considering a single bond (or “name”). For reference, let’s assume that all bonds have
par value of $1. If the bond defaults, the assets underlying the bond are auctioned off and the bondholder
recovers r dollars, where r ∈ [0, 1]. We will record the default/survival coordinate as an element of {0, 1},
where 1 corresponds to a default and 0 to survival. In case of default, the amount recovered is an element

of [0, 1]. Thus the minimal state space for a single bond is the set E◦
def
= {0} ∪ ({1} × [0, 1]). Since we want

to consider a pool of bonds, the state space in our model will be E
def
= EN

◦ (as usual, N
def
= {1, 2 . . .}). Giving

{0, 1} the discrete topology and [0, 1] its natural topology, we have that {0, 1} × [0, 1] is of course Polish;
thus E◦, as a subset of {0, 1}× [0, 1] is also Polish, and thus E is also Polish. We endow E with the natural

σ-algebra F
def
= B(Ω).

Let’s now define the principal objects of interest associated with loss in the pool. The pool suffers a loss
when a bond defaults, and the amount of the loss is $1− r, where r is the recovery amount (in dollars). For
e ∈ E◦, define

∆̌(e)
def
=

{

1 if e = (1, r)

0 if e = 0
and ℓ̌(e)

def
=

{

1− r if e = (1, r)

0 if e = 0;

then ∆̌ is a Bernoulli random variable which records whether the bond has defaulted, and ℓ̌ records the loss.

For each n ∈ N and ω = (ω1, ω2 . . . ), define the random variables ∆n(ω)
def
= ∆̌(ωn) and ℓn(ω)

def
= ℓ̌n(ωn).

The default and loss rates in the pool are then

DN
def
=

1

N

N
∑

n=1

∆n and LN
def
=

1

N

N
∑

n=1

ℓn.

The only remaining thing to specify is a probability measure on (E,F ). For each N ∈ N, fix {pN,n : n ∈
{1, 2 . . .N}} ⊂ [0, 1]. These will be the risk-neutral default probabilities of the names when the pool has N
names. We next fix {℘N,n : n ∈ {1, 2 . . .N}} ⊂ C([0, 1];P[0, 1]); i.e., a collection of probability measures on
[0, 1] ([0, 1] being the range of the recovery1) indexed by elements of [0, 1] (being the default rate). For each
n ∈ N and ω = (ω1, ω2 . . . ), define the coordinate random variable Xn(ω) = ωn. For each N ∈ N, we then
fix our risk-neutral probability measure PN ∈ P(Ω) (with associated expectation operator EN ) by requiring
that

EN

[

N
∏

n=1

fn(Xn)

]

= EN

[

N
∏

n=1

{

(1 − pN,n)fn(0) + pN,n
∫

r∈[0,1]

fn(1, r)℘
N,n(DN , dr)

}]

for all {fn}Nn=1 ⊂ B(E◦). For each n ∈ N, this means that under PN ,

• {∆n}Nn=1 is an independent collection of random variables with PN{∆N = 1} = pN,n.
• for any fixed A ⊂ {1, 2 . . .N}, conditional on the event that {n ∈ {1, 2 . . .N} : ∆n = 1} = A,
{Xn}n∈A is an independent collection of random variables and Xn has (conditional) law δ{1} ×
℘N,n

(

|A|
N , ·

)

.

1We shall write ℘ ∈ C([0, 1];P[0, 1]) as a map from [0, 1]× B[0, 1] into [0, 1] such that for each D ∈ [0, 1], A 7→ ℘(D,A) is
an element of P[0, 1] and such that D 7→ ℘(D, ·) is continuous.
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With this probabilistic structure in place, we will clearly want to be able to condition on the default rate

so that we can then focus on the recovery rates; define the σ-algebra D
def
= σ{∆n : n ∈ N}.

Our goal is as follows. We firstly want to understand what LN looks like as N → ∞. In fact, under some

regularity assumptions on the pN,n’s and ℘N,n’s we will be able to identify L̄
def
= limN→∞ LN (this being a

limit in probability). Our second goal is to compute the asymptotics of PN{LN ≥ l} as N → ∞, particularly
for l > L̄; then {Ln ≥ l} is an “atypical” event.

Remark 2.1. In a sense, we are using the empirical default rate DN as a “systemic” random variable; we

have a sort of “contagion” from this systemic random variable to the recovery rate.

We conclude this section with two illustrative examples that will guide our calculations in the following
sections: a homogeneous pool of assets and a heterogeneous one with only two types.

Example 2.2 (Homogeneous Pool). Fix p ∈ [0, 1] and ℘ ∈ C([0, 1];P[0, 1]) and let pN,n = p and ℘N,n = ℘
for all N ∈ N and n ∈ {1, 2 . . .N}.

�

Example 2.3 (Heterogeneous Pool). Fix pA and pB in [0, 1] and fix ℘A and ℘B in C([0, 1];P[0, 1]). Every

third bond will be of type A and have default probability pA and recovery distribution governed by ℘A, and the

remaining bonds will have default probability pB and recovery distribution governed by ℘B. In other words,

pN,n = pA and ℘N,n = ℘A if n ∈ 3N and pN,n = pB and ℘N,n = ℘B if n ∈ 3N+ {1, 2}. For future reference,

let’s separate the defaults and into the the two types. Define

DA
N

def
=

1

⌊N/3⌋
∑

1≤n≤N
n∈3N

∆n and DB
N

def
=

1

N − ⌊N/3⌋
∑

1≤n≤N
n6∈3N

∆n.

Then

DN =
⌊N/3⌋
N

DA
N +

N − ⌊N/3⌋
N

DB
N ≈ 1

3
DA
N +

2

3
DB
N .

�

3. Typical Events

Let’s start our analysis by identifying the “typical” behavior of LN as N → ∞.

Example 3.1 (Homogeneous Example). Let’s see what LN looks like in Example 2.2. By the law of large

numbers limN→∞DN = p. Thus in distribution

LN ≈ 1

N

∑

1≤n≤pN

(1− ξn)

where the ξn’s are i.i.d. with distribution ℘(p, ·). We should consequently have that

lim
N→∞

LN = p

∫

r∈[0,1]

(1− r)℘(p, dr).

�

Example 3.2 (Heterogeneous Example). We can also identify the limit of LN in Example 2.3. The rate of

default among the A bonds is pA and the rate of default among the B bonds is pB. Thus limN→∞DA
N = pA

and limN→∞DB
n = pB, so

lim
N→∞

DN = D̄
def
=

pA
3

+
2pB
3
.

Thus we should roughly have

LN ≈ 1

N







∑

1≤n≤pAN/3

(1 − ξAn ) +
∑

1≤n≤2pBN/3

(1 − ξBn )






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where the ξAn ’s have law ℘A(D̄, ·), the ξBn ’s have distribution ℘B(D̄, ·) and the ξAn ’s and ξ
B
n ’s are all indepen-

dent. Consequently, it seems natural that

lim
N→∞

LN =
pA
3

∫

r∈[0,1]

(1− r)℘A(D̄, dr) +
2pB
3

∫

r∈[0,1]

(1 − r)℘B(D̄, dr),

the first term being the limit of the losses from the type A names, and the second term being the limit of the

losses from the type B names.

�

In view of our examples, it seems reasonable that we should be able to describe the average loss in the

pool in terms of a frequency count of pN,n
def
= (pN,n, ℘N,n). We note that pN,n takes values in the set

X
def
= [0, 1]× C([0, 1];P[0, 1]). Since P[0, 1] is Polish, so is C([0, 1];P[0, 1]), and thus X is Polish. We will

henceforth refer to elements of X as types. For each N ∈ N, we now define UN ∈ P(X) as

UN
def
=

1

N

N
∑

n=1

δpN,n .

A crucial component of our problem is that there is macroscopic “regularity” in type space.

Assumption 3.3. We assume that U
def
= limN→∞ UN exists (in P(X)).

�

Remark 3.4. In the case of Example 2.2, we have that U = δ(p,℘), while in the case of Example 2.3, we

have that U = 1
3δ(pA,℘A) +

2
3δ(pB ,℘B).

We can now identify the limiting behavior of LN . Define

(1) D̄
def
=

∫

p=(p,℘)∈X

pU(dp) and L̄
def
=

∫

p=(p,℘)∈X

{

p

∫

r∈[0,1]

(1− r)℘(D̄, dr)

}

U(dp).

To see that these quantities are well-defined, note that

(2) (p, ℘) 7→ p and ν 7→
∫

r∈[0,1]

(1− r)ν(dr)

are continuous mappings from, respectively, X and P[0, 1], to [0, 1] ⊂ R (the continuity of the second map
follows from the obvious fact that r 7→ 1 − r is a continuous map on [0, 1]). The continuity of the first map
of (2) implies that D̄ is well-defined. Combining the continuity of both maps of (2), we get that the map

(p, ℘) 7→ p

∫

r∈[0,1]

(1− r)℘(D̄, dr)

is a continuous map from X to [0, 1] ⊂ R; thus L̄ is also well-defined.

Lemma 3.5. For each ε > 0, we have that

lim
N→∞

PN

{∣

∣LN − L̄
∣

∣ ≥ ε
}

= 0.

�

Proof. For ℘ ∈ C([0, 1];P[0, 1]) and D ∈ [0, 1], let’s first define

Γ(D,℘)
def
=

∫

r∈[0,1]

(1 − r)℘(D, dr).

Again we can use (2) and show, by the same arguments used to show that D̄ and L̄ of (1) are well-defined,
that Γ is well-defined, and furthermore that it is continuous on [0, 1] × C([0, 1];P[0, 1]). For each N ∈ N,
define

L◦
N

def
=

1

N

N
∑

n=1

Γ(DN , ℘
N,n)∆n, D̄N

def
=

1

N

N
∑

n=1

pN,n =

∫

p=(p,℘)∈X

pUN (dp)

4



L̄N
def
=

1

N

N
∑

n=1

pN,nΓ(D̄, ℘N,n) =

∫

p=(p,℘)∈X

pΓ(D̄, ℘)UN (dp);

note that L◦
N is a random variable but D̄N and L̄N are deterministic. Note also that by weak convergence,

limN→∞ L̄N = L̄ and limN→∞ D̄N = D̄. The claim will follow if we can prove that

(3) lim
N→∞

EN

[

|LN − L◦
N |2
]

= 0 and lim
N→∞

EN

[

|L◦
N − L̄N |2

]

= 0.

To see the first part of (3), we calculate that

LN − L◦
N =

1

N

N
∑

n=1

(

ℓn − Γ(DN , ℘
N,n)

)

∆n.

Conditioning on D , we have that

EN

[

(

LN − L̃N

)2 ∣
∣

∣
D

]

=
1

N2

N
∑

n=1

{

∫

r∈[0,1]

(

(1− r′)− Γ(DN , ℘
N,n)

)2
℘N,n(DN , dr)

}

∆2
n ≤ 1

N
.

This implies the first part of (3).
To see the second part of (3), we write that L◦

N − L̄N = E1
N + E2

N where

E1
N =

1

N

N
∑

n=1

{

Γ(DN , ℘
N,n)− Γ(D̄N , ℘

N,n)
}

∆n

E2
N =

1

N

N
∑

n=1

Γ(D̄N , ℘
N,n)

{

∆N − pN,n
}

We first calculate that

EN

[

∣

∣E2
N

∣

∣

2
]

=
1

N2

N
∑

n=1

(

Γ(D̄N , ℘
N,n)

)2
pN,n

(

1− pN,n
)

≤ 1

4N
.

Thus limN→∞ EN

[

|E2
N |2
]

= 0. Similarly,

EN

[

∣

∣DN − D̄N

∣

∣

2
]

=
1

N2

N
∑

n=1

pN,n
(

1− pN,n
)

≤ 1

4N
.

Thus in particular

lim
N→∞

EN

[

∣

∣DN − D̄
∣

∣

2
]

= 0.

To bound E1
N , fix η > 0. By Prohorov’s theorem, {UN ; N ∈ N} is tight, so there is a Kη ⊂⊂ C([0, 1];P[0, 1])

such that

sup
n∈N

UN ([0, 1]×Kc
η) < η.

Defining

ω̄η(δ)
def
= sup

℘∈Kη

D1,D2∈[0,1]
|D1−D2|<δ

|Γ(D1, ℘)− Γ(D2, ℘)|

for all δ > 0, compactness of Kη and [0, 1] and continuity of Γ imply that limδց0 ω̄η(δ) = 0. Thus

|E1
N | ≤ EN

[

1

N

N
∑

n=1

∣

∣Γ(DN , ℘
N,n)− Γ(D̄N , ℘

N,n)
∣

∣

]

= EN

[

∫

p=(p,℘)∈X

∣

∣Γ(DN , ℘
N,n)− Γ(D̄N , ℘

N,n)
∣

∣UN (dp)

]

≤ 2η + 2ω̄η(κ) + P̃N

{

|DN − D̄| ≥ κ
}

.
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Take N ր ∞, then let κ ց 0. Finally let η ց 0. We conclude that indeed limN→∞ EN [|E1
N |] = 0. Collecting

things together, the claim follows. �

4. Problem Formulation, Examples and Main Results

Let’s now set up our framework for considering atypical behavior of the LN ’s; i.e., large deviations. We
will in particular focus our discussion on Example 2.3. We shall along the way make a number of definitions
which will be crucial in our analysis.

One thing which is clear from Example 2.3 is that we need to keep track of the type associated with each
default (but not the types associated with names which do not default). To organize this, let M1(X) be the
collection of measures ν on (X,B(X)) such that ν(X) ≤ 1 (i.e., the collection of subprobability measures).

We can topologize M1(X) in the usual way. In particular, fix a point ⋆ that is not in X and define

X+ def
= X ∪ {⋆}. Give X+ the standard topology; open sets are those which are open subsets of X (with its

original topology) or complements in X+ of closed subsets of X (again, in the original topology of X). Define
a bijection ι from M1(X) to P(X+) by setting

(ιν)(A)
def
= ν(A ∩ X) + (1− ν(X)) δ⋆(A)

for all A ∈ B(X+). The topology of M1(X) is the pullback of the topology of P(X+) and the metric on
M1(X) is that given by requiring ι to be an isometry.

Since X is Polish, so is X+, and thus P(X+) is Polish, and thus M1(X) is Polish. For each N ∈ N, define
a random element νN of M1(X) as

νN
def
=

1

N

N
∑

n=1

∆nδpN,n

Define a sequence (ZN )N∈N of [0, 1]× M1(X)-valued random variables as

ZN
def
= (LN , νN ). N ∈ N

Since [0, 1] and M1(X) are both Polish, [0, 1]×M1(X) is also Polish. We seek a large deviations principle for
the ZN ’s. Since projection maps are continuous, the contraction principle will then imply a large deviations
principle for the LN ’s. Note furthermore that

DN = νN (X);

the map ν 7→ ν(X) is continuous in the topology on M1(X), so the recovery statistics depend continuously
on νN .

Let’s now see if we can identify a large deviations principle for the ZN ’s in Example 2.3. Namely, we want
to find a map I : [0, 1]× M1(X) → [0,∞] such that, at least informally,

PN {ZN ∈ dz∗} ≍ exp [−NI(z∗)] N → ∞
for each fixed z∗ = (ℓ∗, ν∗) ∈ [0, 1]× M1(X).

To proceed, note that {pA, pB} is the support of U and the νN ’s. If the support of ν∗ contains some other
point in X, then PN{ZN ∈ dz∗} = 0. In other words, I(z∗) = ∞ if ν∗ 6≪ U. Thus let’s now assume that
indeed ν∗ ≪ U. Then we explicitly have that

dν∗

dU
(pA) =

ν∗{pA}
1/3

and
dν∗

dU
(pB) =

ν∗{pB}
2/3

.

Similarly

dνN
dU

(pA) =
νN{pA}
U{pA}

=
1

N/3

∑

1≤n≤N
n∈3N

∆n

dνN
dU

(pB) =
νN{pB}
U{pB}

=
1

2N/3

∑

1≤n≤N
n6∈3N

∆n.

Thus

6



PN{νN ∈ dν∗} = PN {νN{pA} ≈ ν∗{pA}, νN{pB} ≈ ν∗{pB}}

= PN

{

dνN
dU

(pA) ≈
dν∗

dU
(pA),

dνN
dU

(pB) ≈
dν∗

dU
(pB)

}

.

This is now essentially the focus of Sanov’s theorem–i.i.d. Bernoulli random variables. For p ∈ [0, 1],
define

(4) ~p(x)
def
=























x ln x
p + (1− x) ln 1−x

1−p for x and p in (0, 1)

ln 1
p for x = 1, p ∈ (0, 1]

ln 1
1−p for x = 0, p ∈ [0, 1)

∞ else.

Then

(5)

PN{νN ∈ dν∗} ≍ exp

[

−N
3
~pA

(

dν∗

dU
(pA)

)

− 2N

3
~pA

(

dν∗

dU
(pB)

)]

= exp

[

−N
∫

p=(p,℘)∈X

~p

(

dν∗

dU
(p)

)

U(dp)

]

.

Let’s give a name to the right-hand side of this asymptotic expression.

Definition 4.1. For ν ∈ M1(X), define

H(ν)
def
=

{

∫

p=(p,℘)∈X
~p

(

dν
dU(p)

)

U(dp) if ν ≪ U

∞. else

�

The functional H will play a central role in our calculations, so we will need to understand it fairly
thoroughly. Note that

(6) ~0(x) =

{

0 if x = 0

∞ else
and ~1(x) =

{

0 if x = 1

∞ else

Thus if H(ν) <∞, we can restrict the region of integration to get that
∫

p=(p,℘)∈X

χ{0,1}(p)~p

(

dν

dU
(p)

)

U(dp) <∞

so in fact

(7)

U

{

p = (p, ℘) ∈ X : p = 0 and
dν

dU
(p) 6= 0

}

= 0

U

{

p = (p, ℘) ∈ X : p = 1 and
dν

dU
(p) 6= 1

}

= 0.

Next define

λp(θ)
def
= ln

(

peθ + 1− p
)

for all θ ∈ R and p ∈ [0, 1]. Then λp and ~p are convex duals; i.e.,

~p(x) = sup
θ∈R

{θx− λp(θ)} x ∈ R

λp(θ) = sup
x∈R

{θx− ~p(x)} . θ ∈ R

Lemma 4.2. We have that

(8) H(ν) = sup
φ∈C(X)

{

∫

p∈X

φ(p)ν(dp) −
∫

p=(p,℘)∈X

λp(φ(p))U(dp)

}

for all ν ∈ M1(X).

�
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The proof is given in Section 9. Finally, we have an approximation result.

Lemma 4.3. Fix ν ∈ M1(X) such that H(ν) <∞. Then there is a sequence (νN )n∈N such that

lim
N∈N

νN = ν and lim
N→∞

H(νN ) = H(ν)

(and thus νN ≪ U for all N ∈ N) and such that

p 7→ dνN
dU

(p) and p = (p, ℘) 7→ χ(0,1)(p)~
′
p

(

dνN
dU

(p)

)

are both well-defined and in C(X) for all N ∈ N.

Again, the proof is in Section 9.
We now turn to the actual losses. Let’s condition on the event that νN ≈ ν∗;

(9) PN {ZN ∈ dz∗} = P
{

LN ∈ dℓ∗
∣

∣νN ≈ ν∗
}

PN {νN ∈ dν∗} .

If νN ≈ ν∗, then there are about Nν∗{pA} defaults of type A, and Nν∗{pB} defaults of type B. Thus in law

(10) LN ≈ 1

N







∑

1≤n≤Nν∗{pA}

(1− ξAn ) +
∑

1≤n≤Nν∗{pB}

(1− ξBn )







where the ξAn ’s are i.i.d. with common law ℘A(ν(X), ·) and the ξBn ’s are i.i.d. with common law ℘B(ν(X), ·).
To understand the behavior of LN under this measure, we need to construct its moment generating function.

Definition 4.4. For ν ∈ M1(X), define

Λν(θ)
def
=

∫

p=(p,℘)∈X

{

ln

∫

r∈[0,1]

eθ(1−r)℘(ν(X), dr)

}

ν(dp) θ ∈ R

Λ∗
ν(ℓ)

def
= sup

θ∈R

{θℓ − Λν(θ)} ℓ ∈ [0, 1]

�

In our ongoing analysis of Example 2.3, we have that

Λ∗
ν(θ) = ν∗{pA} ln

∫

r∈[0,1]

eθ(1−r)℘A(ν(X), dr) + ν∗{pB} ln
∫

r∈[0,1]

eθ(1−r)℘B(ν(X), dr)

for all θ ∈ R; the logarithmic moment generating function of LN of (10) is approximately θ 7→ NΛν∗(θ/N).
Thus we should have that

PN

{

LN ∈ dℓ∗
∣

∣νN ≈ ν∗
}

≍ exp [−NΛ∗
ν(ℓ)]

We should then get the large deviations principle for ZN by combining this, (5), and (9).
Our main result now makes sense. Recall that if X◦ is a Polish space and P◦ is a probability measure on

(X◦,B(X◦)), we say that a collection (ξn)n∈N of X◦-valued random variables has a large deviations principle
with rate function I◦ : X → [0,∞] if

(1) For each s ≥ 0, the set Φ(s)
def
= {x ∈ X◦ : I◦(x) ≤ s} is a compact subset of X◦.

(2) For every open G ⊂ X◦,

lim
nր∞

1

n
lnP◦ {ξn ∈ G} ≥ − inf

x∈G
I◦(x)

(3) For every closed F ⊂ X◦,

lim
nր∞

1

n
lnP◦ {ξn ∈ F} ≤ − inf

x∈F
I◦(x).

8



Theorem 4.5 (Main). We have that (ZN )N∈N has a large deviations principle with rate function

I(z) = Λ∗
ν(ℓ) +H(ν)

for all z = (ℓ, ν) ∈ [0, 1]× M1(X). Secondly (LN )N∈N has a large deviations principle with rate function

(11) I ′(ℓ)
def
= inf

ν∈M1(X)
I(ℓ, ν)

for all ℓ ∈ [0, 1].

�

Proof. Combine together Propositions 5.1, 6.2, and 7.1. This gives the large deviations principle for (ZN ).
The large deviations principle for (LN )N∈N follows from the contraction principle and the continuity of the
map ν 7→ ν(X). �

One way to interpret Theorem 4.5 is that the rate functions I and I ′ give the correct way to find the
“minimum-energy” configurations for atypically large losses to occur. In general, variational problems in-
volving measures can be computationally difficult, so Section 8 addresses some computational issues. In
particular, we find an alternate expression which takes advantage of the specific structure of our problem.
Define

M℘(θ,D)
def
= ln

∫

r∈[0,1]

eθ(1−r)℘(D, dr) θ ∈ R

I℘(x,D)
def
= sup

θ∈R

{θx−M℘(θ,D)} x ∈ R

for all D ∈ [0, 1]; then

(12) Λν(θ) =

∫

p=(p,℘)∈X

M℘(θ, ν(X))ν(dp)

for all ν ∈ M1(X) and θ ∈ R. Define next B def
= B(X; [0, 1]).

Theorem 4.6. For ℓ ∈ [0, 1] and U ∈ P(X), set

(13)

J ′(ℓ)
def
= inf

Φ,Ψ∈B

{

∫

p=(p,℘)∈X

{

Φ(p)I℘

(

Ψ(p),

∫

p∈X

Φ(p)U(dp)

)

+ ~p(Φ(p))

}

U(dp) :

∫

p∈X

Φ(p)Ψ(p)U(dp) = ℓ

}

.

We have that I ′(ℓ) = J ′(ℓ) for all ℓ ∈ [0, 1]. An alternate representation of J ′ is

(14)

J ′′(ℓ)
def
= inf

D∈[ℓ,1]
inf
Φ∈B

inf
Ψ∈B

{

∫

p=(p,℘)∈X

{Φ(p)I℘ (Ψ(p), D) + ~p(Φ(p))}U(dp) :
∫

p∈X

Φ(p)Ψ(p)U(dp) = ℓ,

∫

p∈X

Φ(p)U(dp) = D

}

.

�

The proof of this is given in Section 8. The point of the second representation (14) is that the innermost
minimization problem (the one with Ψ and D fixed) involves linear constraints; that Φ take values in [0, 1]
and that two integrals of Φ take specific values. This will be useful in some of our numerical studies in the
next section.
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4.1. Numerical Examples. Let’s see what our calculations look like in some specific cases. To focus on the
effects of recovery, let’s assume a common probability of default of 20%; i.e., pN,n = 0.2 for all N ∈ N and
n ∈ {1, 2, . . .N}. We will consider four specific cases, one with fixed recovery rate, a homogenous pool with
variable recovery rate and two heterogenous pools with variable recovery rates. In all cases, the expected
loss will be 14%, but we will see that the tails (the large deviations principle rate functions) are significantly
different. Although our theory has primarily focussed on the rate function in the large deviations principle for
(LN )N∈N, the solution of the variational problem (11) (or equivalently (13) or (14)) gives useful information.
In particular, we shall extract some useful information about implied recovery.

In Case 1, let’s assume that the recovery rate is fixed at 30%; i.e., ℘N,n = δ0.3 for all N ∈ N and

n ∈ {1, 2 . . .N}. Setting p∗1
def
= (0.2, δ0.3), we here have that U = δp∗

1
. We first observe that H(ν) <∞ if and

only if ν = αδp∗
1
for some α ∈ [0, 1]; in this case, α = ν(X), so H(ν) < ∞ if and only if ν = ν(X)δp∗

1
. For

such a ν, H(ν) = ~0.2(α) = ~0.2(ν(X)) and

Λν(θ) = α ln e0.7θ = 0.7θν(X). θ ∈ R

If ν = ν(X)δp∗1 , then

Λ∗
ν(ℓ) =

{

0 if ℓ = 0.7ν(X)

∞ else

Collecting things together, we have that (ZN )N∈N and (LN)N∈N are governed, respectively, by the action
functionals.

I1(ℓ, ν) =

{

~0.2

(

ℓ
0.7

)

if ν = ℓ
0.7δp∗1

∞ else

I ′1(ℓ) = ~0.2

(

ℓ

0.7

)

We note that I ′1(ℓ) is finite only if 0 ≤ ℓ ≤ 0.7.
In Case 2 we consider a homogeneous pool with the recovery rate following a beta distribution. For

β > 0, define

µβ(A)
def
= β

∫

r∈A

(1− r)β−1dr; A ∈ B[0, 1]

this is the law of the beta distribution with parameters 1 and β. As β increases, the amount of mass near 1
decreases. We also have that

∫

r∈[0,1]

rµβ(dr) =
1

1 + β

for all β > 0 (as β increases, the mean of µβ decreases); this will allow a number of explicit formulae for the
expected recovery (given the default rate).

We want to consider the case that the recovery is in an appropriate sense negatively correlated with the
defaults; i.e., that more defaults imply less recovery. This is a documented empirical observation in the
financial literature, e.g., see [SH09], [ABRS05] and the references therein. We here assume that the recovery
rate has a beta distribution whose parameters depend linearly and monotonically on the empirical default
rate. Namely, if the default rate is D, then the recoveries will all have common beta distribution with
parameters 1 and

faff(D)
def
=

1

0.3− 0.25(D − 0.2)
− 1;

note that f : [0, 1] → R+. Define ℘aff(D, ·) def
= µfaff(D) for all D ∈ [0, 1]. This choice of faff results in a

conditional expected recovery which is affine in D; i.e.,
∫

r∈[0,1]

r℘aff(D, dr) = 0.3− 0.25(D− 0.2).

Set p∗aff
def
= (0.2, ℘aff); then U = δp∗

aff
. According to (1), the typical loss is

L̄ = 0.2×
(

1− 1

1 + faff(0.2)

)

= 0.2× (1− 0.3) = 0.14.
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The action functionals in this case are somewhat similar to those in Case 1. Again we have that

H(ν) =

{

~0.2(ν(X)) if ν = ν(X)δp∗2
∞. else

For each β > 0, define

Λ̌β(θ)
def
= ln

∫

r∈[0,1]

eθ(1−r)µβ(dr) θ ∈ R

Λ̌∗
β(ℓ)

def
= sup

θ∈R

{

θℓ − Λ̌β(θ)
}

. ℓ ∈ R

Then if ν = ν(X)δp∗
2
where ν(X) > 0,

Λν(θ) = ν(X)Λ̌faff(ν(X))(θ) θ ∈ R

Λ∗
ν(ℓ) = ν(X)Λ̌∗

faff(ν(X))

(

ℓ

ν(X)

)

. ℓ ∈ R

Of course if ν = 0, then Λν ≡ 0, and

Λ∗
ν(ℓ) =

{

0 if ℓ = 0

∞. else.

Here (ZN )N∈N and (LN )N∈N are governed, respectively, by the action functionals.

(15)

I2(ℓ, ν) =

{

~0.2(ν(X)) + ν(X)Λ̌∗
faff(ν(X))

(

ℓ
ν(X)

)

if ν = ν(X)δp∗2

∞ else

I ′2(ℓ) = inf
D∈(0,1]

{

~0.2(D) +DΛ̌∗
faff(D)

(

ℓ

D

)}

.

In Case 3, we replace faff of Case 2 with one that results in a conditional expected recovery which is
quadratic in D; this allows us some insight into the effects of convexity in the conditional expected recovery.
We set

fq(D) =
1

0.3− 0.25(D − 0.2)− 0.1(D− 0.2)2
− 1.

Again we have that fq : [0, 1] → R+, and we set ℘q(D, ·) = µfq(D), p
∗
q

def
= (0.2, ℘q), and have that U = δp∗q

Here we have that
∫

r∈[0,1]

r℘q(D, dr) = 0.3− 0.25(D − 0.2)− 0.1(D− 0.2)2.

and we again get that L̄ = 0.14. The corresponding action functional is I ′3.
Case 4 involves the beta distribution again. Here, however, we now consider a heterogeneous pool of two

types (Example 2.3). We concentrate on the effect of the heterogeneity in the recovery distribution, so as
in the previous cases all bonds will have default probability of 20%. For all D ∈ [0, 1], every third bond will
have recovery distribution governed by ℘aff and the remaining bonds will have recovery distribution governed
by ℘q. We thus have that U = 1

3δp∗aff +
2
3δp∗q . It is easy to see that again the typical loss is:

L̄ = 0.2× 1

3
×
(

1− 1

1 + faff(0.2)

)

+ 0.2× 2

3
×
(

1− 1

1 + fq(0.2)

)

= 0.14.

For notational convenience and in order to illustrate the usage of Theorem 4.6 we use the alternative
representation (14). If ℘(D, ·) = µf(D) for some f ∈ C([0, 1];R+), then for all D ∈ [0, 1], we have that

M℘(θ,D) = Λ̌f(D)(θ) for all θ ∈ R and I℘(ℓ,D) = Λ̌∗
f(D)(ℓ) for all ℓ ∈ [0, 1]. Since the support of U is exactly

{p∗aff, p∗q}, we can consider Φ and Ψ in B of the form

Φ = φAχ{p∗
aff

} + φBχ{p∗q}
and Ψ = ψAχ{p∗

aff
} + ψBχ{p∗q}

.
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Thus (14) becomes

(16)

I ′4(ℓ) = inf
D∈[ℓ,1]

inf
ψA,ψB∈[0,1]

inf
φA,φB∈[0,1]

φAψA/3+2φAψB/3=ℓ
φA/3+2φB/3=D

{

1

3
φAI℘aff

(ψA, D) +
2

3
φBI℘q

(ψB, D)

+
1

3
~pA(φA) +

2

3
~pB (φB)

}

= inf
D∈[ℓ,1]

inf
ψA,ψB∈[0,1]

inf
φA, φB∈[0,1]

φAψA/3+2φAψB/3=ℓ
φA/3+2φB/3=D

{

1

3
φAΛ̌

∗
faff(D)(ψA) +

2

3
φBΛ̌

∗
fq(D)(ψB)

+
1

3
~pA(φA) +

2

3
~pB (φB)

}

Lastly, in Case 5, instead of working with an faff that results in a conditional expected recovery which is
affine in D (as in case 2), we assume that faff is itself affine. In particular, we assume that faff(D) = 4/3+5D.
Other than this difference, the calculations are identical to those in case 2. Again we get that L̄ = 0.14. The
corresponding action functional is I ′5.

In Figure 4.1, we plot the rate functions I ′1, I
′
2, I

′
3, I

′
4 and I ′5. We use a Monte Carlo procedure to

compute Λ̌ and Λ̌∗. As expected, all action functions are nonnegative and zero at the (common) expected
loss of L̄ = 0.14. We observe that I ′3 ≤ I ′4 ≤ I ′2 ≤ I ′5 ≤ I ′1. In particular, the heterogeneous case, which

Case 1−Fixed Recovery
Case 2−Homogeneous Affine
Case 3−Homogeneous Quadratic
Case 4−Heterogeneous Affine−Quadratic
Case 5−Homogeneous with beta parameter affine
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Figure 1. Action functionals for fixed recovery, for the homogeneous cases and the hetero-
geneous case.

is a mixture of an affine conditional expected recovery and a quadratic conditional expected recovery, is in
between the two homogeneous cases (cases 2 and 3). We of course should not be surprised that the rate
function in Case 1 is larger than that in Cases 2 through 5, there are in general many more configurations
which lead to a given overall loss rate.

A second useful insight which we can numerically extract is the “preferred” way which losses stem from
defaults versus recovery. For each ℓ ∈ [0, 1], let D∗(ℓ) be the minimizer2 in the expression (15) for I ′2, I

′
3 or

I ′5 or alternately the expression (16) for I ′4. We assume that these minimizers are unique. For ℓ > L̄ and
δ > 0, the Gibbs conditioning principle [DZ98, Section 7.3] implies that we should have that

(17) lim
N→∞

PN

{

|DN −D∗(ℓ)| ≥ δ
∣

∣LN ≥ ℓ
}

= 0.

2Case 1 is of course degenerate this sense; for a given loss rate ℓ, the default rate must be very close to ℓ/.7.
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In other words, conditional on the pool suffering losses exceeding rate ℓ, the default rate should converge
to D∗(ℓ). Using this information, we can then say something about the implied recovery (see [SH09]). We
write that

Loss=Default × (1-Recovery)

to find an effective recovery rate in terms of the loss rate and the default rate. This recovery rate quantifies
the fact that losses are due to both default and recovery. For atypically large losses in a large pool of credit
assets, we should combine this with the Gibbs conditioning calculation of (17). Namely, let’s define

R(ℓ) = 1− ℓ

D∗(ℓ)
.

This gives us the implied recovery for atypically large losses. Note that in the “typical case” (Section 3), the
implied recovery is simply the conditional expectation of the recovery given that the default rate is D̄; i.e.,

R(L̄) =

∫

p=(p,℘)∈X
p
{

∫

r∈[0,1]
r℘(D̄, dr)

}

U(dp)
∫

p=(p,℘)∈X
pU(dp)

.

Since we have a single default rate of 20% in our examples, R(0.14) = .3 in all of our examples. Under the
assumption that D∗ is an invertible function, we can also formalize the dependence of recovery on default
by letting R∗ : [0, 1] → [0, 1] be such that R∗(D∗(ℓ)) = R(ℓ) for all ℓ ∈ [0, 1]. Figure 4.1 is a plot of R∗

for the cases which we are studying. We observe that, for Cases 2, 3, 4 and 5, the implied recovery and
the optimal defaults are negatively correlated and that the implied recovery is convex as a function of the
optimal defaults (see also [SH09] and [ABRS05]). The convexity is clearer in Case 5. Moreover, the graph
of the heterogeneous case is between the graph of the homogeneous cases 2 and 3.

Case 1−Fixed Recovery
Case 2−Homogeneous Affine
Case 3−Homogeneous Quadratic
Case 4−Heterogeneous Affine−Quadratic
Case 5−Homogeneous with beta parameter affine
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Figure 2. Implied recovery versus optimal defaults.

Using the implied recovery R∗, we can shed a bit more light on the significance of rare recovery amounts
versus rare default rates. For each D ∈ [0, 1], let’s define

R◦(D)
def
=

∫

p=(p,℘)∈X

{

∫

r∈[0,1]

r℘(D, dr)

}

U(dp).

Thus R◦ is the expected recovery rate conditioned on the default rate. In Case 1, R◦(D) ≡ .3 for all
D ∈ [0, 1], and in all cases R◦(D̄) = .3. We note that the average recovery rate will in general not coincide
with the optimal recovery rate. In other words, the most likely recovery rate need not be the average recovery
rate for the most likely default rate; R◦(ℓ) and R∗(ℓ) will in general be different. The conditional expected
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recovery R◦ takes into account only the structure of rare default rates, but not rare recovery rates. In order
to quantify this, let us define the ratio

̺(D)
def
=

R∗(D)

R◦(D)
.

In Figure 4.1 we plot ̺ for Cases 2, 3, 4 and 5 (̺ ≡ 1 in Case 1).
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Figure 3. ̺ versus optimal defaults.

Remark 4.7. Implied recovery points out one of the strengths of large deviations. Numerical computation

of D∗(ℓ) is essentially a free byproduct of the outer minimization in (14). On the other hand, simulation

of implied recovery in cases of atypically large defaults would entail sampling rare events, which is very

computationally intensive. The various minimizers in (14) naturally give information about the precise

structure of rare losses.

5. Lower Semicontinuity

The first part of the large deviations claim is that the level sets of I are compact. The proof follows along
fairly standard lines.

Proposition 5.1 (Compactness of Level Sets). For each s ≥ 0, the set

Φ(s)
def
= {z ∈ [0, 1]× M1(X) : I(z) ≤ s}

is a compact subset of [0, 1]× M1(X).

�

Proof. We first claim that Φ(s) is contained in a compact subset of [0, 1] × M1(X). Since [0, 1] is already

compact, it suffices to show that ΦM (s)
def
= {ν ∈ M1(X) : H(ν) ≤ s} is a compact subset of M1(X). If

ν ∈ ΦM (s), then ν ≪ U and, since ~p(x) = ∞ for x > 1, we have that

U

{

p ∈ X :
dν

dU
(p) > 1

}

= 0,

so for any A ∈ B(X), ν(A) ≤ U(A). Since U itself is tight (it is a probability measure on a Polish space),
ΦM (s) is tight; for every ε > 0, there is a Kε ⊂⊂ X such that ν(X \Kε) < ε for all ν ∈ ΦM (s). We claim
that thus ι(ΦM (s)) is also tight. Indeed, fix ε > 0. Letting ι◦ : X → X+ be the inclusion map, we have that

ι◦ is continuous, and thus ι◦(Kε) is compact. Since singletons are also compact, K∗ def
= ι◦(Kε) ∪ {⋆} is a
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compact subset of X+. For every ν ∈ ΦM (s), (ιν)(X+ \K∗) = ν(X \Kε) < ε, so indeed ι(ΦM (s)) is tight.

Thus ΦM (s) ⊂⊂ P(X+) and hence

ΦM (s) ⊂ ι−1ι(ΦM (s)) ⊂⊂ M1(X)

the last claim following since ι is a homeomorphism. Gathering things together, we have that Φ(s) is indeed
contained in a compact subset of [0, 1]× M1(X).

We now want to show that Φ(s) is closed, or equivalently, that ([0, 1] × M1(X)) \ Φ(s) is open. Using
Lemma 4.2, we have that

([0, 1]× M1(X)) \ Φ(s)

=
⋃

θ∈R

φ∈C(X)

{

(ℓ, ν) ∈ M1(X) : θℓ+

∫

p∈X

φ(p)ν(dp) − Λν(θ) > s+

∫

p=(p,wp)∈X

λp(φ(p))U(dp)

}

.

For each θ ∈ R and φ ∈ C(X), then map (ℓ, ν) 7→ θℓ +
∫

p∈X
φ(p)ν(dp) − Λν(θ) is continuous, so we have

written ([0, 1]× M1(X)) \ Φ(s) as a union of open sets. �

6. Large Deviations Lower Bound

We next prove the large deviations lower bound. As with most large deviations lower bounds, the idea
is to find a measure transformation under which the set of interest becomes “typical”. In this case, this
measure transformation will come from a combination of Cramer’s theorem and Sanov’s theorem.

We start with a simplified lower bound where the measure transformation in Cramer’s theorem is fairly
explicit. For each ν ∈ M1(X), we make the usual definition [DZ98][Appendix A] that

domΛ∗
ν

def
= {ℓ ∈ [0, 1] : Λ∗

ν(ℓ) <∞};
this will of course be an interval; ri domΛ∗

ν will be the relative interior of domΛ∗
ν .

Proposition 6.1. Fix an open subset G of [0, 1] × M1(X) and z = (ℓ, ν) ∈ G such that I(z) < ∞ and

ℓ ∈ ri domΛ∗
ν . Then

(18) lim
N→∞

1

N
lnPN {ZN ∈ G} ≥ −I(z).

�

The proof will require a number of tools. Since ℓ ∈ ri domΛ∗
ν , there is a θ ∈ R such that

(19) Λ′
ν(θ) = ℓ and Λ∗

ν(ℓ) = θΛ′
ν(θ) − Λν(θ)

(see [DZ98][Appendix A]). Let’s now fix a relaxation parameter η > 0. Then there is an η1 ∈ (0, η) and an
open neighborhood O1 of ν such that (ℓ − η1, ℓ + η1) × O1 ⊂ G. Using the first equality of (19), we have
that (Λ′

ν(θ), ν) = (ℓ, ν) ∈ (ℓ − η1, ℓ + η1) × O1. Since the maps (η̃, ν̃) → (Λ′
ν̃(θ) + η̃, ν̃) and ν̃ 7→ Λν̃(θ) are

continuous, there is an η2 ∈ (0, 1) and an open subset O2 of M1(X) such that

{(Λ′
ν̃(θ) + η̃, ν̃) : η̃ ∈ (0, η2), ν̃ ∈ O2} ⊂ (ℓ − η1, ℓ+ η1)×O1

|Λν̃(θ) − Λν(θ)| < η for ν̃ ∈ O2.

We next want to use Lemma 4.3 want to choose a particularly nice element of O2. Namely, Lemma 4.3
ensures that there is a ν∗ ∈ O2 such that ν∗ ≪ U and such that both dν∗

dU and

(20) φ(p)
def
= χ(0,1)(p)~

′
p

(

dν∗

dU
(p)

)

p = (p, ℘) ∈ X

are in C(X) and such that |H(ν∗)−H(ν)| < η. Let O3 be an open subset of O2 which contains ν∗ and such
that

∣

∣

∣

∣

∫

p∈X

φ(p)ν̃(dp)−
∫

p∈X

φ(p)ν∗(dp)

∣

∣

∣

∣

< η

for all ν̃ ∈ O3.
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We can now proceed with our measure change. For each N ∈ N, define

A
(N)
1

def
= θLN − ΛνN (θ) and A

(N)
2

def
=

1

N

N
∑

n=1

∆nφ(p
N,n)− λpN,n(φ(pN,n))

Note that

EN

[

exp
[

NA
(N)
1

]

∣

∣

∣

∣

D

]

= 1 and EN

[

exp
[

NA
(N)
2

]]

= 1.

Define a new probability measure as

P̃N(A)
def
= EN

[

χA exp
[

N
{

A
(N)
1 +A

(N)
2

}]]

. A ∈ B(Ω)

This will be the desired measure change.
Define

SN
def
=
{∣

∣LN − Λ′
νN (θ)

∣

∣ < η2, νN ∈ O3

}

.

On SN ,

(LN , νN ) =
(

Λ′
νN (θ) +

{

LN − Λ′
νN (θ)

}

, νN
)

∈ (ℓ − η1, ℓ+ η1)×O1 ⊂ G

so in fact SN ⊂ G. Thus

PN{ZN ∈ G} ≥ P̃N

[

χSN
exp

[

−N
{

A
(N)
1 +A

(N)
2

}]]

.

Let’s also assume that N is large enough that
∣

∣

∣

∣

∣

∫

p=(p,℘)∈X

λp(φ(p))UN (dp)−
∫

p=(p,℘)∈X

λp(φ(p))U(dp)

∣

∣

∣

∣

∣

< η.

Collecting our requirements together, we have that

A
(N)
1 ≤ θℓ+ |θ|η1 − Λν(θ) + η = Λ∗

ν(ℓ) + (|θ|+ 1) η

and

A
(N)
2 =

∫

p∈X

φ(p)νN (dp)−
∫

p=(p,℘)∈X

λp(φ(p))UN (dp)

≤
∫

p∈X

φ(p)ν∗(dp)−
∫

p=(p,℘)∈X

λp(φ(p))U(dp) + 2η

=

∫

p=(p,℘)∈X

{

φ(p)
dν∗

dU
(p)− λp(φ(p))

}

U(dp) + 2η

=

∫

p=(p,℘)∈X

~p

(

dν∗

dU
(p)

)

U(dp) + 2η ≤ H(ν) + 3η.

Thus

PN{ZN ∈ G} ≥ P̃N(SN ) exp [−N {I(z)− (|θ|+ 4) η}]
We have used here the calculation that

(21) ~p

(

dν∗

dU
(p)

)

=
dν∗

dU
(p)φ(p) − λp(φ(p))

for U-almost all p = (p, ℘) ∈ X. This follows from standard convex analysis and the form (20) of φ when
p ∈ (0, 1). Since H(ν∗) <∞, (7) implies that, except on a U-negligible set,

~p

(

dν∗

dU
(p)

)

= ~p(p) = 0 = p× 0− λp(0) =
dν∗

dU
(p)φ(p) − λp(φ(p))

if p = (p, ℘) ∈ X is such that p ∈ {0, 1}. In other words, (21) holds except on a U-negligible set.

We now want to show that limN→∞ P̃N(SN ) > 0, which will in turn follow if limN→∞ P̃N(S
c
N ) = 0. To

organize our thoughts, we write that

P̃N (Scn) ≤ P̃N {νN 6∈ O3}+ ẼN

[

P̃N

{

|LN − Λ′
νN (θ)| ≥ η3

∣

∣D
}

χ{νN∈O3}

]
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≤ P̃N {νN 6∈ O3}+
1

η23
ẼN

[

ẼN

[

∣

∣LN − Λ′
νN (θ)

∣

∣

2 |D
]

χ{νN∈O3}

]

.

We can now finish the proof of our initial lower bound.

Proof of Proposition 6.1. Let’s understand the law of {ℓn}1≤n≤N under P̃N{·|D}. For any {ψ}1≤n≤N ⊂ R,
we have that

EN

[

exp

[

√
−1

N
∑

n=1

ψnℓn +NθLN

] ∣

∣

∣

∣

∣

D

]

=

N
∏

n=1

{

∆n

∫

r∈[0,1]

exp
[(√

−1ψn + θ
)

(1 − r)
]

℘N,n(νN (X), dr) + 1−∆n

}

.

Thus

ẼN

[

exp

[

√
−1

N
∑

n=1

ψnℓn

] ∣

∣

∣

∣

∣

D

]

=

N
∏

n=1

{

∆n

∫

r∈[0,1]

exp
[√

−1ψn(1− r)
]

℘̃N,n(νN (X), dr) + 1−∆n

}

where

℘̃N,n(D,A)
def
=

∫

r∈[0,1]∩A exp [θ(1− r)]℘N,n(D, dr)
∫

r∈[0,1]
exp [θ(1 − r)]℘N,n(D, dr)

A ∈ B[0, 1], D ∈ [0, 1]

for all N ∈ N and n ∈ {1, 2 . . .N}. In other words, the recovery rates for the names which have defaulted
are independent with laws given by the ℘̃N,n(νN (X), ·)’s. In particular,

ẼN

[

LN
∣

∣D
]

=
1

N

N
∑

n=1

∆n

∫

r∈[0,1](1− r) exp [θ(1− r)]℘N,n(D, dr)
∫

r∈[0,1]
exp [θ(1− r)]℘N,n(D, dr)

= Λ′
νN (θ).

Secondly,

ẼN

[

|LN − ΛνN (θ)|2
∣

∣D

]

=
1

N2

N
∑

n=1







∫

r∈[0,1]

(1− r)2℘̃N,n(νN (X), dr) −
(

∫

r∈[0,1]

(1− r)2℘̃N,n(νN (X), dr)

)2






≤ 1

N
.

In a similar way, we next need to understand the statistics of the defaults under P̃N . For {ψ}1≤n≤N ⊂ R,

EN

[

exp

[

√
−1

N
∑

n=1

{

ψn∆n + φ(pN,n)∆n

}

]]

=

N
∏

n=1

{

pN,n exp
[√

−1ψn + φ(pN,n)
]

+ 1− pN,n
}

.

Thus

(22) ẼN

[

exp

[

√
−1

N
∑

n=1

ψn∆n

]]

=

N
∏

n=1

{

p̃N,n exp
[√

−1ψn
]

+ 1− p̃N,n
}

where

p̃N,n =
pN,neφ(p

N,n)

pN,neφ(pN,n) + 1− pN,n
= λ′pN,n(φ(p

N,n)) =
dν∗

dU
(pN,n)

for all N ∈ N and n ∈ {1, 2 . . .N}. In other words, the defaults are independent with probabilities given by
the p̃N,n’s. Fix now Ψ ∈ C(X). Then

∫

p∈X

Ψ(p)νN (dp)−
∫

p∈X

Ψ(p)ν∗(dp) = EN1 + EN2

where

EN1
def
=

1

N

N
∑

n=1

{

∆n − p̃N,n
}

Ψ(pN,n)
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EN2
def
=

1

N

N
∑

n=1

dν∗

dU
(pN,n)Ψ(pN,n)−

∫

p∈X

Ψ(p)ν∗(dp) =

∫

p∈X

dν∗

dU
(p)Ψ(p)UN (dp)−

∫

p∈X

dν∗

dU
(p)Ψ(p)U(dp).

From (22) we have that ẼN [EN1 ] = 0; we also have by independence that

ẼN

[

∣

∣EN1
∣

∣

2
]

≤
supp∈X |Ψ(p)|2

N

The requirement that dν∗

dU ∈ C(X) ensures that limN→∞ EN2 = 0. Combining things together, we have that

lim
N→∞

ẼN

[
∣

∣

∣

∣

∫

p∈X

Ψ(p)νN (dp)−
∫

p∈X

Ψ(p)ν∗(dp)

∣

∣

∣

∣

]

= 0.

Since Ψ was an arbitrary element of C(X) and X is Polish, we indeed have (see [Str93])

lim
N→∞

P̃N{νN 6∈ O3} = 0.

Combining things together, we get the claimed lower bound. �

We can now prove the full lower bound

Proposition 6.2. Let G be an open subset of [0, 1]× M1(X). Then

lim
N→∞

1

N
lnPN {ZN ∈ G} ≥ − inf

z∈G
I(z)

�

Proof. Fix z = (ℓ, ν) ∈ G. If I(z) < ∞ and ℓ ∈ ri domΛ∗
ν, then we get (18) from Proposition 6.1. If

I(z) = ∞, we of course again get (18). Finally, assume that ℓ ∈ domΛ∗
ν \ ri domΛ∗

ν . We use the fact that

domΛ∗
ν ⊂ ri domΛ∗

ν and convexity of ℓ 7→ Λ∗
ν(ℓ). Fix a relaxation parameter η > 0. Then there is an

ℓ′ ∈ ri domΛ∗
ν such that (ℓ′, ν) ∈ G and Λ∗

ν(ℓ
′) < Λ∗

ν(ℓ) + η (see [DZ98][Appendix A]). Using Proposition
6.1, we get that

lim
N→∞

1

N
lnPN{ZN ∈ G} ≥ −I(ℓ′, ν) ≥ −I(z)− η.

Letting η ց 0, we again get (18). Letting z vary over G, we get the claim. �

7. Large Deviations Upper Bound

The heart of the upper bound is an exponential Chebychev inequality. We will mimic, as much as possible,
the proof of the upper bound of Cramér’s theorem. The main result of this section is

Proposition 7.1. Fix any closed subset F of [0, 1]× M1(X). Then

lim
N→∞

1

N
lnPN {ZN ∈ F} ≤ − inf

z∈F
I(z).

�

Not surprisingly, we will first prove the bound for F compact; we will then show enough exponential tightness
to get to the full claim.

Proposition 7.2. Fix any compact subset F of [0, 1]× M1(X). Then

lim
N→∞

1

N
lnPN {ZN ∈ F} ≤ − inf

z∈F
I(z).

�

Proof. To begin, fix s < infz∈F I(z). Fix also a relaxation parameter η > 0. For each (θ, φ) ∈ R × C(X),
define the set

O(θ,φ)
def
=

{

(ℓ, ν) ∈ [0, 1]× M1(X) : θℓ+

∫

p∈X

φ(p)ν(dp) − Λν(θ) > s+

∫

p=(p,℘)∈X

λp(φ(p))U(dp)

}

(these open sets were used in the proof of Lemma 5.1).
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Fix now a z ∈ F . By definition of I and Lemma 4.2, we see that there is a (θz , φz) ∈ R×C(X) such that
z ∈ O(θz,φz). Since (ℓ, ν) 7→ θℓ +

∫

p∈X
φz(p)ν(dp) − Λν(θ) is continuous, there is an open neighborhood O∗

z

of z such that O∗
z ⊂ O(θz,φz) and such that

θz ℓ̃+

∫

p∈X

φz(p)ν̃(dp)− Λν̃(θz) > s+

∫

p=(p,℘)∈X

λp(φz(p))U(dp)

for all (ℓ̃, ν̃) ∈ O∗
z . Thus

F ⊂
⋃

z∈F

O∗
z ,

the compactness of F implies that we can extract a finite subset Z of F such that

F ⊂
⋃

z∈Z

O∗
z

and thus
PN {ZN ∈ F} ≤

∑

z∈Z

PN{ZN ∈ O∗
z}.

Fix now z ∈ Z. We have that

PN{ZN ∈ O∗
z} ≤ PN

{

θzLN +

∫

p∈X

φz(p)νN (dp) > s+ ΛνN (θz) +

∫

p=(p,℘)∈X

λp(φz(p))U(dp)

}

≤ e−NsEN

[

exp [N {θzLN − ΛνN (θz)}] exp
[

N

{

∫

p∈X

φz(p)νN (dp)−
∫

p=(p,℘)∈X

λp(φz(p))U(dp)

}]]

= e−Ns exp

[

N

{

∫

p=(p,℘)∈X

λp(φz(p))UN (dp)−
∫

p=(p,℘)∈X

λp(φz(p))U(dp)

}]

We have used here the fact that
EN [exp[θzLN − ΛνN (θz)]|D ] = 1

and that

EN

[

exp

[

N

∫

p∈X

φz(p)νN (dp)

]]

= exp

[

N

∫

p=(p,℘)∈X

λp(φz(p))UN (dp)

]

.

Letting N → ∞, we get that

lim
N→∞

1

N
lnPN{ZN ∈ O∗

z} ≤ −s.
This gives the claim. �

Let’s next show that most of time νN is in a compact set.

Proposition 7.3 (Exponential Tightness). For each L > 0 there is a compact subset KL of M1(X) such

that

lim
N→∞

1

N
lnPN{νn 6∈ KL} ≤ −L.

�

Proof. First note that Assumption 3.3 implies that {UN}N∈N is tight. Thus for each j ∈ N, there is a
compact subset Kj of X such that

sup
N∈N

UN (X \Kj) ≤
1

(L+ j)2
.

We will define

KL def
=

{

ν ∈ M1(X) : ν(X \Kj) ≤
1

L+ j
for all j ∈ N

}

.

Then KL is compact, and we have that

PN{νN 6∈ KL} ≤
∞
∑

j=1

PN

{

νN (X \Kj) ≥
1

L+ j

}
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≤
∞
∑

j=1

PN

{

N(L+ j)2νN (X \Kj) ≥ N(L+ j)
}

≤
∞
∑

j=1

exp [−N(L+ j)]EN
[

exp
[

N(L+ j)2νN (X \Kj)
]]

We now compute that

EN

[

exp
[

(L+ j)2νN (X \Kj)
]]

=

N
∏

n=1

EN

[

exp

[

(L+ j)2
N
∑

n=1

∆nχX\Kj
(pN,n)

]]

= exp

[

N
∑

n=1

λpN,n

(

(L+ j)2χX\Kj
(pN,n)

)

]

≤ exp
[

N(L+ j)2UN (X \Kj)
]

≤ eN .

We have used here the calculation that for θ > 0,

λp(θ) ≤ ln
(

peθ + (1− p)eθ
)

= θ.

Combining things together, we get that

PN{νN 6∈ KL} ≤
∞
∑

j=1

e−N(L+j)eN = e−NL
∞
∑

j=1

e−N(j−1) ≤ e−NL
∞
∑

j=1

e−(j−1) =
e−NL

1− e−1
.

�

We can now get the full upper bound.

Proof of Proposition 7.1. Fix L > s. Then

PN{ZN ∈ F} ≤ PN{ZN ∈ F, νN ∈ KL}+ PN{νN 6∈ KL}.
We use Proposition 7.3 on the second term. Using Proposition 7.2 on the first term (and note that [0, 1]×KL
is compact), we get that

lim
N→∞

1

N
lnPN{ZN ∈ F, νN ∈ KL} ≤ − inf

z=(ℓ,ν)∈F
ν∈KL

I(z) ≤ − inf
z∈F

I(z).

�

8. Alternative Expression for the Rate Function

In this section, we discuss the alternative expression for the rate function I ′ of Theorem 4.5 given by
Theorem 4.6. In particular, this alternative representation shows that I ′(ℓ) has a natural interpretation
as the favored way to rearrange recoveries and losses among the different types. In addition to providing
intuitive insight, this alternative expression suggests numerical schemes for computing the rate function. We
will rigorously verify that the alternative expression is correct, but will be heuristic in our discussion of the
numerical schemes.

We defer the proof of Theorem 4.6 to the end of this section and we first study the variational problem
(13) using a Lagrange multiplier approach. Even though an explicit expression is usually not available, one
can use numerical optimization techniques to calculate the quantities involved. In order to do that, we firstly
recall that we can rewrite J ′ of (13) as a two-stage minimization problem, see expression (14).

This naturally suggests an analysis via a Lagrangian. Define

L(Φ,Ψ, λ1, λ2) =

∫

p=(p,℘)∈X

{Φ(p)I℘ (Ψ(p), D) + ~p(Φ(p))}U(dp)

− λ1

{
∫

p∈X

Φ(p)Ψ(p)U(dp) − ℓ

}

− λ2

{
∫

p∈X

Φ(p)U(dp) −D

}

.
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Let’s assume that Φ∗ and Ψ∗ are the minimizers. Let’s also assume that I℘(·, D) is differentiable for all
p = (p, ℘) in the support of U. We should then have that for every η1 and η2 in B,

∫

p=(p,℘)∈X

η1(p)
{

I℘ (Ψ
∗(p), D) + ~

′
p(Φ

∗(p))− λ1Ψ
∗(p)− λ2

}

U(dp) = 0

∫

p=(p,℘)∈X

η2(p)Φ
∗(p)

{

I ′℘ (Ψ
∗(p), D)− λ1

}

U(dp) = 0

Ignoring any complications which would arise on the set where Φ∗ = 0, we should then have that

I℘ (Ψ
∗(p), D) + ~

′
p(Φ

∗(p)) = λ1Ψ
∗(p) + λ2

I ′℘ (Ψ
∗(p), D) = λ1

for all p = (p, ℘) ∈ X. This is a triangular system; the first equation depends on both λ1 and λ2, but the
second depends only on λ1. Recalling now (4) and the structure of Legendre-Fenchel transforms, we should
have that

M ′
℘(λ1, D) = Ψ∗(p)

~
′
p(Φ

∗(p)) = λ2 + λ1M
′
℘(λ1, D)− I℘(Ψ

∗(p), D) = λ2 +M℘(λ1, D)

for all p = (p, ℘) ∈ X. We can then invert this. This leads us to the following. Define

Φλ1,λ2,D(p, ℘)
def
=

peλ2+M℘(λ1,D)

1− p+ peλ2+M℘(λ1,D)
λ1, λ2 ∈ R, (p, ℘) ∈ X

Ψλ1,D(℘)
def
= M ′

℘(λ1, D) λ1 ∈ R, ℘ ∈ C([0, 1];P[0, 1])

where (λ1, λ2) = (λ1(ℓ,D,U), λ2(ℓ,D,U)) is such that
∫

p∈X

Φλ1,λ2,D(p)U(dp) = D

∫

p∈X

Φλ1,λ2,D(p)Ψλ1,λ2,D(p)U(dp) = ℓ.

We conclude this section with the rigorous proof of the alternate representation.

Proof of Theorem 4.6. First, we prove that J ′(ℓ) ≥ I ′(ℓ). Consider any Φ and Ψ ∈ B such that

(23)

∫

p∈X

Φ(p)Ψ(p)U(dp) = ℓ.

For any θ ∈ R,
∫

p=(p,℘)∈X

{

Φ(p)I℘

(

Ψ(p),

∫

p=(p,℘)∈X

Φ(p)U(dp)

)

+ ~p(Φ(p))

}

U(dp)

=

∫

p=(p,℘)∈X

{

Φ(p) sup
θ′∈R

{

θ′Ψ(p)−M℘

(

θ′,

∫

p=(p,℘)∈X

Φ(p)U(dp)

)}

+ ~p(Φ(p))

}

U(dp)

≥
∫

p=(p,℘)∈X

{

Φ(p)

{

θΨ(p)−M℘

(

θ,

∫

p=(p,℘)∈X

Φ(p)U(dp)

)}

+ ~p(Φ(p))

}

U(dp)

= θℓ−
∫

p=(p,℘)∈X

{

Φ(p)M℘

(

θ,

∫

p∈X

Φ(p)U(dp)

)

+ ~p(Φ(p))

}

U(dp).

Define ν ∈ M1(X) as

ν(A)
def
=

∫

p∈A

Φ(p)U(dp); A ∈ B(X)

then
∫

p=(p,℘)∈X

{

Φ(p)I℘

(

Ψ(p),

∫

p∈X

Φ(p)U(dp)

)

+ ~p(Φ(p))

}

U(dp)
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≥ θℓ −
∫

p=(p,℘)∈X

M℘(θ, ν(X))ν(dp) +

∫

p=(p,℘)∈X

~p

(

dν

dU
(p)

)

U(dp).

Varying θ, we get that
∫

p=(p,℘)∈X

{

Φ(p)I℘

(

Ψ(p),

∫

p=(p,℘)∈X

Φ(p)U(dp)

)

+ ~p(Φ(p))

}

U(dp) ≥ Λ∗
ν(ℓ) +H(ν) ≥ I ′(ℓ)

and then varying Φ and Ψ in B (such that (23) holds), we get that J ′(ℓ) ≥ I ′(ℓ).
To show that I ′(ℓ) ≥ J ′(ℓ), fix ν ∈ M1(X) such that that ν ≪ U. We want to show that

(24) Λ∗
ν(ℓ) +H(ν) ≥ J ′(ℓ).

If ν 6≪ U, this is trivially true, so we can assume that ν ≪ U. For all ℘ ∈ C([0, 1];P[0, 1]), define

α−(℘,D)
def
= inf{1− r ∈ [0, 1] : r ∈ supp℘(D, ·)}

α+(℘,D)
def
= sup{1− r ∈ [0, 1] : r ∈ supp℘(D, ·)}.

Dominated convergence implies that

lim
θ→−∞

Λ′
ν(θ) = ᾱ−

def
=

∫

p=(p,℘)∈X

α−(℘, ν(X))ν(dp)

lim
θ→∞

Λ′
ν(θ) = ᾱ+

def
=

∫

p=(p,℘)∈X

α+(℘, ν(X))ν(dp).

From (12) and the monotonicity of moment generating functions, we can see that Λν is nondecreasing; thus
(ᾱ−, ᾱ+) ∈ Λ′

ν(R). This leads to three possible cases.
Case 1: Assume that ℓ ∈ (ᾱ−, ᾱ+), and let θ∗ ∈ R be such that Λ′

ν(θ
∗) = ℓ; i.e.,

(25)

∫

p=(p,℘)∈X

M ′
℘(θ

∗, ν(X))ν(dp) = ℓ

Then

Λ∗
ν(ℓ) +H(ν) = sup

θ∈R

{

θℓ −
∫

p=(p,℘)∈X

M℘(θ, ν(X))ν(dp)

}

+

∫

p=(p,℘)∈U

~p

(

dν

dU
(p)

)

U(dp)

≥ θ∗ℓ−
∫

p=(p,℘)∈X

M℘(θ
∗, ν(X))ν(dp) +

∫

p=(p,℘)∈U

~p

(

dν

dU
(p)

)

U(dp)

= θ∗Λ′
ν(θ

∗)−
∫

p=(p,℘)∈X

M℘(θ
∗, ν(X))ν(dp) +

∫

p=(p,℘)∈U

~p

(

dν

dU
(p)

)

U(dp)

=

∫

p=(p,℘)∈X

(

θ∗M ′
℘(θ

∗, ν(X)) −M℘(θ
∗, ν(X))

)

ν(dp) +

∫

p=(p,℘)∈U

~p

(

dν

dU
(p)

)

U(dp)

=

∫

p=(p,℘)∈X

I℘(M
′
℘(θ

∗, ν(X)), ν(X))ν(dp) +

∫

p=(p,℘)∈U

~p

(

dν

dU
(p)

)

U(dp).

Define now Φ(p)
def
= dν

dU(p) and Ψ(p)
def
= M ′

℘(θ
∗, ν(X)). Then (25) is exactly that

∫

p∈X
Φ(p)Ψ(p)U(dp) = ℓ.

Thus

Λ∗
ν(ℓ) +H(ν) ≥

∫

p=(p,℘)∈X

[

Φ(p)I℘

(

Ψ(p),

∫

p∈X

Φ(p)U(dp)

)

+ ~p (Φ(p))

]

U(dp) ≥ J ′(ℓ).

Case 2: Assume next that ℓ ∈ [ᾱ+, 1]. For every ℘ ∈ C([0, 1];P[0, 1]), define

E℘+(θ)
def
= M℘(θ, ν(X) − θα+(℘, ν(X)) = ln

∫

r∈[0,1]

e−θ(α+(℘,ν(X))−(1−r))℘(ν(X), dr).

for all θ ∈ R; thus

M℘(θ, ν(X)) = θα+(℘, ν(X)) + E℘+(θ) ℘ ∈ C([0, 1];P[0, 1])

Λν(θ) = θᾱ+ +

∫

p=(p,℘)∈X

E℘+(θ)ν(dp)
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for all θ ∈ R. For all ℘ ∈ C([0, 1];P[0, 1]) and (1−r) ∈ supp℘(ν(X), ·), the mapping θ 7→ e−θ(α+(℘,ν(X))−(1−r))

is decreasing and maps [0,∞) into (0, 1]. Monotone convergence implies that

lim
θ→∞

E℘+(θ) = ln℘{1− α+(℘, ν(X))}.

If ℓ > ᾱ+, then we can use the fact that
∫

p=(p,℘)∈X
E℘+(θ)ν(dp) ≤ 0 for all θ > 0 to see that

Λ∗
ν(ℓ) ≥ lim

θ→∞

{

θ(ℓ − ᾱ+)−
∫

p=(p,℘)∈X

E℘+(θ)ν(dp)
}

≥ lim
θ→∞

{θ(ℓ − ᾱ+)} = ∞ ≥ J ′(ℓ).

If ℓ = ᾱ+, then by the monotonicity of the E℘+’s,

(26) I℘(α+(℘, ν(X), ν(X))) = sup
θ∈R

{

−E℘+(θ)
}

= lim
θ→∞

{

−E℘+(θ)
}

= ln

(

1

℘{1− α+(℘, ν(X))}

)

for all ℘ ∈ C([0, 1];P[0, 1]), and

Λ∗
ν(ℓ) = sup

θ∈R

{

−
∫

p=(p,℘)∈X

E℘+(θ)ν(dp)
}

= lim
θ→∞

{

−
∫

p=(p,℘)∈X

E℘+(θ)ν(dp)
}

=

∫

p=(p,℘)∈X

ln

(

1

℘{1− α+(℘, ν(X))}

)

ν(dp) =

∫

p=(p,℘)∈X

I℘(α+(℘, ν(X)))ν(dp).

Defining Φ(p)
def
= dν

dU(p) and Ψ(p) = α+(℘, ν(X)), we have that
∫

p∈X

Φ(p)Ψ(p)U(dp) =

∫

p=(p,℘)∈X

α+(℘, ν(X))ν(dp) = ℓ.

Collecting things together, we see that if ℓ = ᾱ+, we again get (24).
Case 3: We finally assume that ℓ ∈ [0, ᾱ−]. The calculations are very similar to those of Case 2. For

every ℘ ∈ C([0, 1];P[0, 1]), define

E℘−(θ)
def
= M℘(θ, ν(X) − θα−(℘, ν(X)) = ln

∫

r∈[0,1]

eθ((1−r)−α−(℘,ν(X)))℘(ν(X), dr).

for all θ ∈ R, so that

M℘(θ, ν(X)) = θα−(℘, ν(X)) + E℘−(θ)℘ ∈ C([0, 1];P[0, 1])

Λν(θ) = θᾱ− +

∫

p=(p,℘)∈X

E℘−(θ)ν(dp)

for all θ ∈ R. For all ℘ ∈ C([0, 1];P[0, 1]) and (1−r) ∈ supp℘(ν(X), ·), the mapping θ 7→ eθ((1−r)−α−(℘,ν(X)))

is increasing and maps (−∞, 0] into (0, 1]. Monotone convergence implies that

lim
θ→−∞

E℘−(θ) = ln℘{1− α−(℘, ν(X))}.

If ℓ < ᾱ−, then we can use the fact that
∫

p=(p,℘)∈X
E℘−(θ)ν(dp) ≥ 0 for all θ < 0 to see that

Λ∗
ν(ℓ) ≥ lim

θ→−∞

{

θ(ℓ− ᾱ−)−
∫

p=(p,℘)∈X

E℘−(θ)ν(dp)
}

≥ lim
θ→−∞

{θ(ℓ− ᾱ−)} = ∞ ≥ J ′(ℓ).

If ℓ = ᾱ−, then by the monotonicity of the E℘−’s,

I℘(α−(℘, ν(X), ν(X)) = sup
θ∈R

{

−E℘−(θ)
}

= lim
θ→−∞

{

−E℘−(θ)
}

= ln

(

1

℘{1− α−(℘, ν(X))}

)

for all ℘ ∈ C([0, 1];P[0, 1]), and

Λ∗
ν(ℓ) = sup

θ∈R

{

−
∫

p=(p,℘)∈X

E℘−(θ)ν(dp)
}

= lim
θ→−∞

{

−
∫

p=(p,℘)∈X

E℘−(θ)ν(dp)
}

=

∫

p=(p,℘)∈X

ln

(

1

℘{1− α−(℘, ν(X))}

)

ν(dp) =

∫

p=(p,℘)∈X

I℘(α−(℘, ν(X)))ν(dp).
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Defining Φ(p)
def
= dν

dU(p) and Ψ(p) = α−(℘, ν(X)), we have that
∫

p∈X

Φ(p)Ψ(p)U(dp) =

∫

p=(p,℘)∈X

α−(℘, ν(X))ν(dp) = ℓ

again implying (24).

Collecting things together, we have (13). We get (14) by definng D
def
=
∫

p∈X
Φ(p)U(dp). Note that since

Φ and Ψ both take values in [0, 1],
∫

p∈X

Ψ(p)Φ(p)U(dp) ≤
∫

p∈X

Φ(p)U(dp).

This allows us to restrict the minimization in D to the interval [ℓ, 1]. �

9. Detailed structure of H

We here want to understand some of the detailed behavior of H more clearly. Specifically, we want to
prove Lemmas 4.3 and 4.2.

Fix ν ∈ M1(X) such that H(ν) < ∞. The main technical challenges in both proofs is to stay away from
the singularities in ~p and ~

′
p. Note that

~
′
p(x) = ln

(

x

1− x

1− p

p

)

, x, p ∈ (0, 1)

and keeping (6) in mind, we thus need to be careful near p ∈ {0, 1}, and for (x, p) ∈ {0, 1} × (0, 1).
Fix now ν ∈ M1(X) such that H(ν) < ∞. To start, let’s note some implications of the assumption that

H(ν) <∞. Clearly ν ≪ U. Secondly,

(27) U

{

p ∈ X :
dν

dU
(p) > 1

}

= 0.

Let’s now do the following. Fix N ∈ N. Define

(28) ξN (p)
def
=



















p if p 6∈
[

1
N , 1− 1

N

]

dν
dU(p) if p ∈

(

1
N , 1− 1

N

)

and dν
dU(p) ∈

(

1
N , 1− 1

N

)

1
N if p ∈

(

1
N , 1− 1

N

)

and dν
dU(p) ≤ 1

N

1− 1
N if p ∈

(

1
N , 1− 1

N

)

and dν
dU(p) ≥ 1− 1

N

Clearly 0 ≤ ξN ≤ 1, so we can define νN ∈ M1(X) as

νN (A)
def
=

∫

p∈A

ξN (p)U(dp). A ∈ B(X)

In light of (27) and (7), limN→∞ ξN = dν
dU U-a.s., so it follows that limN→∞ νN = ν. We next compute that

~p(ξN (p)) =



















0 if p 6∈
[

1
N , 1− 1

N

]

~p

(

dν
dU(p)

)

if 1
N ≤ p ≤ 1− 1

N and dν
dU(p) ∈

(

1
N , 1− 1

N

)

~p

(

1
N

)

if 1
N ≤ p ≤ 1− 1

N and dν
dU(p) ≤ 1

N

~p

(

1− 1
N

)

if 1
N ≤ p ≤ 1− 1

N and dν
dU(p) ≥ 1− 1

N

Using again (27) and (7), we have that limN→∞ ~p(ξN (p)) = ~p

(

dν
dU(p)

)

for U-almost-all p = (p, ℘) ∈
X. If p ∈

[

1
N , 1− 1

N

]

, then ~p is increasing on [p, 1] ⊃
[

1− 1
N , 1

]

and decreasing on [0, p] ⊃
[

0, 1
N

]

.

Thus ~p(ξN (p)) ≤ ~p

(

dν
dU(p)

)

for U-almost-all p = (p, ℘) ∈ X. Dominated convergence thus implies that
limN→∞H(νN ) = H(ν).

Proof of Lemma 4.3. Fix N ∈ N ; we want to approximate ξN by “nice” elements of C(X). Note that

ξN (p) = pχ[0,1]\[N−1,1−N−1](p) + χ[N−1,1−N−1](p)ξN (p).

Since U is regular (recall that X is Polish), we can approximate p = (p, ℘) 7→ χ[N−1,1−N−1](p)ξN (p) by

elements of C(X). From (28), we have that N−1 ≤ ξN (p) ≤ 1 − N−1 if p = (p, ℘) ∈ X is such that
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N−1 ≤ p ≤ 1 − N−1, so we can truncate these approximations at N−1 and 1 − N−1 without any loss.
Namely, there is a sequence (ξ̃1ε )ε>0 in C(X) such that

(29)

N−1 ≤ ξ̃1ε ≤ 1−N−1

lim
εց0

∫

p=(p,℘)∈X

∣

∣

∣
ξ̃1ε (p)− χ[N−1,1−N−1](p)ξN (p)

∣

∣

∣
U(dp) = 0.

For each ε > 0, let ϕε ∈ C(R; [0, 1]) be such that ϕε(u) = 1 if u ∈ [N−1, 1 − N−1] and ϕε(u) = 0 if
u ∈ [0, 1] \ [N−1 − ε, 1−N−1 + ε]. For each ε > 0, define

ξ̃2ε (p)
def
= p {1− ϕε(p)}+ ξ̃1ε (p)ϕε(p)

for all p = (p, ℘) ∈ X. Then ξ̃2ε ∈ C(X) for all ε > 0. We also have that
∫

p=(p,℘)∈X

∣

∣

∣
ξ̃2ε (p)− ξN (p)

∣

∣

∣
U(dp)

≤ U
{

p = (p, ℘) ∈ X : p ∈ [N−1 + ε, 1−N−1 + ε] \ [N−1, 1−N−1]
}

+

∫

p=(p,℘)∈X

χ[N−1,1−N−1](p)
∣

∣

∣
ξ̃1ε (p)− ξN (p)

∣

∣

∣
U(dp).

Dominated convergence and (29) then ensure that

(30) lim
ε→0

∫

p=(p,℘)∈X

∣

∣

∣
ξ̃2ε (p)− ξN (p)

∣

∣

∣
U(dp) = 0.

Clearly 0 ≤ ξ̃2ε ≤ 1, so we can define νN,ε ∈ M1(X) as

νN,ε(A)
def
=

∫

p∈A

ξ̃2ε (p)U(dp). A ∈ B(X)

Thanks to (30), we have that limε→0 νN,ε = νN . Note next that for p = (p, ℘) ∈ X such that p ∈ [0, 1] \
[N−1 − ε, 1−N−1 + ε],

~p(ξ̃
2
ε (p))− ~p(ξN (p)) = ~p(p)− ~p(p) = 0.

If p = (p, ℘) ∈ X is such that p ∈ [N−1 − ε, 1−N−1 + ε], then

(31) N−1 − ε ≤ ξ̃2ε (p) ≤ 1−N−1 + ε,

so if ε < 1/(2N),
∣

∣

∣
~p(ξ̃

2
ε (p))− ~p(ξN (p))

∣

∣

∣
≤ κ

∣

∣

∣
ξ̃2ε (p)− ξN (p)

∣

∣

∣

where

κ
def
= sup

{

|~p(x)| :
1

2N
≤ x ≤ 1− 1

2N
and

1

2N
≤ p ≤ 1− 1

2N

}

.

Thus if ε < 1
2N ,

∣

∣

∣
~p(ξ̃

2
ε (p))− ~p(ξN (p))

∣

∣

∣
≤ κ

∣

∣

∣
ξ̃2ε (p)− ξN (p)

∣

∣

∣

for all p = (p, ℘) ∈ X. Thanks to (30), we thus have that limε→0H(νN,ε) = H(ν).

We finally note that p = (p, ℘) 7→ ~
′
p(ξ̃

2
ε (p)) is continuous on {p = (p, ℘) ∈ X : p ∈ (N−1− ε, 1−N−1+ ε)}

((31) ensures that ξ̃2 takes values in (0, 1) in this case). On {p = (p, ℘) ∈ X : p ∈ (0, 1)\(N−1−ε, 1−N−1+ε)},
we have that ~′p(ξ̃

2
ε (p)) = ~

′
p(p) = 0. This finishes the proof. �

Proof of Lemma 4.2. Assume first that ν is not absolutely continuous with respect to U. Then there is an
A ∈ B(X) such that ν(A) > 0 and U(A) = 0. Since X is Polish, ν is regular; i.e.,

ν(A) = sup {ν(F ) : F ⊂ A, F closed} .
Thus there is a closed subset F of A such that ν(F ) > 0. Fix also now c > 0. For each n ∈ N, define

ϕn(p)
def
= c exp [−n dist(p, F )] p ∈ X
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where dist(p, F ) is the distance (in X) from x to F . Then 0 ≤ ϕn ≤ c for all n ∈ N, and ϕn ց cχF . Since
θ 7→ λp(θ) is nondecreasing and continuous for each p ∈ [0, 1], we also have that λp(ϕn(p)) ց λp(cχF (p))
for all p = (p, ℘) ∈ X. Thus

sup
φ∈C(X)

{

∫

p∈X

φ(p)ν(dp) −
∫

p=(p,℘)∈X

λp(φ(p))U(dp)

}

≥ lim
n→∞

{

∫

p∈X

φn(p)ν(dp) −
∫

p=(p,℘)∈X

λp(φn(p))U(dp)

}

= cν(F ).

Let cր ∞ to see that the right-hand side of (8) is infinite.
Assume next that ν ≪ U. We use the fact that ~p and λp are convex duals of each other. For any

φ ∈ C(X),
∫

p∈X

φ(p)ν(dp) −
∫

p=(p,℘)∈X

λp(φ(p))U(dp)

=

∫

p∈X

inf
x∈R

{

φ(p)

(

dν

dU
(p)− x

)

+ ~p(x)

}

U(dp) ≤
∫

p=(p,℘)∈X

~p

(

dν

dU
(p)

)

U(dp).

To show the reverse inequality, let’s write that

H(ν) =

∫

p=(p,℘)∈X

sup
θ∈R

{

θ
dν

dU
(p)− λp(θ)

}

U(dp) =

∫

p=(p,℘)∈X

lim
N→∞

FN (p)U(dp)

where

(32) FN (p) = sup
|θ|≤N

{

θ
dν

dU
(p)− λp(θ)

}

for all N ∈ N and p = (p, ℘) ∈ X. We can explicitly solve this minimization problem; for N ∈ N and
p = (p, ℘) ∈ X, define

φN (p) =











~
′
p

(

dν
dU(p)

)

if p ∈ (0, 1), dνdU(p) ∈ (0, 1), and −N ≤ ~
′
p

(

dν
dU(p)

)

≤ N

0 if p ∈ {0, 1} and dν
dU(p) = p

N sgn
(

dν
dU(p)− p

)

else

(where sgn is the standard signum function). Then

FN (p) = φN (p)
dν

dU
(p)− λp(φN (p))

for all p = (p, ℘) ∈ X and N ∈ N. Clearly FN and φN are measurable, and φN ∈ B(X). From (32), we also
see that FN is nondecreasing in N . Thus by monotone convergence

H(ν) = lim
N→∞

∫

p∈X

FN (p)U(dp) = lim
N→∞

∫

p=(p,℘)∈X

{

φN (p)
dν

dU
(p)− λp(φN (p))

}

U(dp)

≤ sup
ϕ∈B(X)

{

∫

p=(p,℘)∈X

φ(p)ν(dp) −
∫

p=(p,℘)∈X

λp(φ(p))U(dp)

}

.

Since X is Polish, ν and U are regular; and thus we can approximate elements of B(X) by elements of C(X),
completing the proof. �
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