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Boltzmann legacy and wealth distribution
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We briefly review results on nonlinear kinetic equation of Boltzmann type which describe the evolution of
wealth in a simple agents market. The mathematical structure of the underlying kinetic equations allows to use
well-known techniques of wide use in kinetic theory of rarefied gases to obtain information on the process of
relaxation to a stationary profile, as well as to identify simple interaction rules which are responsible of the
formation of Pareto tails.

I. INTRODUCTION

In kinetic theory of rarefied gas, the evolution of the phase
space density is described by the Boltzmann equation [11, 12]

∂
∂ t

f (t;x,v) =−v ·∇x f (t;x,v)+Q( f (t;x,v)).

This equation contains terms accounting for the two ways that
the density can change. The

−v ·∇x f (t;x,v)

term represents the effects ofstreaming; that is, the motion

x0 7→ x0+(t− t0)v0 v0 7→ v0 (1.2)

of molecules between collisions. TheQ( f (x,v, t)) term repre-
sents the effects of binary collisions and describes relaxation
to the local Maxwellian equilibrium [11, 12].

The collision termQ accounts for all kinematically possi-
ble (those that conserve both momentum and energy) binary
collisions. The post–collisional velocitiesv∗ andw∗ are given
by

v∗ =
1
2
(v+w+ |v−w|n), w∗ =

1
2
(v+w−|v−w|n),

(1.1)
in which n is a unit vector.

For Maxwellian molecules [2, 4–6, 9]

Q
(

f
)
(v) =

∫

R3×S2
B((v−w) ·n)

[
f (v∗)g(w∗)]dwdn−ρ f (v).

(1.2)
B(·) is a measure of the collision frequency,dn denotes the
normalizedsurface measure on the unit sphereS2, and

ρ =

∫

R3
f (v)dv .

The Boltzmann description relies on a mainansatz. While the
number of gas molecules is enormously high so that collisions
between molecules do not retain memory, in view of rarefac-
tion only binary collisions are important for the evolution.

Starting from the pioneering works of Mandelbrot [28], it
is now commonly accepted by the kinetic community that
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in many aspects a trading market composed of a sufficiently
large number of agents can be described using the laws of sta-
tistical mechanics, just like a rarefied gas, composed of many
interacting particles. In fact, there is an almost literal transla-
tion of concepts:moleculesare identified with theagents, the
particles’energycorrespond to theagents’ wealth, and binary
collisionstranslate intotrade interactions. This modelling is
clearly ratherad hoc, but if one is willing to accept the pro-
posed analogies between trading agents and colliding parti-
cles, then various well established methods from kinetic the-
ory and statistical physics are ready for application to thefield
of economy. Most notably, the numerous tools originally de-
vised for the study of the energy distribution in a rarefied gas
can now be used to analyze wealth distributions. In this way,
the kinetic description of market models via a Boltzmann-
type equation provides one possible explanation for the de-
velopment of universal profiles in wealth distributions of real
economies.

The distribution of wealth in a market economy is nowa-
days of great interest. Among other approaches, the de-
scription of market models via kinetic equations is a fertile
ground for research, well documented by numerous contribu-
tions in the recent books [3, 14, 18, 33, 34], or by the intro-
ductory articles [15, 24, 25, 36]. The bridge between Maxwell
molecules and nonconservative economies has been outlined
by F. Slanina [32]. In this paper, a clear parallelism between
the evolution of wealth in a simple economy and the evolu-
tion of the particle density in a one-dimensional dissipative
gas has been established. This paper motivated to eventually
adapt more and more of the ideas, which have been developed
in the studies of dissipative Maxwell gases, to the economic
framework.

It should be emphasized, however, thatthere aresubstantial
differences between the collision mechanism for classicalgas
molecules and the modelling of trade interactions. In the new
framework, interactions can lack the usual microscopic con-
servation laws for (the analogues of) momentum and energy;
moreover, random effects play a crucial rôle. In fact, the key
step in establishing a reasonable kinetic market model is the
definition of sensible rules on themicroscopiclevel, i.e., the
prescription of how wealth is exchanged in trades. Such rules
are usually derived from plausible assumptions in anad hoc
manner. (This is clearly in contrast to the original Boltzmann
equation, where the microscopic collisions are governed by
the laws (1.1).)

Nevertheless, strong analogies remain. Maybe the most im-
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portant one is related to the fact that, as it happens in the
classical Boltzmann equation [11, 12], where relaxation to
Maxwellian equilibrium is shown to be a universal behavior
of the solution, here the corresponding output of the model
are themacroscopicstatistics of the wealth distribution in
the society, to which the solution is shown to relax. Mostly
important, while relaxation to equilibrium in the Boltzmann
equation is achieved by looking at the monotonicity of the en-
tropy functional, relaxation to the steady wealth profile can be
achieved by looking here at the monotonicity of new convex
functionals.

The comparison of this output with realistic data is up to
now the only means to evaluate —a posteriori— the quality
of a proposed model. For instance, it is commonly accepted
that the wealth distribution should approach a stationary (or,
in general, a self-similar) profile for large times, and thatthe
latter should exhibit aPareto tail. Such overpopulated tails are
a manifestation of the existence of an upper class of very rich
agents, i.e. an indication of an unequal distribution of wealth.
The various articles in [18] provide an overview over histori-
cal and recent studies on the shape of wealth distributions;see
also [15] for a collection of relevant references.

In general, the richness of the steady states for kinetic mar-
ket models is another remarkable difference to the theory of
Maxwell molecules [8]. While the Maxwell distribution is the
universal steady profile for the velocity distribution of molec-
ular gases, the stationary profiles for wealth can be manifold,
and are in general not explicitly known analytically. In fact,
they depend heavily on the precise form of the microscopic
modelling of trade interactions. Consequently, in investiga-
tions of the large-time behavior of the wealth distribution, one
is typically limited to describe a few analytically accessible
properties (e.g. moments and smoothness) of the latter.

A variety of models has been proposed and numerically
studied in view of the relation between parameters in the mi-
croscopic rules and the resulting macroscopic statistics.The
features typically incorporated in kinetic trade models are sav-
ing effects and randomness. Saving means that each agent is
guaranteed to retain at least a certain minimal fraction of his
initial wealth at the end of the trade. This concept has prob-
ably first been introduced in [13] (see also [1, 20]), where a
fixed saving rate for all agents has been proposed. Random-
ness means that the amount of wealth changing hands is non-
deterministic. Among others, this idea has been developed in
[19], in order to include the effects of a risky market. Depend-
ing upon the specific choice of the saving mechanism and the
stochastic nature of the trades, the studied systems produce
wealth curves with the desired Pareto tail — or not.

In this short review, we describe the Boltzmann-like ap-
proach to wealth distribution, and compare a selection of re-
cently developed models. We will mainly treat two different
types of interactions. The first type is such that the binary
trade is microscopicallyconservative, while the second type
is such that the binary trade isconservativein the statistical
mean only. In these situations, the mean wealth in the model
Boltzmann equation is preserved, and one expects the forma-
tion of a stationary profile.

In the class of pointwise conservative trades, we focus on

the model designed by Chakraborti and Chakrabarti [13], and
on variants of it. In the class of conservative in the statis-
tical mean, we focus on models withrisky investments, origi-
nally introduced by Cordier, Pareschi and the author [19]. The
applied analytical techniques, however, easily generalize to a
broader class of conservative economic games. These tech-
niques have been applied in the current mathematical litera-
ture [19, 21–23, 29–31], where kinetic econophysics has been
treated in the framework of Maxwell-type molecules. The in-
terest reader, who wishes to obtain a deeper understanding of
the mathematical roots (and possible extensions) of the ap-
plied tools, is referred e.g. to [10, 35].

The kinetic approach is complementary to the numerous
theoretical and numerical studies that can be found in the re-
cent physics literature on the subject, from which it differs in
several subtle points. In our point of view, the evolution of
wealth dendity is entirely based on the spatially homogeneous
Boltzmann equationassociated to the microscopic trade rules
of the respective model. Agents on the market are treated as
a continuum, just like molecules in classical gas dynamics.
Not only does this approach constitute the most natural gen-
eralization of the classical ideas to econophysics. But more-
over, it clarifies that certain peculiar observations made in en-
sembles of finitely many agents and in numerical experiments
(like the apparent creation of steady distributions of infinite
average wealth, e.g. [15–17]) are genuinefinite size effects.

For the sake of completeness, a comment on the justifica-
tion of kinetic market models is in place. The socio-economic
behavior of a (real) population of agents is extremely com-
plex. Apart from elements from mathematics and economics,
a sound description — if one at all exists — would neces-
sarily need contributions from various other fields, including
psychology. Clearly, the available mathematical models are
too simple to even pretend to reflect the real situation. How-
ever, the idea to describe economic trades in terms of a kinetic
equation gives rise to a variety of challenging mathematical
problems, both from the theoretical and numerical point of
view. In particular, it is remarkable that this class of simple
models possesses such a wide spectrum of possible equilib-
ria (some of which indeed resemble realistic wealth distribu-
tions). Moreover, kinetic market models are extremely flex-
ible with respect to the introduction of additional effects. In
this way, the described models should be considered as ba-
sic building blocks, that can easily be combined, adapted and
improved.

II. BOLTZMANN MODELS FOR WEALTH

We consider a class of models in which agents are indis-
tinguishable. Then, an agent’s “state” at any instant of time
t ≥ 0 is completely characterized by his current wealthw≥ 0.
When two agents encounter in a trade, theirpre-trade wealths
v, w change into thepost-trade wealths v∗, w∗ according to the
rule

v∗ = p1v+q1w, w∗ = q2v+ p2w. (2.3)
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Theinteraction coefficients pi andqi are non-negative random
variables. Whileq1 denotes the fraction of the second agent’s
wealth transferred to the first agent, the differencep1−q2 is
the relative gain (or loss) of wealth of the first agent due to
market risks. We assume thatpi andqi have fixed laws, which
are independent ofv andw, and of time.

In one-dimensional models, the wealth distributionf (t;w)
of the ensemble coincides with agent density and satisfies
the associated spatially homogeneous Boltzmann equation of
Maxwell type (1.2)

∂t f + f = Q+( f , f ), (2.4)

on the real half line,w ≥ 0. The collisional gain operator
Q+(t;v), which quantifies the gain of wealthv at timet due to
binary trades, acts on test functionsϕ(w) as

Q+( f , f )[ϕ ] :=
∫

R+

ϕ(w)Q+

(
f , f

)
(w)dw

=
1
2

∫

R2
+

〈ϕ(v∗)+ϕ(w∗)〉 f (v) f (w)dvdw,

(2.5)

with 〈·〉 denoting the expectation with respect to the random
coefficientspi andqi in (2.3). The large-time behavior of the
density is heavily dependent of the evolution of the average
wealth

M(t) := M1(t) =
∫

R+

w f(t;w)dw, (2.6)

Conservative models are such that the average wealth of the
society is conserved with time,M(t) = M, where the value
of M is finite. In terms of the interaction coefficients, this is
equivalent to〈p1+q2〉= 〈p2+q1〉= 1 .

The Boltzmann equation (2.4) belongs to the Maxwell type.
As briefly described in the Introduction, in the Boltzmann
equation for Maxwell molecules the collision frequency is in-
dependent of the relative velocity [8], and the loss term in the
collision operator is linear. This introduces a great simplifi-
cation, that allows to use most of the well established tech-
niques developed for the three-dimensional spatially homoge-
neous Boltzmann equation for Maxwell molecules in the field
of wealth redistribution.

A. Pointwise conservative models

The first explicit description of a binary wealth exchange
model dates back to Angle [1] (although the intimate rela-
tion to statistical mechanics was only described about one
decade later [20, 26]): in each binary interaction, winner and
loser are randomly chosen, and the loser yields a random frac-
tion of his wealth to the winner. From here, Chakraborti and
Chakrabarti [13] developed the class ofstrictly conservative
exchange models, which preserve the total wealth in each in-
dividual trade,

v∗+w∗ = v+w. (2.7)

In its most basic version, the microscopic interaction is de-
termined by one single parameterλ ∈ (0,1), which is the
globalsaving propensity. In interactions, each agent keeps the
corresponding fraction of his pre-trade wealth, while the rest
(1−λ )(v+w) is equally shared among the two trade partners,

v∗ = λv+
1
2
(1−λ )(v+w), w∗ = λw+

1
2
(1−λ )(v+w).

(2.8)
In result, all agents become equally rich eventually. Non-
deterministic variants of the model have been proposed, where
the amount(1− λ )(v+ w) is not equally shared, but in a
stochastic way:

v∗= λv+ε(1−λ )(v+w), w∗ = λw+(1−ε)(1−λ )(v+w),
(2.9)

with a random variableε ∈ (0,1).

B. Conservative in the mean models

Cordier et al. [19] have introduced the CPT model, which
breaks with the paradigm of strict conservation. The idea is
that wealth changes hands for a specific reason: one agent in-
tends toinvesthis wealth in some asset, property etc. in pos-
session of his trade partner. Typically, such investments bear
some risk, and either provide the buyer with some additional
wealth, or lead to the loss of wealth in a non-deterministic
way. An easy realization of this idea [29] consists in coupling
the previously discussed rules (2.8) with somerisky invest-
mentthat yields an immediate gain or loss proportional to the
current wealth of the investing agent,

v∗ =
(

λ +η1

)
v+(1−λ )w, w∗ =

(
λ +η2

)
w+(1−λ )v,

(2.10)
The coefficientsη1,η2 are random parameters, which are in-
dependent ofv andw, and distributed so that alwaysv∗, w∗ ≥
0, i.e.η1, η2 ≥−λ . For centeredηi ,

〈v∗+w∗〉= (1+ 〈η1〉)v+(1+ 〈η2〉)w= v+w, (2.11)

implying conservation of the average wealth. Various spe-
cific choices for theηi have been discussed [29]. The easiest
one leading to interesting results isηi =±µ , where each sign
comes with probability 1/2. The factorµ ∈ (0,λ ) should be
understood as theintrinsic risk of the market: it quantifies the
fraction of wealth agents are willing to gamble on.

III. BOLTZMANN EQUILIBRIA

In conservative markets, whereM(t) = M, the details of the
binary trade determine the profile of the steady wealth distri-
bution. We introduce the characteristic function

S(s) =
1
2

( 2

∑
i=1

〈ps
i +qs

i 〉
)
−1, (3.12)
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which is convex ins> 0, with S(0) = 1. Also, S(1) = 0 be-
cause of the conservation property (2.11). The results from
[21, 29] imply the following. UnlessS(s)≥ 0 for alls> 0, any
solution f (t;w) tends to a steady wealth distributionP∞(w) =
f∞(w), which depends on the initial wealth distribution only
through the conserved mean wealthM > 0. Moreover, exactly
one of the following is true:

(PT) if S(α) = 0 for someα > 1, thenP∞(w) has aPareto
tail of indexα;

(ST) if S(s)< 0 for all s> 1, thenP∞(w) has aslim tail;

(DD) if S(α) = 0 for some 0< α < 1, thenP∞(w) = δ0(w), a
Dirac Deltaat w= 0.

In case (PT), exactly the momentsMs(t) with s>α blow up
ast →∞, giving rise to a Pareto tail of indexα. We emphasize
that f (t;w) possesses finite moments of all orders at any finite
time. The Pareto tail formsin the limit t→ ∞.

In case (ST), all moments converge to limitsMs(t) → M∗
s ,

so the tail is slim.
In case (DD), all momentsMs(t) with s> 1 blow up. The

underlying process is a separation of wealth as time increases:
while more and more agents become extremely poor, fewer
and fewer agents possess essentially the entire wealth of the
society.

A. The legacy of Maxwell molecules

The main tool to obtain the aforementioned results is the
use of the Fourier transform. This idea, which goes back to the

seminal work of Bobylev [7, 8], is well-suited to treat collision
kernels of Maxwellian type. In particular, the Fourier repre-
sentation is particularly adapted to the use of various Fourier
metrics.

According to the collision rule (2.3), the transformed gain
term reads

Q̂+

(
f̂ , f̂

)
(ξ ) =

1
2

〈
f̂ (p1ξ ) f̂ (q1ξ )+ f̂ (p2ξ ) f̂ (q2ξ )

〉
.

(3.13)
The initial conditions turn into

f̂0(0) = 1 and f̂0
′
(0) = iM .

Hence, the Boltzmann equation (2.4) can be rewritten as

∂ f̂ (t;ξ )
∂ t

+ f̂ (t;ξ ) =
1
2

〈
f̂ (p1ξ ) f̂ (q1ξ )+ f̂ (p2ξ ) f̂ (q2ξ )

〉
.

(3.14)
Equation (3.14) can be easily treated from a mathematical

point of view owing to the well-known techniques introduced
so far to study the Boltzmann equation for Maxwell molecules
and its caricatures, mainly Kac equation [27].
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