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We have composed the ideas of quantum renormalization group and quantum information by
exploring the low energy states dynamic of entanglement resources of a system close to its quantum
critical point. We demonstrate the low energy states dynamical quantities of the one dimensional
magnetic systems could show the quantum phase transition point and shows the scaling behavior
in the vicinity of the transition point. To present our idea, we study the evolution of two spins
entanglement in the one-dimensional Ising model in the transverse field. The system is initialized
as the so-called thermal ground state of the pure Ising model. We investigate evolvement of the
generation of entanglement with increasing the magnetic field. We have obtained that the derivative
of the time at which the entanglement reaches its maximums with respect to the transverse field,
diverges at the critical point and its scaling behaviors versus the size of the system are as same as
the static ground state entanglement of the the system.

PACS numbers: 75.10.Jm

A fundamental difference between quantum and clas-
sical physics is the possible existence of nonclassical cor-
relations in quantum systems. The physical property re-
sponsible for this quantum correlation is called Entan-
glement [1]. Entanglement has been recognized as an
important resource for quantum information and com-
putation [2]. However the role of entanglement in quan-
tum phase transition (QPT) [3] is of considerable inter-
est. QPT as well as classical ones are characterized by
detecting nonanalytic behaviors in some physical prop-
erties of the system. It is often accompanied by diver-
gence in some correlation functions, but quantum sys-
tems possess additional correlations which do not exist
in a classical counterpart, the entanglement. Entangle-
ment is a direct measure of quantum correlations and
shows nonanalytic behavior such as discontinuity in the
vicinity of the quantum phase transition point [4]. An
important motivation to study the interconnection be-
tween condensed matter and quantum information is to
investigate whether it is possible to better characterize
condensed matter states by looking at their entanglement
properties. Recently, there has been extensive analysis of
entanglement in quantum spin models [5]. Various mod-
els were considered for entanglement generation and their
static [4] as well as dynamical properties [6]were investi-
gated. A thorough understanding of the dynamical evo-
lution of entanglement in the spin models has obviously
implications for the performance of quantum information
processing, as well as for understanding of fundamental
quantum mechanics.

Our main purpose in this work is to compose the
ideas of quantum renormalization group [7] and quan-
tum information theory to study the evolution of the
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dynamical properties of the spin models in low energy
states. To have a concrete discussion, the one dimen-
sional S = 1

2 Ising model in transverse field (ITF) has
been considered by implementing the quantum renormal-
ization group (QRG) approach [8–10].
The main idea of the RG method is the mode elimina-

tion or thinning of the degrees of freedom followed by an
iteration which reduces the number of variables step by
step until reaching a fixed point. In Kadanoff’s approach,
the lattice is divided into blocks. Each block is treated
independently to build the projection operator onto the
lower energy subspace. The projection of the inter-block
interaction is mapped to an effective Hamiltonian (Heff )
which acts on the renormalized subspace [11].
We have considered the ITF model on a periodic chain

of N sites with Hamiltonian

H = −J
N∑

i=1

(σx
i σ

x
i+1 + gσz

i ). (1)

where J > 0 is the exchange coupling and g is the
transverse field. From the exact solution [12] it is known
that a second order phase transition occurs for gc = 1
where the behavior of the order parameter or magneti-
zation is given by < σx >= (1 − g)1/2 for g < 1 and
< σx >= 0 for g > 1.
To implement QRG the Hamiltonian is divided

to two-site blocks, HB =
∑N/2

I=1 h
B
I with hBI =

−J(σx
1,Iσ

x
2,I + gσz

1,I). The remaining part of the Hamil-

tonian is included in the inter-block part, HBB =

−J
∑N/2

I=1(σ
x
2,Iσ

x
1,I+1 + gσz

2,I). where σα
j,I refers to the

α-component of the Pauli matrix at site j of the block
labeled by I. The Hamiltonian of each block (hBI ) is
diagonalized exactly and the projection operator (P0)
is constructed from the two lowest eigenstates, P0 =
|ψ0〉〈ψ0| + |ψ1〉〈ψ1|, where |ψ0〉 is the ground state and
|ψ1〉 is the first excited state. In this respect the effec-
tive Hamiltonian (Heff = P0[H

B + HBB]P0) is similar
to the original one (Eq.(1)) replacing the couplings with
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the following renormalized coupling constants.

J ′ = J
2q

1 + q2
, q = g +

√
g2 + 1, g′ = g2. (2)

The entanglement is a local quantity which includes
the global properties of a system. Generally, the global
properties of a system enters the entanglement effectively
by summing over the whole degrees of freedom except the
local one. In other words, a system can be supposed of
a single site and a heat bath (the rest of system). It is
supposed that the effect of a heat bath can be replaced by
an effective single site quantity, the entanglement. The
effective single site represents the long range properties of
the model and not the microscopic ones. Therefor we can
enter the global properties of the model to entanglement
(the local quantity) using the renormalization group idea.
In this respect, we always think of a two site model which
can be treated exactly. However, the coupling constants
of the two site model are the effective ones which are
given by the renormalization group procedure. This can
be used as an new method to calculate the low energy
states dynamic of entanglement in a large system.
The two site Hamiltonian of ITF model in the space

spanned by {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉} (| ↑〉 and | ↓〉 denote
the eigenstates of σz), can be expressed as

H = −J




2g 0 0 1
0 0 1 0
0 1 0 0
1 0 0 −2g


 (3)

However the time evolution operator U(t) = e−iHt of
the two site Hamiltonian (Eq.(3)) has the following form

U(t) = J




U11(t) 0 0 U14(t)
0 U22(t) U23(t) 0
0 U32(t) U33(t) 0

U41(t) 0 0 U44(t)


 (4)

where

U11(t) = i
2g√

1 + 4g2
sin(Jt

√
1 + 4g2) + cos(Jt

√
1 + 4g2),

U14(t) = U41(t) =
i√

1 + 4g2
sin(Jt

√
1 + 4g2),

U22(t) = U33(t) = cosJt, U23(t) = U32(t) = i sinJt,

U44(t) = U∗
11.

The density matrix for the two sites system at time
t is ρ(t) = U(t)ρ(0)U †, where ρ(0) is the the density
matrix of system at t = 0 which is the thermal equi-
librium of the system. We choose the thermal ground
sate of the pure Ising model (no transverse field applied)
ρ(0) = 1

2 (|σx,+〉〈σx,+| + |σx,−〉〈σx,−|) as the initial
state which the concurrence equals zero.
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FIG. 1: (Color online) Evolution of the concurrence under
RG versus g for t = 1.5 and in the inset for t = 0.4.

Here |σx,+〉 and |σx,−〉 are the two degenerate ground
state of Ising model with all spins pointing respectively
to the positive and negative x direction.
For bipartite entanglement, a commonly used measure

for arbitrary state of two qubits is the so called concur-
rence [13]. The concurrence is defined as

C(t) = max{0, 2λmax(t)− tr
√
ρ(t)ρ̃(t)} (5)

where ρ̃(t) = (σy ⊗ σy)ρ∗(t)(σy ⊗ σy), and λmax is the

largest eigenvalue of the matrix
√
ρ(t)ρ̃(t).

Therefor the analytic expression of the concurrence in
terms of the parameters defined for the two site system
is

C(t) =
1

2

[
1−

√
1− (

4g

1 + 4g2
)2 sin4(

√
1 + 4g2Jt)

]
. (6)

We have plotted the evolution of C(t) under RG steps
versus g for t = 1.5 and t = 0.4 in Fig.1 which shows
that the concurrence changes from the equilibrium state
and start to oscillating when the external magnetic filed
is turned on. As g increases, the height of each peak
decreases gradually and finally vanish as g → ∞. In-
creasing the length of chain enhances the oscillation of
the concurrence versus the magnetic field. However as
the length of chain increases the first peak of concur-
rence approaches the critical point (gc = 1) and at the
thermodynamic limit the system becomes disentangled
except at the critical point. Surviving of the concurrence
at the critical point is the results of the correlation length
divergence at gc = 1.
The evolution of concurrence under RG has been plot-

ted in Fig.2 versus t for g = 0.9 and gc = 1. From
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FIG. 2: (Color online) Concurrence of the ITF model as a
function of t for different length chain for g = 0.9. The inset
shows the concurrence of different lattice sizes collapse on a
single curve at the critical point (gc = 1).

the Eq.(6), it is easy to see that the concurrence is
periodically fluctuating with the time t with period of
T = 2π

J
√

1+4g2
. Figure.2 shows that the concurrence re-

duces under RG (increasing the size of system) and dis-
appears in the large system. But for gc = 1 there is no
concurrence reduction under RG and the concurrence of
different length chains coincide with each other (inset of
Fig. 2).

The non-analytic behaviour in some physical quantity
is a feature of second-order quantum phase transition.
It is also accompanied by a scaling behaviour since the
correlation length diverges and there is no characteristic
length in the system at the critical point. As we have
stated in the RG approach for ITF model, a large sys-
tem, i.e. N = 2n+1, can be effectively describe by two
sites with the renormalized coupling of in the n-th RG
step. Thus, the concurrence between the two renormal-
ized sites represents the entanglement between two parts
of the system each containing N/2 sites effectively. In
this respect we can speak of block entanglement -the en-
tanglement between a block and the rest of system- in a
large system provided the size of the block and the rest
of system is equal.

For any g, there is a time T k
max(g) at which the C(t)

reaches its kth maximum (Fig.(2)) and is analyzed as a
function of coupling g at different RG steps which mani-
fest the size of system. The first derivative of T k

max with

respect to the coupling constant (
dTk

max

dg ) shows a singular

behavior at the critical point.

We have plotted
dTk

max

dg for k = 1 (first maximum of

the C(t)) versus g in Fig.3 for different RG steps which
shows the singular behaviour as the size of system be-
comes large. Surveying the detail shows that the posi-
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FIG. 3: (Color online) Evolution of the first derivative of T 1

max

respect to magnetic field (g) under RG. The inset shows the
T 1

max at different RG steps.

tion of the minimum (gm) of
dTk

max

dg tends towards the

critical point like gm = gc − N1/θ in which θ = 1 (in-
set of figure 4). Moreover, we have derived the scaling

behavior of ln
dT 1

max

dg |gm versus N. This has been plotted

in Fig.(4), which shows a linear behavior of ln
dT 1

max

dg |gm
versus ln(N). The scaling behavior is ln

dT 1

max

dg |gm ∝ Nθ

with exponent θ = 1.

It is easy to show that the exponent θ is directly re-
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dg
for different length chains.
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FIG. 5: (Color online) Finite-size scaling through the RG
treatment for different lattice sizes. The curves which cor-
respond to different system sizes clearly collapse on a single
curve.

lated to the correlation length exponent (ν) close to the
critical point. The correlation length exponent, gives
the behavior of correlation length in the vicinity of gc,
i.e., ξ ∼ (g − gc)

−ν . Under the RG transformation, Eq.
(2), the correlation length scales in the nth RG step as
ξ(n) ∼ (gn − gc)

−ν = ξ/nn
B , which immediately leads

to an expression for |dgndg |gc in terms of ν and nB (num-

ber of sites in each block). Dividing the last equation

to ξ ∼ (g − gc)
−ν gives |dgndg |gc ∼ N1/ν , which implies

θ = 1/ν, since
dTK

max

dg |gm ∼ |dgndg |gc at the critical point.

It should also be noted that the scaling of the position
of minimum, gm (inset of figure 3), also comes from the
behavior of the correlation length near the critical point.
As the critical point is approached and in the limit of
large system size, the correlation length almost covers
the size of the system, i.e., ξ ∼ N , and a simple compar-
ison with ξ ∼ (g − gc)

−ν results in the following scaling
form gm = gc −N1/ν .

To obtain the finite-size scaling behavior of
dTk

max

dg |gm ,

we look for a scaling function in such away that all graphs

tend to collapse on each other under RG evolution which
results in a large system. This is also a manifestation
of the existences of the finite size scaling for the case of

block entanglement. We have plotted
dTk

max

dg |gm − dTk

max

dg

versus N(g − gm) for k = 1 in Fig.5. The upper curves
which are for large system sizes clearly show that all plots
fall on each other.

The similar scaling behaviours and their relation to
correlation length exponent have been reported in our
previous work [9] in which we have studied the static
properties of the ground state entanglement of ITF model
by RG method.

We would like to mention that in Ref.[14] the authors
investigate the dynamics of concurrence of two nearest-
neighbor sites at ITF model using the exact solution.

They shows that
dT 1

max

dg dose not diverge at the critical

point but has a minimum at g = 1. The divergence of
dT 1

max

dg at the gc in our work and the similarity of the

dynamic scaling behaviors to the static scaling behaviors
originates from the low energy state properties.

To summarize, we have implement the idea of renor-
malization group (RG) to study the low energy states
dynamic of entanglement for spin chains. In this respect
we show that the RG procedure could be implemented
to obtain low energy states dynamic of systems in terms
of effective Hamiltonian which is described by renormal-
ized coupling constants. This manifest the fact that some
dynamical quantities of the system could show the finger-
print of quantum phase transition for an infinite size sys-
tem. These notions have been observed and approved in
our study of the ITF model. Moreover, the RG approach
shows that as the size of the system becomes large, the
derivative of the time at which the entanglement reaches
its maximums with respect to the transverse field, di-
verges at the critical point and its scaling behaviors ver-
sus the size of the system are as same as the static ground
state entanglement of the system.

The author would like to thank A. Langari, R. Fazio,
A. G. Moghaddam, Y. Sobouti, and V. Karimipour for
fruitful discussions and comments.
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