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Abstract

For purposes of Value-at-Risk estimation, we consider three multivariate families
of heavy-tailed distributions, which can be seen as multidimensional versions of
Paretian stable and Student’s t distributions allowing different marginals to have
different tail thickness. After a discussion of relevant estimation and simulation
issues, we conduct a backtesting study on a set of portfolios containing derivative
instruments, using historical US stock price data.

1 Introduction

The purpose of this paper is to assess the performance of some classes of multivariate
laws with heavy tails in the estimation of Value-at-Risk for nonlinear portfolios. The
inadequacy of Gaussian laws, in one or several dimensions, to model the distribution of
risk factors, especially in view of applications to risk modeling, is well-documented in
the empirical literature (see e.g. [3, 6] and references therein). Here we concentrate on
models for risk factors that are multivariate extensions of the classical α-stable and Stu-
dent’s t distributions. In particular, we consider multivariate laws whose marginals may
have different indices of tail thickness, and/or whose structure allow for tail dependence
(i.e., roughly speaking, extreme movements of several risk factors may happen together).

Let us briefly recall how VaR is usually estimated for nonlinear (i.e. containing deriva-
tive instruments) portfolios, and what kind of improvements have been proposed. In the
simplest setting, one uses a linear approximations of losses with normally distributed
risk factors: denoting by L the loss over a certain time period, one sets L ≈ 〈∆,X〉,
where X ∼ N(m,Q) is a d-dimensional vector of Gaussian risk factors, ∆ is an element
of Rd, and 〈·, ·〉 stands for the usual scalar product of two vectors. Then 〈∆,X〉 follows
a one-dimensional Gaussian distribution with mean 〈∆,m〉 and variance 〈Q∆,∆〉, so
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that (an approximation of) VaR can be obtained immediately. However, it is clear that
such a scheme suffers of two major weaknesses: the linear approximation is inaccurate,
as the payoff function of derivatives is usually highly non-linear, and the hypothesis that
random factors are Gaussian is often inappropriate, as briefly mentioned above (the
literature on this issue is very rich – see e.g. [4, 9, 8], to mention just a few classi-
cal references). Among the many improvements that have been suggested in literature,
some focus on a better modeling of the nonlinear relation between L and X (e.g. by
using quadratic approximations of the type L ≈ 〈∆,X〉 + 〈ΓX,X〉), but still assuming
X Gaussian (see e.g. [6]), while others introduce alternative distributions of portfolio
losses, often just in the univariate setting (see e.g. [15]). To the best of our knowledge,
however, there are only a small number of studies devoted to models that take into ac-
count both non-linearities and non-normality in a multivariate setting: Duffie and Pan
[7] and Glasserman et al. [10] adopt the quadratic approximation and non-Gaussian
risk factors. In particular, risk factors include a jump component in the first work, and
are modeled by multivariate t distributions (or a modification thereof) in the latter.
However, both works are devoted to different issues (analytic approximations and effi-
cient simulation techniques, respectively), therefore they do not address the statistical
issues related to the implementation of their models, and do not measure their empirical
performance on real data.

Our contributions are the following: we introduce a stable-like model for risk factors
obtained by multivariate subordination of a Gaussian law on R

d (see §2), such that each
marginal (i.e. each risk factor) can have a different index of tail thickness. We construct
estimators for the parameters of this distribution and we study their asymptotic behav-
ior. An analogous program is carried out for a multivariate t-like law (see §3). The
statistical properties of an alternative multivariate t-like law, obtained by “warping”
the marginals of a standard multivariate t, which was introduced in [10], are studied in
§4. In §6 we provide an extensive back-testing study of the three parametric families of
distributions using real data, on portfolios containing both standard and exotic options,
relying both on full revaluation of the portfolio value and on its quadratic approximation.

2 Multivariate stable-like risk factors

2.1 Description of the model

Given a probability space (Ω,F ,P), let X : Ω → R
d be a random vector of risk factors

such that
X = A1/2G, (1)

where A = diag(A1, . . . , Ad) is a diagonal random matrix with independent entries,

Ai ∼ Sαi/2

(

(

cos
παi
4

)2/αi , 1, 0
)

∀i = 1, . . . , d, (2)

and G is a R
d-valued Gaussian random vector, independent of A, with mean zero and

covariance matrix Q. In (2) we assume αi ∈]1, 2[ for all i = 1, . . . , d.
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Note that (1) and (2) imply that, for each i = 1, . . . , d, the i-th marginal of X has
distribution Sαi

(σi, 0, 0), where E[G2
i ] = 2σ2

i . In particular, risk factors are allowed to
have different indices of tail thickness αi, and they are dependent through the Gaus-
sian component G. Other distributional properties of this class of random vectors are
discussed in §2.4 below.

2.2 Estimation

Let X(t), t = 1, . . . , n be independent samples from the distribution of X. For p <
min1≤i≤d(αi)/2, define the (improper) sample p-th moment as

Mp(n) = n−1
n
∑

t=1

Xi(t)
〈p〉Xj(t)

〈p〉,

where X〈p〉 := |X|p sgn(X). Note that, by Cauchy-Schwarz’ inequality, we have

E|XiXj |p ≤
(

E|Xi|2p
)1/2(

E|Xj|2p
)1/2

<∞,

thus also, by Kolmogorov’s strong law of large numbers,

lim
n→∞

Mp(n) = E(XiXj)
〈p〉 a.s..

Since the random matrix A and the random vector G are independent, one has

E(XiXj)
〈p〉 =

(

EA
p/2
i

)(

EA
p/2
j

)

E(GiGj)
〈p〉,

where (see e.g. [16, p. 18])

EA
p/2
i =

2p/2Γ(1− p/αi)

p
∫∞
0 u−p/2−1 sin2 u du

(

1 + tan2
αiπ

4

)
p

2αi

(

cos
παi
4

)
p

αi cos
pπ

4
=: Cαi,p.

The constant Cα,p can be computed explicitly, recalling that

∫ ∞

0
u−p/2−1 sin2 u du = −2p/2−1 cos

πp

4
Γ(−p/2).

Let us now define the function

fp : ]− 1, 1[→ R

q 7→ E[(Z1Z2)
〈p〉],

where Z1, Z2 are jointly normal random variables with covariance matrix

[

1 q
q 1

]

.
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For any given p < mini(αi)/2, matching the theoretical signed p-th moments of XiXj

with their sample counterparts, we obtain the following estimator for the matrix Q:

Q̂ij = 2σiσjf
←
p

(

n−1
∑n

t=1 Xi(t)
〈p〉Xj(t)

〈p〉

2pσpi σ
p
jCαi,pCαj ,p

)

, i, j = 1, . . . , d,

where the superscript “←” stands (here and henceforth) for the inverse function.
If {σi}i and {αi}i are not known a priori, but we rather have only consistent esti-

mators {σ̂in}i and {α̂in}i, respectively, one can easily deduce (by several applications of
the continuous mapping theorem), that the estimator of Q obtained replacing αi with
α̂in and σi with σ̂in in the above expression is still consistent.

Remark 1. (i) As far as the estimation of the covariance matrix Q is concerned, the
heavy tailed assumption does not imply any extra computation burden.

(ii) For our purposes, it is enough to choose p = 1/2, as we always assume αi > 1 for
all i (as is well-known, this is equivalent to assuming that all returns have finite mean).

(iii) Unfortunately we are not aware of an explicit expression for the function q 7→
fp(q). However, it can be expressed as an integral with respect to a Gaussian measure
in R

2:

fp(ρ) =
1

2π
√
detQ

∫

R2

(x1x2)
〈p〉e−

1
2
〈Q−1x,x〉 dx

=
1

2π
√

1− q2

∫

R2

(x1x2)
〈p〉e
− 1

2(1−q2)
(x21−2qx1x2+x

2
2) dx1 dx2 (3)

which can be computed by numerical integration with essentially any accuracy. Figure
1 plots the function f1/2 on the interval [0, 1[.

Let us consider a simplified case: d = 2, σ1 = σ2 = 1/
√
2, and α1, α2 given. The

assumption d = 2 is harmless, as in any case the method works componentwise. The
case of unknown αi and σi can be dealt with replacing them with their corresponding
consistent estimators, as discussed above.

Let us define

q̂n = f←

(

n−1
∑n

t=1 X1(t)
〈p〉X2(t)

〈p〉

Cα1,pCα2,p

)

(4)

We first prove the following lemma:

Lemma 2. The function fp :]−1, 1[→ R is bounded, continuously differentiable, concave

increasing on ]− 1, 0[ and convex increasing on ]0, 1[.

Proof. Boundedness follows by concavity of the function x 7→ |x|p for p < 1 and Jensen’s
inequality, that yield

|fp(q)| = |EZ〈p〉1 Z
〈p〉
2 | ≤ E|Z1Z2|p ≤ (E|Z1Z2|)p ≤ 1,

where the last inequality follows by Cauchy-Schwarz’ inequality and EZ2
1 = EZ2

2 = 1.
Continuous differentiability w.r.t. q is immediate by inspection of (3). Differentiating (3)

4



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ

f 1/
2

Figure 1: Plot of the function fp, with p = 1/2.

w.r.t. q twice, one gets (after some cumbersome but elementary calculations) f ′p(q) > 0
for all q ∈]− 1, 1[, and f ′′p (q) < 0 for q < 0, f ′′p (0) = 0, f ′′p (q) > 0 for q > 0. The lemma
is thus proved.

It is easy to prove that q̂n is strongly consistent, i.e. that q̂n → q a.s. as n→∞. In
fact, as above, since p < (mini αi)/2, by Kolmogorov’s strong law of large numbers one
has

fp(q̂n) =
n−1

∑n
t=1 X1(t)

〈p〉X2(t)
〈p〉

Cα1,pCα2,p

n→∞−−−→ E(Z1Z2)
〈p〉 = fp(q) a.s.,

from which we can conclude thanks to the continuous mapping theorem and the conti-
nuity of f←.

We are now going to prove that the estimator (4) is asymptotically normal, under
a more stringent assumption on the chosen value of p. Let us define the function gp :
R
2 → R,

gp : x = (x1, x2) 7→
x
〈p〉
1 x

〈p〉
2

Cα1,pCα2,p
.

It is clear that the estimator (4) can be defined as the solution of the equation

Pngp :=
1

n

n
∑

k=1

gp(X(k)) = Eqgp(X) =: fp(q), (5)
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where Pn stands for the (averaged) empirical measure of the sample X(1), . . . ,X(n), i.e.

Pn :=
1

n

n
∑

k=1

δX(k).

Proposition 3. If p < mini(αi)/4, then q̂n is asymptotically normal and satisfies

√
n(q̂n − q)⇒ N

(

0, f ′p(q)
−2
(

Eq[g
2
p(X)] − f2

p (q)
)

)

. (6)

Proof. We have proved in lemma 2 that fp(q) = Eqgp(X) is a bijection on the open set
]− 1, 1[, it is continuously differentiable on its domain, and f ′p(x) 6= 0 for all x ∈]− 1, 1[.
Moreover, as it follows from (4) and (5), one can write

√
n(q̂n − q) =

√
n
(

f←p (Pngp)− f←p (Eqgp(X))
)

. (7)

We have, by the strong law of large numbers, Pngp → Eqgp a.s. as n → ∞. Recalling
that by hypothesis p < mini(αi)/4, it follows that Eqg

2
p(X) < ∞, hence, by the central

limit theorem, √
n(Pngp − Eqgp(X))⇒ N(0,Eqg

2
p(X) − f2

p (q)).

An application of the delta method, taking into account the inverse function theorem,
now yields the result.

A shortcoming of the asymptotic confidence interval implied by the above proposition
is that the asymptotic variance depends on the parameter to be estimated itself. One
can overcome this problem by a variance stabilizing transformation: let us define the
function γ :]− 1, 1[→ R,

γp(q) = Eqg
2
p(X)−

(

Eqgp(X)
)2

=
E|X1X2|2p
Cα1,2pCα2,2p

−
(

EX
〈p〉
1 X

〈p〉
2

)2

C2
α1,pC

2
α2,p

and

ϕp(x) =

∫ x

0

f ′p(y)

γ
1/2
p (y)

dy.

Then, again by the delta method, we obtain

√
n(ϕp(q̂n)− ϕp(q))⇒ N

(

0, ϕ′p(q)
2 γp(q)

f ′p(q)
2

)

= N(0, 1),

and a corresponding asymptotic confidence interval for q as

q ∈ [ϕ←p (ϕp(q̂n − zα/
√
n), ϕ←p (ϕp(q̂n + zα/

√
n)].

This asymptotic normality result for ϕp(q̂n) would of course be better if we had an ex-
plicity expression for ϕp, which instead needs to be approximated numerically. However,
since both fp and γp are smooth functions (i.e. at least C2), constructing a numerical
approximation of ϕp is a rather simple task.
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2.3 Simulation

In view of the results of the previous subsection, we assume that the covariance matrix
Q is known, hence, with a slight but harmless abuse of notation, we shall write Q instead
of Q̂.

Random vectors from the distribution of X can be simulated by the following simple
algorithm:

(i) generate d independent random variables Zi ∼ N(0, 1), i = 1, . . . , d, and form the
random vector Z = (Z1, . . . , Zd) ∼ N(0, I), so that Q1/2Z ∼ N(0, Q);

(ii) independently from Z, generate d independent random variables from the distri-
bution of Ai, i = 1, . . . , d, as defined in (2);

(iii) setting A = diag(A1, . . . , Ad), one has that A1/2Q1/2Z is a sample from the d-
dimensional law of X

Note that the only computational overhead with respect to the simulation of a Gaus-
sian vector is the simulation of the stable subordinators, for which nonetheless efficient
algorithms are available (see e.g. [16]).

2.4 Distributional properties

We shall now prove some distributional properties of the random vector of risk returns
X. We begin showing that X can be regarded as a particular case of multivariate subor-
dination, with a construction analogous to that of [1]. Let us recall that a subordinator
in R

d is an R
d
+-valued Lévy process with T (0) = 0 a.s. and Tk(t) increasing a.s. for all

k = 1, . . . , d. Then one has, for γ ∈ R
d
+,

Ee−〈γ,T (t)〉 = exp

[

t

∫

Rd
+

(ei〈γ,x〉 − 1)ν(dx) + it〈γ, c〉
]

=: e−tψ(γ), (8)

where c ∈ R
d
+ and ν is a σ-finite measure on R

d such that supp ν ⊆ R
d
+ \ {0} and

∫

Rd
+

(1 ∧ |x|) ν(dx) <∞.

Given a process Y (t), t ≥ 0, with values in R
d, we define the process subordinate to Y

by T as
Y (T (t)) := (Y1(T1(t)), . . . , Yd(Td(t))).

Proposition 4. There exists a multivariate subordinator T (t), t ≥ 0, such that

X
d
= W (T (1)),

with W an R
d-valued Wiener process with covariance matrix Q.
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Proof. In fact, taking T (t) = (A1(t), . . . , Ad(t)), with Ai(t) independent αi/2-stable
subordinator for all i = 1, . . . , d, by subordinating the Wiener process W (t) we obtain

(W1(A1(t)), . . . ,Wd(Ad(t)))
d
= (A1(t)

1/2W1(1), . . . , Ad(t)
1/2Wd(1))

d
= A1/2G

d
= X,

choosing t = 1.

As is well known, classical subordination (i.e. when subordinators are one dimen-
sional increasing Lévy processes) is closely related to the class of type G laws. This
remains true in the multivariate case, and the following proposition establishes a con-
nection with a class of multivariate laws recently studied in [1].

Proposition 5. The law of the random vector X is of type multG.

Proof. We have X
d
= A1/2Q1/2Z, with Z ∼ N(0, I), hence also X

d
= S1/2Z, with

S = A1/2Q1/2(A1/2Q1/2)∗. The random matrix S is clearly symmetric positive definite,
and its infinite divisibility follows immediately by

S = A1/2QA1/2 = n
(

A1/2Q

n
A1/2

)

,

therefore X is of class multG by definition.

Since S is infinitely divisible as an element of the space of positive definite symmetric
d× d matrices L+

1 (R
d), its law µS admits a Lévy measure mS.

Proposition 6. The law of the random vector X

(i) is infinitely divisible with characteristic triplet [0, 0,mX ], where mX(dx) = u(x) dx,

u(x) =

∫

L+
1 (Rd)

dN0,R(x)

dx
mS(dR);

(ii) is absolutely continuous with respect to Lebesgue measure with probability density

function

fX(x) =

∫

L+
1 (Rd)

dN0,R(x)

dx
µS(dR);

(iii) admits the characteristic function

Eei〈ξ,X〉 = E exp
(

− 1

2
Tr(ξξ∗S)

)

= exp

∫

L+
1 (Rd)

(e−Tr(ξξ
∗R) − 1)µS(dR),

where ξ is treated as a column vector.

8



Proof. Infinite divisibility of X follows immediately noting that for any n ∈ N we have

X
d
= A1/2G

d
=

n
∑

k=1

Xk
d
=

n
∑

k=1

A1/2Gk,

with
∑n

k=1Gk
d
= G. The latter decomposition obviously always exists because Gaussian

vectors are infinitely divisible. The characteristic triplet of X is of the type [0, 0,mX ]
because subGaussian random variables have no Gaussian component and mean zero
(see e.g. [16]). Moreover, since we assumed that Q has full rank, and the laws of stable
subordinators are absolutely continuous with respect to Lebesgue measure and their
support coincides with R+, it follows that the Lévy measure mS is supported on the
space of strictly positive definite d× d matrices. Then the result follows by Proposition
3.1 in [1].

2.5 Extensions

Let us remark that the model (1) for the vector of risk factors can be extended to allow
for asymmetries. In particular, setting

X̃ = A1/2G+B,

where B is a random vector with independent components Bi with law Sαi
(σBi, βBi, 0),

we have that the i-th marginal of the vector X̃ has distribution Sαi
(σ̃i, β̃i, 0), where

σ̃i = (σαi

i + σαi

Bi)
1/αi , β̃i = βBi

σαi

Bi

σαi

i + σαi

Bi

.

One can then estimate the parameters σ̃i and β̃i fitting a general Paretian stable law to
observed data, and obtain (in general in a non-unique way) values of σi, σBi

, and βBi
.

A common choice is βBi
= 1, so that

σBi
= β̃

1/αi

i σ̃i, σi =
(

1− β̃i
)1/αi σ̃i.

Moreover, model (1) does not allow for tail dependence among different risk factors.
As a remedy, one may use the series representation of stable subordinators (see e.g. [16]),
setting

Ai =
∞
∑

k=0

γ
2/αi

k , i = 1, . . . , n,

where (γk)k≥0 is a (fixed) sequence of independent standard Gamma random variables.
The analysis of this model, however, is considerably more involved, and we plan to
elaborate on these issues in a future work.
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3 Multivariate t-like risk factors

3.1 Description

On a probability space (Ω,F ,P), let us consider a d-dimensional random vector of risk
factors X such that

Xk =
Gk

√

Vk/νk
, k = 1, . . . , d, (9)

where G ∼ N(0, Q) and V1, . . . , Vd are independent one-dimensional χ2-distributed ran-
dom variables with parameters ν1, . . . , νd, respectively. We also assume that G and
(V1, . . . , Vd) are independent. Then, for each k = 1, . . . , d, the k-th marginal of X is
distributed according to a Student’s t distribution with parameter νk, multiplied by
σk := (EG2

k)
1/2. In particular, as in the case of the previous section, risk factors may

have different indices of tail thickness (measured by νk), and their dependence comes
from the Gaussian component G.

3.2 Estimation

Assuming for the time being νk, k = 1, . . . , d, to be known, let us estimate the covariance
matrix Q by the method of moments. We shall assume from now on that νk > 2 for all
k, which implies in particular that EX2

k <∞ for all k. One has

EXhXk =
√
νhνk EGhGk EV

−1/2
h EV

−1/2
k

= Qhk
√
νhνk EV

−1/2
h EV

−1/2
k

for all h 6= k, and
EX2

k = Qkk νk EV
−1
k = σ2

k νk EV
−1
k .

Denoting, for simplicity, a random variable with χ2(ν) distribution by V , the density of
V is given by

fν(x) =
1

2ν/2Γ(ν/2)
xν/2−1e−

x
2 ,

so that

EV −1/2 =

∫ ∞

0
x−1/2fν(x) dx =

1

2ν/2Γ(ν/2)

∫ ∞

0
xν/2−3/2e−

x
2 dx

=
Γ(ν/2− 1/2)√

2 Γ(ν/2)

and, similarly,

EV −1 =

∫ ∞

0
xν/2−2e−

x
2 dx =

1

2

Γ(ν/2− 1)

Γ(ν/2)
=

1

ν − 2
.

Here we have used the definition of Gamma function,

Γ(z) =

∫ ∞

0
tz−1e−t dt, z > 0,

10



and its “factorial” property Γ(z + 1) = zΓ(z). The above calculations yield

Qhk =
2√
νhνk

Γ(νh/2)

Γ(νh/2− 1)

Γ(νk/2)

Γ(νk/2− 1)
EXhXk, h 6= k,

and

Qkk = σ2
k =

νk − 2

νk
EX2

k .

We have thus obtained the following moment estimator for Q:

Q̂hk =
2√
νhνk

Γ(νh/2)

Γ(νh/2 − 1)

Γ(νk/2)

Γ(νk/2− 1)

1

n

n
∑

t=1

Xh(t)Xk(t), h 6= k,

and

Q̂kk = σ̂2
k =

νk − 2

νk

1

n

n
∑

t=1

Xk(t)
2.

Note that, for each k, νk can be estimate by one-dimensional maximum likelihood on
the k-th marginal, thus obtaining a family of consistent estimators ν̂k, k = 1, . . . , d.
Therefore, the corresponding estimator of Q obtained by substituting in the previous
expressions each νk with ν̂k, for each k, is still consistent.

We can now prove that Q̂hk is asymptotically normal. For compactness of notation,
we shall set

Cν :=

√
2√
ν

Γ(ν/2)

Γ(ν/2− 1)
,

and we shall consider only the case h 6= k. The asymptotic normality of the estimators
σ̂k can be established analogously (see also §3.4).

Proposition 7. Let d = 2,

Q =

[

1 q
q 1

]

,

and

q̂n := Cν1Cν2
1

n

n
∑

t=1

X1(t)X2(t).

Then one has √
n
(

q̂n − q
)

⇒ N
(

0, vν1,ν2(q)
)

,

where

vν1,ν2(q) =
ν1C

2
ν1

ν1 − 2

ν2C
2
ν2

ν2 − 2
(2q2 + 1)− q2

Proof. We have Var qn = Eq2n − q2 and

Eq̂2n = C2
ν1C

2
ν2 EX

2
1X

2
2 = ν1ν2C

2
ν1C

2
ν2 EG

2
1G

2
2 EV

−1
1 EV −12

=
ν1C

2
ν1

ν1 − 2

ν2C
2
ν2

ν2 − 2
EG2

1G
2
2,

11



where we have used the identity EV −1 = (ν − 2)−1. To compute EG2
1G

2
2, let us write

[

G1

G2

]

d
=

[

1 0

q
√

1− q2

] [

Z1

Z2

]

,

with (Z1, Z2) ∼ N(0, I). This yields, recalling that the fourth moment of a standard
Gaussian measure is equal to 3,

EG2
1G

2
2 = q2EZ4

1 + 1− q2 = 2q2 + 1, (10)

thus also

Var q̂n =
ν1C

2
ν1

ν1 − 2

ν2C
2
ν2

ν2 − 2
(2q2 + 1)− q2,

whence the result follows by the central limit theorem.

Remark 8. One could derive from this asymptotic normality result an asymptotic con-
fidence interval using a variance stabilizing transformation, as shown in the previous
section.

3.3 Simulation

Generating random vectors from the distribution of a multivariate t-like distribution is
a straightforward modification of the procedure outlined in §2.3 above.

3.4 Extensions

Since marginals of the random vector X follow a univariate t distribution, they are
symmetric. In order to allow for asymmetric marginals, one may positX = (X1, . . . ,Xd),

Xk := X̃k − ηk :=
Gk +mk
√

Vk/νk
− ηk, k = 1, . . . , d,

where G ∼ N(0, Q), and m = (m1, . . . ,md), η = (η1, . . . , ηd) ∈ R
d. Then for the k-

th marginal one has that Xk + ηk follows a noncentral t-distribution. The reason for
subtracting the vector η from X̃ is that EX̃ 6= 0, unless m = 0, and it is common to
assume that risk factors have mean zero. Unfortunately the density of the noncentral
t law is expressed in terms of a definite integral depending on parameters (see e.g.
[17]), hence maximum likelihood estimation on the marginals becomes numerically quite
involved. On the other hand, assuming νk > 4 for all k, one can use the method of
moments to construct estimators for ν = (ν1, . . . , νd), m, η and Q. In fact, considering
k fixed and equal to 1 for the sake of simplicity, the constraint EX1 = 0 translates into
the relation

η1 = m1
√
ν1 EV

−1/2
1 = m1

√
2ν1

Γ((ν1 + 3)/2)

Γ(ν1/2)
.

Since we need to estimate four parameters, we need other three equations. These can be
obtained by matching the second, third, and fourth sample moments to the corresponding
theoretical moments, which are known in closed form (see e.g. [11]).
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We should also observe that in general it is not necessary to match moments of
integer order to obtain consistent and asymptotically normal estimators. One may also
use fractional moments, as it has been done in the previous section, thus relaxing the
assumptions on the parameters νk. For instance, let X be as in (9), d = 2, Q =

[ 1 q
q 1

]

,

and consider the problem of estimating q. Setting gp(x1, x2) = x
〈p〉
1 x

〈p〉
2 , we can write

Egp(X) = (ν1ν2)
p/2

EV
−p/2
1 EV

−p/2
2 E(G1G2)

〈p〉.

Note that E(G1G2)
〈p〉 = fp(q), where fp is the function introduced and studied in §2.2,

and, in analogy to a calculation already encountered in this section,

EV
−p/2
k =

Γ(νk/2− p/2)

2p/2Γ(νk/2)
, k = 1, 2. (11)

This relation can be used as a basis for a moment estimator, as in §2.2. Choosing p
small enough, one does not need to assume νk > 2.

4 Warped multivariate t risk factors

4.1 Description

On a probability space (Ω,F ,P), let G and V be a d-dimensional random vector with
law N(0, Q) and an independent one-dimensional random variable with χ2 distribution
with ν0 degrees of freedom, respectively. We shall call the law of the random vector
X ′ = G/

√

V/ν0 a multivariate t distribution (with parameters ν0 and Q). There are
other possible multivariate generalizations of Student’s t distribution (see e.g. [13]), but
we shall concentrate exclusively on this definition. In contrast to the models considered
in the previous two sections, the marginals ofX have the same tail thickness (as measured
by ν0), but one expects nontrivial tail dependence between any two marginals. In order
to allow for different tail behavior along different coordinates, one may set X = f(X ′),
where f is a deterministic nonlinear injective function, for instance defined through the
marginals of X ′ and a copula function. The typical situation (see e.g. [10]) is to set

Xk = δkF
←
νk
(Fν0(X

′
k)), k = 1, . . . , d,

where δk > 0 for all k, Fν denotes the distribution function of a one dimensional t law
with ν degrees of freedom, and Qkk = 1 for all k. It is clear that the k-th marginal
is t distributed with νk degrees of freedom, thus overcoming the problem of having all
marginals with the same tail thickness.

4.2 Estimation

From the statistical point of view (hence also from an implementation perspective) the
model suffers from a major drawback. In fact, once one has estimated the parameters
νk and δk, k = 1, . . . , d (for instance by maximum likelihood), in order to estimate Q we
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would need to know the “true” value of ν0. In other words, the model is not identifiable
given observations of X, as it requires to arbitrarily choose the value of a parameter a
priori.

We shall assume from now on that ν0 is fixed. We shall also treat νk and δk as known,
although the latter assumption comes at no loss of generality, since the two parameters
can indeed be estimated. Let us show how one can estimate the covariance matrix Q.
As we have already done several times, we are going to consider only the case d = 2.
Since

F←ν0
(

Fνk(Xk/δk)
) d
=

Gk
√

V/νk
, k = 1, 2, (12)

we have, recalling that EV −1 = (ν0 − 2)−1,

q := EG1G2 =
ν0 − 2

ν0
E
[

F←ν0
(

Fν1(X1/δ1)
)

F←ν0
(

Fν2(X2/δ2)
)]

.

It is then natural to define the estimator

q̂n :=
ν0 − 2

ν0

1

n

n
∑

t=1

F←ν0
(

Fν1(X1(t)/δ1)
)

F←ν0
(

Fν2(X2(t)/δ2)
)

,

which is easily seen to be consistent. Since the function (x, ν) 7→ Fν(x) is continuous as
a map from R

2 to R, one still has q̂n → q in probability as n→∞ if we replace ν1, ν2,
δ1 and δ2 with corresponding consistent estimators in the previous display.

Asymptotic normality of q̂n follows easily by the central limit theorem. In particular,
by (12) one easily obtains

Eq̂2n = (ν0 − 2)2EV −2 E(G1G2)
2.

Recalling (11), the factorial property of the Gamma function, and taking (10) into
account, we get

Var q̂n =
ν0 − 2

ν0 − 4
(2q2 + 1)− q2.

We have thus proved that, if ν0 > 4, one has

√
n(q̂n − q)⇒ N

(

0,
ν0 − 2

ν0 − 4
(2q2 + 1)− q2

)

.

In analogy to §2.2, one can use fractional moments of order p, with p sufficiently small,
to relax the restriction on ν0 and still obtain asymptotic normality of q̂n. Similarly, by
a variance-stabilizing transformation, one can easily obtain an asymptotic confidence
interval independent of the “true” value of q.

Let us discuss more closely the issue of non-identifiability of the model. In particular,
in view of the application to the parametric estimation of VaR (see next section), it is
natural to ask how sensitive the estimates of Q and of the quantiles can be with respect
to the chosen value of ν0. Even though it seems unlikely to be able to give a general
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answer in analytic terms, it is not difficult to obtain qualitative informations through
a numerical study. In particular, let X be a sample from the warped multivariate t
distribution in R

2 with parameters ν0, ν1, ν2 and Q. We keep ν1, ν2 and Q fixed, and
let ν0 vary in the simulation as well as in the estimation step. We also compute the
α-quantiles (with α ∈ {0.95, 0.99}) for the random variable Y := w1X1 + w2X2, with
w1 + w2 = 1, again for varying values of ν0 in the simulation and the estimation step.
The results are plotted in figure 2 and figure 3, respectively.

One can see that the estimates of Q and of the quantiles of Y are very sensitive to
the choice of a test ν0 (by this we mean the value of ν0 chosen for estimation purposes),
unless both the true and the test value of ν0 are sufficiently large. Moreover, considering
a fixed test value of ν0, the estimates of the quantiles of Y are essentially insensitive to
the true value ν0. One may thus conclude that

(i) the estimates of the covariance matrix of a warped multivariate t law are not
reliable;

(ii) from the perspective of estimating quantiles, since they are essentially insensitive
to the true value of ν0, one could as well take ν0 = ∞, thus reducing to the case
of X ′ being Gaussian.

4.3 Simulation

Random samples from the distribution of X can be generated again by a rather straight-
forward modification of the procedure outlined in §2.3. In fact, the distribution function
of the univariate t distribution, as well as its inverse, are implemented in several software
packages (such as Octave), even though they do not admit a closed-form representation.1

5 Estimation of Value-at-Risk by simulation

We shall denote by L the loss of a portfolio depending on the vector of risk factors
X. Recall that the Value-at-Risk (VaR) of a portfolio at confidence level β (usually
β = 0.95 or β = 0.99) is simply the β quantile of the distribution of portfolio losses.
Since it is in general very difficult, if not impossible, to obtain analytically tractable
expressions for the distribution function of the random variable L (even if the density
function, or the characteristic function, of the vector X is known in closed form), one
usually estimates quantiles of L by generating random samples from its distribution
and computing the corresponding empirical quantiles. We shall exclusively deal with
the so-called parametric (estimated) VaR, in the sense that we fit to observed data the
parameters of a given family of distributions for the vector X of random factors, and we
generate random samples from the law of X. In order to obtain a sample from the law
of L we should know the functional relation between L and X. For a linear portfolio
(roughly, a portfolio without derivative instruments), one simply has L = 〈w,X〉, where
w ∈ R

d. In the more interesting case of a portfolio containing derivatives, one has

1It might be better to say that they do, but in terms of hypergeometric functions.
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Figure 2: Correlation estimates

This figure plots the correlation estimates from the warped multivariate t distribution. The parameters
ν1, ν2 and Q are kept fixed to the values 4, 6, and 0.3, respectively, while we let ν0 vary through the
set {2.1, 15} both in the simulation and in the estimation step. Panel A shows the whole simulation
grid, while panel B shows the subset ν0 ∈ {2.1, 7}. Both panels are obtained with simulated samples of
100, 000 replications.
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Figure 3: Quantiles estimates

This figure plots the quantiles estimates from the warped multivariate t distribution. The parameters
ν1, ν2 and Q, as well as the values of ν0, are exactly as in figure 2. Panel A plots the 95% quantiles of
Y , while panel B plots the 99% quantiles. Both panels are obtained with simulated samples of 100, 000
replications.
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Panel B: 99% quantiles
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L = f(X), where f : Rd → R is a nonlinear function. Unless the derivatives in the
portfolio are very simple, the function f may not admit a closed-form representation, or
could just be obtained by nontrivial numerical procedures, that would have to be carried
out for each random sample of X. For this reason one usually relies on approximations
of the function f of the form

L ≈ f(0) + 〈f ′(0),X〉 + 1

2
〈f ′′(0)X,X〉,

which is obviously motivated by the second-order Taylor expansion of the function R
d ∋

x 7→ f(x) around zero. The values of f ′(0) and f ′′(0) are in general determined by
the so-called greeks (in this case, Delta, Gamma and Theta) of the derivatives in the
portfolio. Note that in the above approximation the possible dependence of f on time
can be taken into account by including time in the set of risk factors.

The analytic computation, or just approximation, of quantiles of quadratic forms in
random vectors (other than Gaussian) is in general a very difficult task. Simulation is
hence a viable alternative, as long as one can generate samples from the distribution of
X.

We are going to perform a backtesting study on the three classes of parametric models
for the distribution of risk factors introduced in Sections 2-4, to which we refer for the
corresponding estimation and simulation procedures. Value-at-Risk is just estimated by
empirical quantiles of random samples of L, either obtained by full revaluation, or by the
above quadratic approximation. In particular, we do not focus on efficient simulation
methods for quantile estimation, but we are rather interested on the relative performance
of different distributional hypotheses for risk factors, when tested on real data.

6 Empirical tests

6.1 The data set

We tried to mimick a (US) domestic investor with a potentially highly correlated stock
exposure. To do so we chose two US stocks from each of four different industries2. The
raw price series are freely available on the web, and the returns are calculated as daily
log-differences3. The data set covers the time period from 2-Jan-1991 until 31-Dec-2008.

Let us provide a few descrptive statistics of the data set. Table 1 collects mean,
standard deviation, skewness and kurtosis for each stock return. Note that the sample
kurtosis is larger than 3 for most return series, which could be interpreted as evidence
of tail-thickness of the underlying distribution. Table 2 reports the (whole sample)
correlation matrix for the eight return series. The correlation coefficients are all positive

2The selected stocks are Apple, Bank of America, Chevron, Citigroup Conoco, Microsoft Johnson
and Johnson, and Pfitzer.

3We restrict ourselves to consider daily data for two reasons: the first and most important is that
the industry and regulatory standard is to compute VaR and related risk measures on a daily basis. On
the other hand, studying lower frequencies (such as weekly or monthly) would considerably decrease the
size of our samples, possibly invalidating the asymptotic properties of the proposed estimators.
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Table 1: Descriptive statistics of financial series

This table reports some descriptive statistics for the log-returns of the analyzed time series.

Descriptive statistics
Mean Standard deviation Skewness Kurtosis

Microsoft 0.000 0.022 0.027 5.184
Chevron 0.000 0.016 0.153 10.488
Apple 0.000 0.033 -2.196 54.773
Conoco 0.000 0.018 -0.253 5.372
Bank of America 0.000 0.023 -0.459 22.909
Citigroup 0.000 0.026 0.412 35.400
Johnson & Johnson 0.000 0.015 -0.153 6.733
Pfitzer 0.000 0.019 -0.161 2.912

Table 2: Correlation matrix of financial series

This table reports the sample correlation matrix for the log-returns of the analyzed time series.

Correlation matrix
Msft Chevron Apple Conoco BoA Citigroup J&J Pfitzer

Msft 1.00 0.26 0.35 0.22 0.33 0.36 0.27 0.30
Chevron 0.26 1.00 0.14 0.68 0.30 0.31 0.27 0.29
Apple 0.35 0.14 1.00 0.16 0.24 0.24 0.12 0.14
Conoco 0.22 0.68 0.16 1.00 0.28 0.27 0.23 0.25
BoA 0.33 0.30 0.24 0.28 1.00 0.70 0.27 0.32
Citigroup 0.36 0.31 0.24 0.27 0.70 1.00 0.30 0.35
J&J 0.27 0.27 0.12 0.23 0.27 0.30 1.00 0.52
Pfitzer 0.30 0.29 0.14 0.25 0.32 0.35 0.52 1.00

in a range from 0.12 to 0.70. Let us assess the significance of the correlation amongst
the selected return series using Bartlett’s test (see [2]). Denoting the sample size by n,
under the null hypothesis that the correlation matrix C ∈ R

d×d is equal to the identity,
the statistics

−
(

(n− 1)− (2d+ 5)/6
)

log(detC) (13)

is distributed as a χ2 random variable with d(d − 1)/2 degrees of freedom. Calculated
on our sample of eight stocks, the value of the statistic is 9958, that is well above the
value of χ2

99%(28) = 48.278. So we can safely reject the hypothesis that the returns of
the selected stocks are uncorrelated.

6.2 Test portfolios

We construct three test portfolios adding to a basic linear portfolio containing only the
eight “underlyings”, in equally value-weighted proportions, the following positions in
options:

NLL long 10 calls and 5 puts on each asset (“NonLinear Long”);

NLS short 5 calls and 10 puts on each asset (“NonLinear Short”);
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NLDC short 10 down-and-out calls with barrier equal to 95% of the asset price, and
short 5 cash-or-nothing put with cash payoff equal to the strike price (“NonLinear
Down and Cash”).

All options are European, at-the-money, and with time to expiration equal to 6 months.
The nonlinear part of the three test portfolios is “synthetic”, in the sense that the

option prices, unlike the stock prices, are computed on the basis of the information
available on the corresponding underlying and the time series of (a proxy for) the risk-
free rate, using Black-Scholes formula for the standard calls and puts, and its variants
for the barrier and binary options4. Even though this procedure is incompatible with
the non-Gaussian distributional assumptions we are going to test, this is nonetheless
common practice (see e.g. [10] for a more thorough discussion of this issue).

6.3 Backtesting

Let us now turn to the analysis of the performance of the three parametric distributions
for risk factors introduced above, when applied to the (predictive, i.e. out-of-sample)
estimation of Value-at-Risk. More precisely, we fit each of the three multivariate distri-
butions to a subset of the time series of stock returns (using a rolling window consisting
of 250 observations), and we estimate the 0.95 and 0.99 quantiles of the distribution of
losses by simulation, i.e. selecting the corresponding empirical quantiles from a simulated
sample. In particular, once a random sample from the distribution of X is obtained, we
translate it into a random sample from the distribution of portfolio losses either by a full
revaluation of the portfolio value for each sample, or by the usual delta-gamma quadratic
approximation (see §5). Let [t− ℓ, t] denote the time period over which the parametric
families of distributions are estimated, where ℓ stands for the (fixed) length of the rolling
window. Denoting by VaRt the empirical quantiles of the simulated distribution of losses
(with risk factors fitted over [t− ℓ, t]), we form the statistic

ξt+1 = sgn+(Lt+1 −VaRt),

for all t ∈ [ℓ, T ], where T denotes the length of the time series, Lt stands for the
observed loss of portfolio value over the period [t− 1, t], and where sgn+ x = 1 if x > 0,
and equals zero otherwise. This procedure produces a different set of (ξt)ℓ≤t≤T , for each
combination of test portfolio, model for risk factors, quantile level (95% and 99%), and
portfolio revaluation method (full vs. quadratic approximation).

To assess the accuracy of the VaR estimates, we perform a simple Proportion of
Failure (PoF) test (cf. [14]), which mimicks a classical likelihood-ratio test. In particular,
setting

ζ = −2 log
(

(1− β)xβ(T−ℓ−x)

px(1− p)(T−ℓ−x)

)

, (14)

4We provide formulas for prices and sensitivities of these exotic options in Appendix A.
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where β ∈ {0.95, 0.99},

x :=

T
∑

t=ℓ+1

ξt, p :=
x

T − ℓ
,

one expects ζ to be asymptotically χ2 distributed with one degree of freedom. Therefore,
the corresponding VaR model can be considered reliable with a 95% confidence level if
ζ < ζ0 ≈ 3.84.

The results of the backtesting procedure with full revaluation are collected in table
3, where values of x are in the first column, p in the second column, and ζ in the third
column. Note that we included, for comparison, VaR estimates obtained under the
assumptions that risk factors are jointly Gaussian. Moreover, due to the identifiability
problem of warped t distributions discussed in §4, we report the backtesting results for
three choices of ν0.

As one may expect, the “benchmark” Gaussian approach fails at 99% confidence
level for all three test portfolios. On the other hand, as far as VaR estimates at 95%
confidence level are concerned, the Gaussian approach is still satisfactory. The same
observations apply to the multivariate t-like approach. The stable-like approach instead
is rejected by the PoF test only once. We may therefore say that, between the two models
constructed by multiplying the marginals of a Gaussian vector by a set of independent
random variables (with suitable distribution), the stable-like approach is preferable. The
clear winner, however, is the family of warped t laws, whose VaR estimates cannot be
rejected for any one of the test portfolios. Surprisingly enough, the results essentially do
not depend on the choice of the “test” value for the non-identifiable parameter ν0. For
any given test portfolio, quantile estimates are not sensitive to the choice of ν0 ∈ {3, 5, 7}
(although this cannot be seen directly from the tables, their relative difference is not
above 1%). While this suggests that the distribution of risk factors cannot be a warped
multivariate t law (cf. the discussion in §4), it seems that this class of models can be
surprisingly robust for purposes of risk management. The main message, however, could
be that models allowing for tail dependence may have an advantage with respect to
models lacking this feature.

Completely analogous observations could be made for the estimates of VaR obtained
by the delta-gamma quadratic approximation of portfolio losses, for which we refer to
table 4. As in the case of full revaluation, the Gaussian approach performs remarkably
well at the 95% confidence level. In this respect, it is probably worth recalling that
obtaining the quantiles of a quadratic form in Gaussian vectors is particularly simple and
can be done with very little computational effort. In this sense, the classical quadratic
approximation with Gaussian risk factors could still be regarded as a useful tool.

A Prices and sensitivities of some exotic options

Throughout this appendix we place ourselves in a standard Black-Scholes model with
one “underlying” stock, whose price process is denoted by St, 0 ≤ t ≤ T , and whose
(constant) volatility is denoted by σ. The risk-free rate will be denoted by r. We shall
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consider options written on the stock, denoting the exercise time by T , the strike price
by K, and the barrier by H.

In the following table we collect the definitions, in terms of their payoff, of some
barrier and binary options.

Name Payoff

Down-and-In call max(ST −K, 0) if min0≤t≤T St ≤ H
Down-and-In put max(K − ST , 0) if min0≤t≤T St ≤ H
Down-and-Out call max(ST −K, 0) if min0≤t≤T St ≥ H
Down-and-Out put max(K − ST , 0) if min0≤t≤T St ≥ H
Up-and-In call max(ST −K, 0) if max0≤t≤T St ≥ H
Up-and-In put max(K − ST , 0) if max0≤t≤T St ≥ H
Up-and-Out call max(ST −K, 0) if max0≤t≤T St ≤ H
Up-and-Out put max(K − ST , 0) if max0≤t≤T St ≤ H
Cash-or-Nothing call 1 if ST ≥ K
Cash-or-Nothing put 1 if ST ≤ K

We shall use Cdi and Pdi to denote the price (at time zero) of a down-and-in call and
a down-and-in put, respectively. Completely analogous notation will be used for the
remaining options, replacing the subscripts accordingly. The price of plain European call
and put options will be denoted by CBS and PBS , respectively. The price at time zero
of a European call option with strike K and exercise time T , written on an underlying
whose price at time zero is S0, will be denoted by CBS(S0,K, T ). The corresponding
notation will be also used for European put options.

Setting

λ =
2r

σ2
− 1, m =

r

σ2
+

1

2

and assuming H < K, one has (see e.g. [5]),

Cdi = HλS−λ0 CBS(H
2S−10 ,K, T ),

Pdi = Cdi +KH−1PBS(S0,H, T )− (HS−10 )2m−2HK−1CBS(KHS−10 ,K2H−1, T ),

Cui = CBS

Pui = HλS−λ0 PBS(H
2S−10 ,K, T ).

By the obvious identities

Cdi + Cdo = CBS , Cui + Cuo = CBS ,

and the corresponding ones for put options (i.e. those obtained replacing C with P ),
we obtain pricing formulas for all barrier options listed in the above table. By the well-
known formulas for sensitivities of European call and put options, elementary calculus
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yields

∂Cdi
∂S0

= −λHλS−λ−10 CBS(H
2S−10 ,K, T )

−Hλ+2S−λ−20 ∆BS(H
2S−10 ,K, T ),

∂2Cdi
∂S2

0

= λ(λ+ 1)HλS−λ−20 CBS(H
2S−10 ,K, T )

+ 2(λ+ 1)Hλ+2S−λ−30 ∆BS(H
2S−10 ,K, T )

+Hλ+4S−λ−40 ΓBS(H
2S−10 ,K, T ),

∂Cdi
∂T

= HλS−λ0 ΘBS(H
2S−10 ,K, T ).

Similar expressions can be derived for the sensitivities of the other binary options.
Setting

d1 :=
log(S0/K) + (r + σ2)T

σ
√
T

, d2 := d1 − σ
√
T ,

we have (see e.g. [12])

Ccn = e−rTΦ(d2), Pcn = e−rTΦ(−d2),

where Φ(·) stands for the distribution function of the Gaussian law on R with mean zero
and unit variance. The sensitivities of binary options are just an exercise in elementary
calculus. Let us include, for the sake of completeness, the sensitivities of the cash-or-
nothing put, which is used in our portfolios:

∂Pcn
∂S0

=
−e−rTΦ′(−d2)

σS0

√
T

,

∂2Pcn
∂S2

0

=
e−rTΦ′(−d2)

σS2
0

√
T

+
−d2e−rT−d

2
2/2

σ2TS2
0

√
2π

,

∂Pcn
∂T

= −re−rTΦ(−d2) +
re−rTΦ′(−d2) log(S0/K)

2σT 3/2
− r − σ2/2

σ
√
T

.
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[1] O. E. Barndorff-Nielsen and V. Pérez-Abreu. Extensions of type G and marginal
infinite divisibility. Teor. Veroyatnost. i Primenen., 47(2):301–319, 2002.

[2] M. S. Bartlett. Test of significance in factor analysis. The British J. of Psychology,
3:77–85, 1950.

[3] J. Berkowitz and J. O’Brien. How accurate are Value-at-Risk models at commercial
banks? J. of Finance, 57(3):1093–1111, 2002.

23



[4] R. Blattberg and N. Gonedes. A comparison of the stable and student distributions
as statistical models of stock prices. J. of Business, 47:244–280, 1974.

[5] P. Carr, K. Ellis, and V. Gupta. Static hedging of exotic options. J. of Finance,
53(3):1165–1190, 06 1998.

[6] D. Duffie and J. Pan. An overview of value at risk. J. of Deriv., 4:7–72, 1997.

[7] D. Duffie and J. Pan. Analytical value-at-risk with jumps and credit risk. Finance
Stoch., 5(2):155–180, 2001.

[8] E. Fama. The behaviour of stock market prices. J. of Business, 38, 1965.

[9] E. Fama. Portfolio analysis in a stable paretian market. Management Sci., 3:404–
419, 1965.

[10] P. Glasserman, Ph. Heidelberger, and P. Shahabuddin. Portfolio value-at-risk with
heavy-tailed risk factors. Math. Finance, 12(3):239–269, 2002.

[11] D. Hogben, R. S. Pinkham, and M. B. Wilk. The moments of the non-central
t-distribution. Biometrika, 48:465–468, 1961.

[12] J.C. Hull. Option, futures, and other derivatives. Pearson Prentice Hall, Upper
Saddle River, New Jersey, seventh edition, 2009.

[13] S. Kotz and S. Nadarajah. Multivariate t distributions and their applications. Cam-
bridge University Press, Cambridge, 2004.

[14] P. H. Kupiec. Techniques for verifying the accuracy of risk management models. J.
Deriv., 3:73–84, 1995.

[15] S. T. Rachev and S. Mittnik. Stable Paretian Models in Finance. John Wiley and
Sons, NY, 2000.

[16] G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes. Chap-
man & Hall, New York, 1994.

[17] A. van Aubel and W. Gawronski. Analytic properties of noncentral distributions.
Appl. Math. Comput., 141(1):3–12, 2003.

24



Table 3: Value-at-Risk backtesting

This table reports the results of a Value-at-Risk backtesting. Panels A and B report the results for
the short and long portfolios, respectively, while Panel C reports the results for the down-and-out and
cash-or-nothing portfolio.

Panel A: NLS

Violations Percentage LR
Warped t95%(ν0 = 3) 235 5.48% 2.02
Warped t99%(ν0 = 3) 35 0.82% 1.56
Warped t95%(ν0 = 5) 226 5.27% 0.65
Warped t99%(ν0 = 5) 39 0.91% 0.36
Warped t95%(ν0 = 7) 224 5.22% 0.44
Warped t99%(ν0 = 7) 42 0.98% 0.02
Multi t-like95% 225 5.25% 0.54
Multi t-like99% 64 1.49% 9.13∗

Stable-like95% 223 5.20% 0.36
Stable-like99% 49 1.14% 0.84
Gaussian95% 207 4.83% 0.27
Gaussian99% 63 1.47% 8.33∗

Panel B: NLC

Violations Percentage LR
Warped t95%(ν0 = 3) 220 5.13% 0.15
Warped t99%(ν0 = 3) 43 1.00% 0.00
Warped t95%(ν0 = 5) 213 4.97% 0.01
Warped t99%(ν0 = 5) 46 1.07% 0.22
Warped t95%(ν0 = 7) 208 4.85% 0.20
Warped t99%(ν0 = 7) 44 1.03% 0.03
Multi t-like95% 204 4.76% 0.54
Multi t-like99% 64 1.49% 9.13∗

Stable-like95% 205 4.78% 0.44
Stable-like99% 66 1.54% 10.81∗

Gaussian95% 191 4.45% 2.79
Gaussian99% 61 1.42% 6.84∗

Panel C: NLDC

Violations Percentage LR
Warped t95%(ν0 = 3) 235 5.48% 2.02
Warped t99%(ν0 = 3) 42 0.98% 0.02
Warped t95%(ν0 = 5) 231 5.39% 1.32
Warped t99%(ν0 = 5) 44 1.03% 1.03
Warped t95%(ν0 = 7) 224 5.22% 0.45
Warped t99%(ν0 = 7) 44 1.03% 0.03
Multi t-like95% 201 4.68% 0.90
Multi t-like99% 59 1.35% 5.48∗

Stable-like95% 207 4.83% 0.27
Stable-like99% 47 1.10% 0.39
Gaussian95% 212 4.94% 0.28
Gaussian99% 65 1.52% 9.95∗
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Table 4: Value-at-Risk backtesting: quadratic approximation

This table reports the results of a Value-at-Risk backtesting using the quadratic approximation. Panels
A and B report the results for the short and long portfolios, respectively, while Panel C reports the
results for the down-and-out and cash-or-nothing portfolio.

Panel A: NLS

Violations Percentage LR
Warped t95%(ν0 = 3) 239 5.57% 2.87
Warped t99%(ν0 = 3) 39 0.91% 0.37
Warped t95%(ν0 = 5) 232 5.41% 1.48
Warped t99%(ν0 = 5) 42 0.98% 0.02
Warped t95%(ν0 = 7) 227 5.30% 0.77
Warped t99%(ν0 = 7) 47 1.10% 0.39
Multi t-like95% 228 5.32% 0.89
Multi t-like99% 66 1.54% 10.81∗

Stable-like95% 232 5.41% 1.48
Stable-like99% 49 1.14% 0.84
Gaussian95% 215 5.01% 0.00
Gaussian99% 63 1.47% 8.33∗

Panel B: NLC

Violations Percentage LR
Warped t95%(ν0 = 3) 219 5.11% 0.10
Warped t99%(ν0 = 3) 42 0.98% 0.02
Warped t95%(ν0 = 5) 210 4.90% 0.10
Warped t99%(ν0 = 5) 42 0.98% 0.02
Warped t95%(ν0 = 7) 202 4.71% 0.77
Warped t99%(ν0 = 7) 42 0.98% 0.02
Multi t-like95% 203 4.73% 0.65
Multi t-like99% 63 1.47% 8.33∗

Stable-like95% 204 4.75% 0.54
Stable-like99% 65 1.52% 9.95∗

Gaussian95% 188 4.38% 3.56
Gaussian99% 61 1.42% 6.84∗

Panel C: NLDC

Violations Percentage LR
Warped t95%(ν0 = 3) 231 5.39% 1.32
Warped t99%(ν0 = 3) 41 0.96% 0.08
Warped t95%(ν0 = 5) 223 5.20% 0.36
Warped t99%(ν0 = 5) 43 1.00% 0.00
Warped t95%(ν0 = 7) 215 5.01% 0.00
Warped t99%(ν0 = 7) 44 1.03% 0.03
Multi t-like95% 185 4.31% 4.44∗

Multi t-like99% 58 1.35% 4.85∗

Stable-like95% 204 4.76% 0.54
Stable-like99% 45 1.05% 0.10
Gaussian95% 208 4.85% 0.20
Gaussian99% 64 1.49% 9.13∗
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