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MARKET PRICE OF RISK AND RANDOM FIELD DRIVEN

MODELS OF TERM STRUCTURE: A SPACE-TIME CHANGE OF

MEASURE LOOK

HASSAN ALLOUBA AND VICTOR GOODMAN

Abstract. No-arbitrage models of term structure have the feature that the
return on zero-coupon bonds is the sum of the short rate and the product of
volatility and market price of risk. Well known models restrict the behavior of
the market price of risk so that it is not dependent on the type of asset being
modeled. We show that the models recently proposed by Goldstein and Santa-
Clara and Sornette, among others, allow the market price of risk to depend on
characteristics of each asset, and we quantify this dependence. A key tool in
our analysis is a very general space-time change of measure theorem, proved
by the first author in earlier work, and covers continuous orthogonal local
martingale measures including space-time white noise.

1. Introduction

Let P (t, T ) denote the market price of a discount bond that matures at time T .
Since bond trading prices share many of the same characteristics of stock prices ,
several approaches to modeling bond prices use a stochastic noise term to express
the uncertainty regarding future prices of a specific bond. The approach in Hull
and White (1990), is to model each discount bond with an SDE of the form

(1.1) dP = µ(t, T )Pdt+ Pσ(t, T )dW

where W (t) is a one-parameter Brownian motion which serves as a shared noise
term. On the other hand, the coefficients µ and σ are adapted functions of t which
also depend on the maturity time T . That is, these terms capture characteristics
that are unique to the different maturity dates. By making some technical assump-
tions regarding µ and σ, one can derive a short–term interest rate process, r(t) from
the bond prices as well as forward interest rates, which form the modeling equations
of Heath, Jarrow, and Morton term structure models [7]. HJM interest rate models
are consistent with such SDE families given by (1.1) (see Baxter, Rennie [2]).

One attempts to choose the“parameters” µ and σ so that various correlations
of bond price behavior can be attained while a consistency of bond prices is main-
tained. By this, we mean that arbitrage opportunities are ruled out within the
model.

1.1. Condition for no–arbitrage. The drift µ(t, T ), for each bond maturity is a
function of the short (interest) rate and the market price of risk, a single function
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λ(t) that determines the underlying return on each bond price: There is an adapted
function λ(t, ω), such that for 0 ≤ t ≤ T ,

µ(t, T ) = r(t) + λ(t, ω)σ(t, T )

This peculiar feature of one-factor as well as multi-factor bond models states that
the “excess” return on bonds of different maturities are proportional to their volatil-
ities. This seems an unrealistic oversimplification that fails to take into account
different characteristics of bonds with different maturities.

More elaborate bond models have been proposed by Goldstein, Santa-Clara and
Sornette, and others. These models replace a Brownian motion by a Gaussian
random field, Z(t, T ). More general correlations of bond prices may be modeled
with these random field noises.

We show that a more general market price of risk is compatible with no-arbitrage
models for a variety of random fields generated by the two-parameter Brownian
sheet process. We also characterize the generality of market price of risk within
these classes of models.

2. Random Field Driven Bond Models

Assume that the random field Z(t, T ) is a Brownian motion for each fixed T ,
and that the process is continuous in both variables. We use the bond model

(2.1) dP = µ(t, T )Pdt+ Pσ(t, T )dtZ(t, T )

where all differentials, including dtZ(t, T ), are taken in the t variable only; and
so we will often refer to (2.1) as a semi-SPDE or a parametrized SDE. We assume
throughout the rest of the article that σ is continuous in t. In order to find sufficient
conditions (on a market price of risk) so that no arbitrage is possible, we express
the drift in terms of an existing short rate process r(t) and an unknown function λ
as follows: For some adapted function λ(t, T, ω), of both time and maturity date,
we have

µ(t, T ) = r(t) + λ(t, T, ω)σ(t, T )

We find that some dependence on T is consistent with no arbitrage, and we obtain
the space-time risk neutral measure.

2.1. Main Result. The following Theorem illustrates the generality of allowable
market prices of risk for certain random field term structure models. It addresses
the bond model in (2.1) when the noise Z has the form

(2.2) Z
△
= W (t, T )/

√
T = Wt([0, T ])/

√
T

where W (t, T ) is the two-parameter Brownian sheet (a zero mean Gaussian process
with Cov(W (t1, T1),W (t2, T2)) = (t1 ∧ t2)(T1 ∧ T2)) corresponding to a space-time

white noise W
△
= {Wt(B),Ft; 0 ≤ t ≤ T0, B ∈ B([0, T0])} on a usual probability

space (Ω,F, {Ft},P) (B([0, T0]) is the Borel σ-field over [0, T0]). The relation be-
tween space-time white noise as a local martingale measure and its induced Brow-
nian sheet and the relevant definitions are detailed in [1, 10], and we refer the
interested reader to these references for additional interesting details.
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Theorem 2.1. Suppose that Z has the form in (2.2). Then for any T0 > 0 and

any market price of risk λ of the form

(2.3) λ(t, T ) =

∫

T

0

η(t, u, ω)du; T ≤ T0,

where η is an Ft-predictable random field (see [1, 10]) such that

(2.4) EP exp

(

∫ T0

0

∫ T0

0

[

log(T/u)η(t, u)λ(t, u)/2 + uη(t, u)2
]

dudt

)

< ∞,

the bond model (2.1) is free from arbitrage over the time interval 0 ≤ t ≤ T0.

Remark 2.1. We make the following observations:

(1) This result shows that no-arbitrage is consistent with market prices of risk

that are T -dependent and also that the market price of risk is absolutely

continuous with respect to the maturity time.

(2) As shown in the next subsection, as a Corollary of the proof of Theorem 2.1,
the integrability condition in (2.4) may be replaced by the simpler condition

(2.5) EP exp

(

5T0

4

∫

T0

0

∫

T0

0

η(t, u)2 dudt

)

< ∞

(3) The space-time setting we are adopting here and in Lemma 2.1 is more

natural and flexible than the classical multiparameter one: it gives time

its traditional role in processes while allowing the space variable (in this

case the maturity date) to be free to take from any space, not necessarily

symmetric to the time set. It can also accomodate a larger class of noises

while avoiding the unnatural restrictions imposed by the multiparameter

setting (see [1]). This makes our results extendable to more general models.

(4) The covariance structure of the random field Z(t, T ) in Theorem 2.1 is, of

course,

EP[Z(t1, T1)Z(t2, T2)] = (t1 ∧ t2)

√

(T1 ∧ T2)

(T1 ∨ T2)

2.2. Proofs and Extensions of the Main Result. We start with the aforemen-
tioned space-time change of measure result needed in our proof of Theorem 2.1.
This is a special case of Corollary 2.3 along with Lemma 2.4 in [1], which we com-
bine and state here for the reader’s convenience as

Lemma 2.1. Suppose that W = {Wt(B),Ft; 0 ≤ t ≤ T0, B ∈ B([0, T0])} is a space-

time white noise on the usual probability space (Ω,F, {Ft},P). Suppose further that

g is an Ft-predictable random field satisfying

(2.6) EP exp

(

1

2

∫ T0

0

∫ T0

0

g(s, u)2 dsdu

)

< ∞,

then

W̃t(B)
△
= Wt(B) +

∫

t

0

∫

B

g(s, u)duds; 0 ≤ t ≤ T0, B ∈ B([0, T0])



4 HASSAN ALLOUBA AND VICTOR GOODMAN

is a white noise on (Ω,FT0
, {Ft}, P̃), where

dP̃

dP
= exp

[

−
∫

T0

0

∫

T0

0

g(s, u)W(ds, du)− 1/2

∫

T0

0

∫

T0

0

g(s, u)2dsdu

]

.

I.e., the random field
{

W̃ (t, T )
△
= W̃t([0, T ]); 0 ≤ t, T ≤ T0

}

is a Brownian sheet

with respect to P̃.

We now turn to the

Proof of Theorem 2.1. We assume that the market price of risk λ satisfies (2.3),
and we consider the process

Z̃(t, T )
△
= Z(t, T ) +

∫

t

0

λ(s, T )ds =
1√
T
W (t, T ) +

∫

t

0

∫

T

0

η(s, u)duds(2.7)

We wish to determine an absolutely continuous probability measure P̃ defined
on the σ-field FT0

so that the process in (2.7) is a martingale for each fixed T > 0.

For this purpose, it suffices to find P̃ making the process

(2.8) W̃ (t, T )
△
= W (t, T ) +

√
T

∫ t

0

∫ T

0

η(s, u)duds

a Brownian sheet over the parameter range [0, T0] × [0, T0] (each process in (2.7),

for fixed T , is then a standard Brownian motion with respect to such a measure P̃).
Towards this end, we need to choose g satisfying the generalized Novikov condition
(2.6) such that

(2.9)

∫ t

0

∫ T

0

g(s, u)duds =
√
T

∫ t

0

∫ T

0

η(s, u)duds

Letting

(2.10) g(s, u)
△
=

d

du

(√
u

∫ u

0

η(s, y)dy

)

=
1

2
√
u
λ(s, u) +

√
uη(s, u),

where λ(s, u) =
∫

u

0
η(s, y)dy, it is formally clear that (2.9) holds. We verify the

validity of this formal computation by computing the L2[0, T0] norm of each term
in the function g, and we will show that each L2 norm is finite a.s. In fact, we will
compute the L2 norm in both variables t and T over the square.
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First,
∥

∥

∥

∥

1

2
√
u
λ(s, u)

∥

∥

∥

∥

2

2

=

∫ T0

0

∫ T0

0

1

4u
λ2(s, u)duds

=

∫

T0

0

∫

T0

0

1

4u

∫

u

0

∫

u

0

η(s, r)η(s, τ)drdτduds

=

∫

T0

0

∫

T0

0

∫

T0

0

η(s, r)η(s, τ)

∫

T0

r∨τ

1

4u
dudrdτds

=
1

4

∫

T0

0

∫

T0

0

∫

T0

0

η(s, r)η(s, τ) log

(

T0

r ∨ τ

)

drdτds

=
1

2

∫ T0

0

∫ T0

0

η(s, τ)

∫ τ

0

η(s, r) log

(

T0

τ

)

drdτds

=
1

2

∫ T0

0

∫ T0

0

η(s, τ)λ(s, τ) log

(

T0

τ

)

dτds

This quantity is finite a.s., since (2.4) implies that its exponential has finite mean.
Secondly,

∥

∥

√
uη(s, u)

∥

∥

2

2
=

∫ T0

0

∫ T0

0

uη(s, u)2dsdu

is also finite a.s. for the same reason.
Now the condition (2.6) of Lemma 2.1 may be stated as EP exp(‖g‖22/2) < ∞.

We use the inequality

‖g‖22 =
∥

∥

∥

∥

1

2
√
u
λ(s, u) +

√
uη(s, u)

∥

∥

∥

∥

2

2

≤ 2

∥

∥

∥

∥

1

2
√
u
λ(s, u)

∥

∥

∥

∥

2

2

+ 2
∥

∥

√
uη(s, u)

∥

∥

2

2

and the estimates previously derived to obtain

‖g‖2
2

2
≤ 1

2

∫

T0

0

∫

T0

0

η(s, u)λ(s, u) log

(

T0

u

)

duds+

∫

T0

0

∫

T0

0

uη(s, u)2dsdu

But, the assumption in (2.4) implies that the exponential moment of this quantity
is finite; hence, the hypothesis of Lemma 2.1 is satisfied.

Consider a bond model where the dynamics of discount bonds are given by (2.1)
and where µ has the form µ = r + λσ. For each T > 0 we have

(2.11) dP = (r(t) + λ(t, T )σ(t, T ))Pdt+ σ(t, T )PdtZ(t, T )

where we assume that (P,Z) is a solution of this semi-SPDE (parametrized SDE)

on (Ω,F, {Ft},P). We let Z̃(t, T ) denote the process defined in (2.7), and we note
that

Z(t, T ) = Z̃(t, T )−
∫

t

0

λ(s, T )ds

Under the measure P̃ of Lemma 2.1,
√
TZ̃(t, T ) is a Brownian sheet, so that Z̃(t, T )

is a standard Brownian motion for fixed T . Then the integral form of (2.11), which
holds pathwise, may be written in differential form as

dP = (r(t) + λ(t, T )σ(t, T ))Pdt+ σ(t, T )PdtZ̃(t, T )− λ(t, T )σ(t, T )Pdt

= r(t)Pdt + σ(t, T )PdtZ̃(t, T )
(2.12)
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We now proceed to verify Harrison and Kreps criteria for no arbitrage [6]. Since

the semi-SPDE defined by (2.12) is in terms of a standard Brownian motion Z̃, one
may fix T and use the Itô formula to investigate each process

Dt

△
= exp

[

−
∫

t

0

r(s)ds

]

P (t, T )

It follows that

dDt = exp

[

−
∫

t

0

r(s)ds

]

σ(t, T )P (t, T )dtZ̃(t, T )

and hence Dt is a martingale in t, under P̃ (since σ is assumed continuous in t,
and thus bounded on [0, T0]). The model then satisfies the desired Harrison and
Kreps criteria developed in [6] to form a model with no arbitrage and Theorem 2.1
is proved. �

We now prove the second observation in Remark 2.1

Corollary 2.1. In Theorem 2.1, if we replace the integrability condition (2.4) by

(2.13) EP exp

(

5T0

4

∫

T0

0

∫

T0

0

η(t, u)2 dudt

)

< ∞

then Theorem 2.1 holds.

Proof. We see from (2.9) and (2.10) and the following discussion that if

g(t, T )
△
=

1

2
√
T

∫

T

0

η(t, u)du+
√
Tη(t, T )

it suffices to show

EP exp

[

1

2
‖g‖22

]

< ∞.

Applying the Cauchy-Schwarz inequality, we obtain
∣

∣

∣

∣

∣

1

2
√
T

∫

T

0

η(t, u)du

∣

∣

∣

∣

∣

2

≤ 1

4T

∫

T

0

η2(t, u)du · T ≤ 1

4

∫

T0

0

η2(t, u)du

Then
∥

∥

∥

∥

∥

1

2
√
T

∫

T

0

η(t, u)du

∥

∥

∥

∥

∥

2

2

≤ T0

4
‖η‖22

so that

‖g‖22 ≤ 2
T0

4
‖η‖22 + 2T0‖η‖22 =

5T0

2
‖η‖22

Now,

EP exp

[

1

2
‖g‖22

]

≤ EP exp

[

5T0

4
‖η‖22

]

,

and that last term is finite by assumption (2.13). �



SPACE-TIME CHANGE OF MEASURE LOOK AT MARKET PRICE VIA SEMI-SPDE’S 7

In Santa-Clara and Sornette [9], more general random field term structure models
are considered. These use a noise term of the form

(2.14) Z(t, T ) =
1

h(T )
W (t, h2(T )) =

1

h(T )
Wt([0, h

2(T )])

where h is an increasing, positive function on the interval [0, T0]. Clearly, such
random fields have the feature that for each fixed T , the process is a standard
Brownian motion. Also, the random field correlation is more general than for the
normalized Brownian sheet in (2.2). Theorem 2.2 below shows that such models
allow essentially the same type of market price of risk behavior as in Theorem 2.1.

Theorem 2.2. Suppose that Z is the random field appearing in (2.14) where the

function T → h(T ) is absolutely continuous and the function h′(T ) is L2 on each

interval [a, T0], a > 0. Then for market price of risk λ of the form

λ(t, T ) =

∫ T

0

η(t, u, ω)du; T ≤ T0,

where η is Ft-predictable, Ft is a usual filtration with respect to which the white

noise W in (2.14) is measurable, and

EP exp

(

∫ T0

0

∫ T0

0

[

η(t, u)λ(t, u)

∫ T0

u

h′(τ)2dτ/2 + h(u)2η(t, u)2
]

dudt

)

< ∞,

the bond model (2.1) is free from arbitrage over the time interval 0 ≤ t ≤ T0.

Lemma 2.1 applies just as easily in this case (in fact see Theorem 2.2 in [1] which
applies to a much larger class of noises) and the proof is quite similar to that for
Theorem 2.1 and will be omitted.
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