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Abstract We study global and local robustness properties of several estimators for
shape and scale in a generalized Pareto model. The estimators considered in this pa-
per cover maximum likelihood estimators, skipped maximum likelihood estimators,
Cramér-von-Mises Minimum Distance estimators, and, as a special case of quantile-
based estimators, Pickands Estimator.

We further consider an estimator matching the population median and an asym-
metric, robust estimator of scale (kMAD) to the empirical ones (kMedMAD), which
may be tuned to an expected FSBP of 34%.

These estimators are compared to one-step estimators distinguished as optimal in
the shrinking neighborhood setting, i.e.; the most bias-robust estimator minimizing
the maximal (asymptotic) bias and the estimator minimizingthe maximal (asymp-
totic) MSE. For each of these estimators, we determine the finite sample breakdown
point, the influence function, as well as statistical accuracy measured by asymptotic
bias, variance, and mean squared error—all evaluated uniformly on shrinking convex
contamination neighborhoods. Finally, we check these asymptotic theoretical find-
ings against finite sample behavior by an extensive simulation study.
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1 Introduction

The topic of this paper is robust parameter estimation in generalized Pareto distribu-
tions (GPDs). These arise naturally in many situations where one is interested in the
behavior of extreme events as motivated by the Pickands-Balkema-deHaan extreme
value theorem (PBHT), cf. Balkema and de Haan (1974), Pickands (1975). The ap-
plication we have in mind is the calculation of the regulatory capital as required by
Basel II (2006) for a bank to cover operational risk. In quantifying this risk, usually
the tail behavior of the underlying distribution is crucial. Estimating these population
quantiles by their empirical counterparts apparently is drastically prone to outliers.
This is where extreme value theory enters, suggesting to estimate these quantiles pa-
rameterically using, e.g., GPDs, see e.g. Neslehova et al. (2006). This per se is no
remedy,however. Maximum Likelihood Estimators (MLEs), optimal in this paramet-
ric context, still attribute unbounded influence to some exposed observations. Robust
Statistics in contrast offers procedures bounding the influence of single observations,
so provides reliable inference in the presence of moderate deviations from the under-
lying model assumptions, respectively the mechanisms underlying the PBHT. Admit-
tedly, this comes at the price of some efficiency loss in the ideal model.
Literature Estimating the three-parameter GPD has been a challenging problem for
statisticians for long, with many proposed approaches. TheMLE for the GPD is very
popular for practitioners, and has been studied in detail bySmith (1987). To study
the instability of this procedure, Cope et al. (2009) consider skipping some extremal
data peaks, thereby reducing the influence of extreme values. Grossly speaking this
amounts to using a Skipped Maximum Likelihood Estimators (SMLE). Close to this
is the weighted likelihood method proposed in Dupuis and Morgenthaler (2002). Fol-
lowing the general lines to obtain optimally-robust estimators, Dupuis (1998) and
Dupuis and Field (1998) recommend an Optimal Bias-Robust Estimator (OBRE): to
a given bound on the bias in the neighborhood, its influence function minimizes the
trace of the variance (Hampel et al., 1986, 2.4 Thm. 1). Generalizing
He and Fung (1997), Peng and Welsch (2001) propose a method ofmedian estimator
claimed to be very robust, which is based on solving the implicit equations matching
the population medians of the coordinates of the scores function to the data. A special
case of the Elementary Percentile Method (EPM) introduced by Castillo and Hadi
(1997) may be seen in Pickands estimator (PE), Pickands (1975), striking out for its
closed form representation. Brazauskas and Serfling (2000)use a different parametriza-

tion of the GPD, i.e.; instead of observationsXi
i.i.d.∼ GPD(β ,ξ ) in our notation, con-

sider observationsYi = Xi +β/ξ and parametrize their model byα = ξ−1 andσ =
β/ξ . In their setting,L (log(Yi)) = L (log(β/ξ )+E/ξ ), E ∼ Exp(1), so they can
transform the problem to a location-scale problem for the exponential distribution.
In our setting though, their procedures are not directly applicable, asβ/ξ is un-
known. Other approaches cover the Method of Moments and the Method of Proba-
bility Weighted Moments (Hosking and Wallis, 1987) and Minimum Density Power
Divergence (distance) Estimator (Juárez, 2003; Juárez and Schucany, 2004). We do
not study these estimators here, though.

Estimators consideredin this paper (for actual definitions see section 2):
– the Maximum Likelihood Estimator (MLE)
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– the Skipped Maximum Likelihood Estimator (SMLE)
– the Cramér-von-Mises Minimum Distance estimator (MDE)
– Pickands Estimator (PE)
– the Method-of-Median estimator (MMed)
– an estimator based on median and kMAD (kMedMAD)
– the most bias-robust estimator minimizing the maximal bias(MBRE)
– the estimator minimizing the maximal MSE (OMSE)

MLE, MBRE, and OMSE are optimal in certain settings, so serveas benchmarks.
PE, MMed, and kMedMAD are candidates for (robust) initialization estimators, and
SMLE, MDE are competitors in our application.

We compare these estimators as to standard local and global robustness properties
as well as by efficiencies in the ideal model and on suitable neighborhoods.
Remark 1.1 This paper is a part of the PhD thesis of the second author; a preliminary version of it is
Ruckdeschel and Horbenko (2010a), abbreviated henceforthR. resp. H. It contains additional tables and
figures and covers, in addition, moment-based estimators, kMedMAD for k= 1, and variants of Pickands
estimator tuned for optimal FSBP (in the class of PE-type estimators) and better variance. These estimators
though have not been convincing and hence are left out here.

Structure of the paper In Sections 1.1 and 1.2, we outline the generalized Pareto
distribution, define contamination neighborhoods, and recall global (finite sample
breakdown point) and local (influence function) robustnesscriteria for estimators, to-
gether with accuracy measures such as asymptotic bias, variance, and mean squared
error (MSE). Section 2 gathers the robustness properties ofthe above-mentioned es-
timators: We analytically calculate the influence functions, breakdown points and
asymptotic accuracy measures for MLE, SMLE, PE, kMedMAD, and MDE, and,
numerically, for MMed, MBRE, and OMSE estimators.

Our contribution is the kMedMAD estimator which improves the “initiali-zation-
free” estimators known so far considerably. Also, in the GPDcontext, MBRE and
OMSE have not yet been compared to the cited estimators as to their asymptotic vari-
ances, and maximal MSEs. Another important contribution ofthis paper is a synopsis
Section 3 where in tables and graphics we summarize our findings at a representative
reference parameter setting; (see also Figure 3. and Table 3, though). A simulation
study in Section 4 checks for the validity of the theoreticalconcepts, so far all based
on asymptotics, i.e.; for sample sizen tending to infinity. In contrast to other ap-
proaches, for realistic comparisons, we allow for estimator-specific contamination
such that each estimator has to prove its usefulness in its individual worst contamina-
tion situation. This is particularly important for estimators with redescending influ-
ence function, where drastically large observations will not be the worst situation to
produce bias. The conclusions from our findings are summarized in Section 5.

1.1 Model Setting

Generalized Pareto Distribution The three-parameter generalized Pareto distribu-
tion (GPD) has c.d.f. and density

Fθ (x) = 1−
(

1+ ξ
x− µ

β

)− 1
ξ
, fθ (x) =

1
β

(

1+ ξ
x− µ

β

)− 1
ξ −1

(1.1)
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wherex ≥ µ for ξ ≥ 0, andµ < x ≤ µ − β
ξ if ξ < 0. It is parametrized byθ =

(ξ ,β ,µ)τ , for locationµ , scaleβ > 0 and shapeξ . Special cases of GPDs are the
uniform (ξ = −1), the exponential (ξ = 0, µ = 0), and Pareto (ξ > 0, β = 1) dis-
tributions. We limit ourselves to the case shapeξ > 0 and known locationµ = 0
here.

GPD is a good candidate for modeling the distributional tails from the threshold
point µ on as motivated by the PBHT.

For all graphics and both numerical and simulational evaluations we use the ref-
erence parameter valuesβ = 1 andξ = 0.7.

For knownµ , the model is smooth, i.e.L2-differentiable, as the densityfθ is
differentiable inθ and the corresponding Fisher information is finite and continuous
in θ (Witting, 1985, Satz 1.194), withL2-derivative

Λθ (z) =
(

1
ξ 2 log(1+ ξ z)− ξ+1

ξ
z

1+ξz;− 1
β + ξ+1

β
z

1+ξz

)τ
, z= x−µ

β (1.2)

For integrations it turns out useful to introduce

v−ξ = 1+ ξ z (1.3)

and to writeΛθ (z) asΛ̃θ (v(z)). Up to transformationv 7→ 1−v, this is just the quan-
tile transformation, i.e.; the distribution ofL (Λθ (

X−µ
β )) for X ∼ GPD(θ ) is just

L (Λ̃θ (V)) for V ∼ unif(0,1).
Using transformation (1.3), we easily obtain Fisher informationIθ as

Iθ =
1

(2ξ +1)(ξ +1)

(

2, β−1

β−1, β−2(ξ +1)

)

(1.4)

As Iθ is positive definite forξ > 0, β > 0, the model is (locally) identifiable.
The model also isscale invariant. Using matrixdβ = diag(1,β ). Correspond-

ingly, an estimatorS for θ = (ξ ,β ) is called(scale)-equivariantif

S(βx1, . . . ,βxn) = dβ S(x1, . . . ,xn) (1.5)

and in terms of theL2 derivative, we have

Λ(ξ ,β )(z) = d−1
β Λ(ξ ,1)(z) (1.6)

To preserve this invariance when determining the “length” of a parameter, Robust
Statistics uses special norms for the parameter space; as a simple scale invariant norm,
we use the weighted norm

nβ (x,y) = ‖d−1
β (x,y)‖=

√

x2+ y2/β 2 (1.7)

Remark 1.2 For the shape parameter there is no obvious such invariance,except for the quantile trans-
formation, of course, i.e.;

g(θ ,θ ′;x) = F−1
θ ′ ◦Fθ (x) =

[

(1+ξx/β)ξ ′/ξ −1
]

β ′/ξ ′ (1.8)

transforming anFθ -distributed observationX into anFθ ′ -distributed one. The only values ofx invariant
under arbitraryg(θ ,θ ′; ·) are{0,∞}, as in the pure scale case. However, with this group, we do notsee
any form of reasonable equivariance.
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Gross Error Model Instead of working only with ideal distributions, Robust Statis-
tics considers suitable distributional neighborhoods about this ideal model. In this
paper, we limit ourselves to theGross Error Model, i.e.; our neighborhoods are the
sets of all distributionsF re representable as

F re = (1− ε)F id + εFdi (1.9)

for some given size or radiusε > 0, whereF id is the underlying ideal distribution
andFdi some arbitrary, unknown, and uncontrollable contaminating distribution. For
fixedε > 0, bias and variance scale at different rates (O(1), O(1/n), resp.). Hence to
balance these scales, in the shrinking neighborhood approach as developed (a.o.) in
Huber-Carol (1970), Rieder (1994, 1978), and Bickel (1981), one lets the radius of
these neighborhoods shrink with growing sample sizen, i.e.;

ε = rn = r/
√

n (1.10)

(and the contaminationG may vary inn as well).
In reality one rarely knowsε or r, but Rieder et al. (2008) give objective criteria

for their choice to specify a procedure in situations where one has no or only limited
knowledge of the “true” radius. For our numerical and simulational evaluations, we
use a starting radiusr = 0.5.

Remark 1.3 r = 0.5 is very close to the minimax radius in the situation where wehave no knowledge
at all about the radius, which forξ = 0.7,β = 1 would be 0.486, leading to a maximin efficiency of
0.683, i.e.; using the resp. radius minimax procedure, the performance of this procedure would never be
worse than 1.464 times the maximal asMSE (see below) of the optimal procedure knowing the radius. The
minimal efficiency of the OMSE to radiusr = 0.5 is in fact only 0.678 (achieved when used for unknown
radiusr = 0).

1.2 Robustness

Robustness distinguishes local properties (measuring theinfinitesimal influence of a
single observation) like theinfluence function(IF) and global ones (measuring the
effect of massive deviations) like thebreakdown point.
Influence FunctionDefining an estimator as a functionalT evaluated at the empirical
distribution, the IF ofT is the functional derivative of the estimator with respect to the
distribution. Historically, in Hampel (1968) this is defined as the Gâteaux derivative
in the direction of a Dirac measureδx (provided the limit exists): ForFε = (1−ε)F +
εδx andF the underlying distribution, the influence function (IF) ofthe estimatorT
at x then is

IF(x;T,F) = lim
ε→0

T(Fε)−T(F)

ε
(1.11)

This definition however has its flaws (Kohl et al., 2010, introduction). Fortunately,
using the (finite-dim.) Delta method, in our context, everything can be reduced to the
question of differentiability of the likelihood (MLE, SMLE), of quantiles (PE, PE*,
PicM, MMed, MedMAD, kMedMAD), and of the c.d.f. (MDE), so these gaps can be
closed by results from Fernholz (1979), Rieder (1994, Chap.1) for our estimators;
the results on one-step estimators of Rieder (1994, Chap. 6)show that MBRE and
OMSE do have influence functions.
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Remark 1.4 Assuming anL2-differentiable model, for our purposes, we need the property that the
estimatorSn has the expansion in the observationsXi as

Sn = θ +
1
n

n

∑
i=1

ψθ (Xi)+Rn,
√

n|Rn| n→∞−→ 0 Pn
θ -stoch. (1.12)

for ψθ ∈ L2(Pθ ) the IF ofSn for which we require

Eθ ψθ = 0, Eθ ψθ Λ τ
θ = Ik (1.13)

Equation (1.13) may be motivated either by Rieder (1994, Lemma 4.2.18) or R. and H. (2010a, Lemma 1.3).
An estimator with (1.12) is calledasymptotically linearor ALE. We note that all estimators considered in
this paper are ALEs.

In shrinking neighborhood approach, if well initialized, all relevant asymptotic prop-
erties of an ALE except for its breakdown point only depend onits IF:
Asymptotic Variance The asymptotic (co)variance matrix ASV of an ALESn may
be determined as

asVar(Sn) =

∫

ψθ ψτ
θ dFθ (1.14)

(Rieder, 1994, Rem. 4.2.17(b)).
Asymptotic Bias Thegross error sensitivityGES, see Hampel et al. (1986, Chapter
2.1c), is defined as

GES := sup
x
|ψθ (x)| (1.15)

It may be shown (Rieder, 1994, Lemma 5.3.3), that in the shrinking neighborhood
setup, the

√
n-standardized, maximal asymptotic bias of an ALESn in the gross error

model (1.9), (1.10) is just

asBias(Sn) = r GES= r supx |ψθ (x)| (1.16)

Asymptotic MSE As a consequence of the previous two paragraphs, the (maximal,
standardized) asymptotic mean squared error (MSE) attainable in the gross error
model (1.9), (1.10) with starting radiusr can be calculated as

asMSE(Sn) = r2GES2+ tr(asVar(Sn)) (1.17)

Suitable constructions (Rieder, 1994, chap. 6) allow to interchange quantors and
asMSE also is the standardized asymptotic maximal MSE.

Remark 1.5 It is common in Robust Statistics to use high breakdown pointestimators (see below)
tuned to a high efficiency (say 95%) in the ideal model in a reweighting step. But efficiency in the ideal
model is a bad scale in the presence of outliers, as the “insurance premium” paid in terms of the 5%
efficiency loss does not reflect the protection “bought”, as this protection will vary from model to model,
and in our non-invariant case even fromθ to θ . Instead, we prefer the minimax criteria asMSE, asBias on
whole neighborhoods to define optimally robust estimators (OMSE, MBRE). Illustrating this, the OBRE
tuned for 95% efficiency in the ideal model atξ = 0.7 may drop down to 14% efficiency for sufficiently
large radius (in comparison to the best procedure knowing the radius), while OMSE never falls below 68%
no matter what radius.
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Efficiency We also determine efficiencies of estimatorsSn in the ideal model (eff.id)
and under contamination of radiusr = 0.5 (eff.re),

eff.id(Sn) =
tr(I −1)

tr(asVar(Sn))
, eff.re(Sn) =

asMSE(OMSE)
asMSE(Sn)

(1.18)

In addition, for the situation where radiusr is unknown, we also compute the least
favorable efficiency of each (fixed) estimator (i.e.; we still “guess” thatr = 0.5 for
OMSE, although this is presumably false) w.r.t. the most efficient procedure knowing
the radius, denoted by eff.ru. For this notion, see Rieder et al. (2008). These efficien-
cies may be read as the relative amount of observations, the optimal procedure (MLE
in the ideal setting, OMSEr=0.5 under contamination of known radiusr = 0.5, and
OMSEr=r l.f. for least favorable actual radiusr l.f. for contamination of unknown ra-
dius) would need to achieve the same accuracy as the estimator under consideration.
As in Kohl (2005, Lemma 2.2.3(a)), we see that for all considered estimatorsSn

eff.ru(Sn) = min
(

eff.id(Sn),GES2(MBRE)/GES2(Sn)
)

(1.19)

Thus the least favorable (unknown) radius is eitherr = 0 or r = ∞, and, to be precise,
for all estimators but kMedMAD and MBRE, it isr = ∞.
Breakdown Point The breakdown point in the gross error model (1.9) gives the
largest radiusε at which the estimator still produces reliable results. We take the
definitions from Hampel et al. (1986, 2.2 Definitions 1,2):
Theasymptotic breakdown point (ABP)ε∗ of the sequence of estimatorsTn for pa-
rameterθ ∈Θ at probabilityF is given by

ε∗ := sup
{

ε ∈ (0,1]; there is a compact setKε ⊂Θ s.t.

π(F,G)< ε =⇒ G({Tn ∈ Kε}) n→∞−→ 1
}

, (1.20)

whereπ is Prokhorov distance.
The finite sample breakdown point (FSBP)ε∗n of the estimatorTn at the sample
(x1, ...,xn) is given by

ε∗n(Tn;x1, ...,xn) :=
1
n

max
{

m; max
i1,...,im

sup
y1,...,ym

|Tn(z1, ...,zn)|< ∞
}

, (1.21)

where the sample(z1, ...,zn) is obtained by replacing the data pointsxi1, ...,xim by ar-
bitrary valuesy1, ...,ym. The ABP was introduced in Hampel (1968), and the FSBP in
Donoho and Huber (1983). For deciding upon which procedure to takebeforehav-
ing made observations, in particular for ranking procedures in a simulation study, the
FSBP from (1.21) has some drawbacks: for some of the considered estimators, the
dependence on possibly highly improbable configurations ofthe sample entails that
not even a non-trivial lower bound for the FSBP exists. To getrid of this dependence
to some extent at least, but still preserving the aspect of a finite sample, we hence use
theexpectedFSBP as proposed and worked out to some detail in R. and H. (2010b),
i.e.;

ε̄∗n(Tn) := Eε∗n(Tn;X1, ...,Xn) (1.22)

where expectation is evaluated in the ideal model. We also consider the limitε̄∗(T) :=
limn→∞ ε̄∗n(Tn) and also call it EFSBP where unambigous.
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1.3 Computational and Numerical Aspects

For an estimator to be useful in practice also computationalaspects deserve attention.
In this respect, our estimator can be divided into four classes:

1. Estimators in closed-form expressions like PE (after possibly sorting the ob-
servations). As to computation time, their evaluation is bymagnitudes faster than of
the other groups, which makes them attractive for batch uses.

2. M-estimators like MLE, SMLE, and MDE, obtained by optimizing a corre-
sponding criterion function and solved iteratively by using R function optim and
hence need a suitable initialization to find the “right” local optimum.

3. Z-estimators like MMed and kMedMAD, i.e.; the zero of a(n)(system of)
equation(s). In fact, both cases may be reduced to univariate problems, hence may
useR functionuniroot, with canonical search interval.

4. One-step constructions like MBRE and OMSE, depending on asuitably cho-
sen starting estimator. Once this starting estimate is found and the respective influ-
ence function at the starting estimate determined, computation of MBRE and OMSE
is extremely fast, just involving an average. The computation of the influence func-
tion at the starting estimate is not trivial, however, and tospeed this up, we present
Algorithm 2.8.
For computations, we useR, R Development Core Team (2009), and addon-packages
ROptEst, Kohl and R. (2009),POT, Ribatet (2009), available oncran.r-project.org.

2 Estimators

2.1 Maximum Likelihood Estimator

The maximum likelihood estimator is the maximizer (inθ ) of the (product-log-) like-
lihood ln(θ ;X1, . . . ,Xn) of our model

ln(θ ;X1, . . . ,Xn) =
n

∑
i=1

lθ (Xi), lθ (x) = log fθ (x) (2.1)

For the GPD, this maximizer has no closed-form solutions andhas to be determined
numerically, using a suitable initialization; in our simulation study, we use the Hybr
estimator as defined in Subsection 2.6.
IF The MLE admits as influence function

IFθ (z;MLE,F) = I −1
θ Λθ (z) (2.2)

Regularity conditions, e.g. van der Vaart (1998, Thm. 5.39), can easily be checked
due to the smoothness of the scores function. In particular,MLE attains the smallest
asymptotic variance among all ALEs according to the Asymptotic Minimax The-
orem, Rieder (1994, Thm. 3.3.8). Using the quantile-type representation (1.3), we
obtain

ψ̃(v) = ξ+1
ξ 2

(−(ξ 2+ ξ ) log(v)+ (2ξ 2+3ξ +1)vξ − (ξ 2+3ξ +1)
ξ log(v)− (2ξ 2+3ξ +1)vξ +(3ξ +1)

)

(2.3)

http://cran.r-project.org
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As to in-/equivariance, we note that

IF(ξ ,β )(x;MLE,F) = dβ IF(ξ ,1)(x/β ;MLE,F) (2.4)

hence, as MLE is an ALE, we have asymptotic equivariance by (1.12).
ASV The asymptotic covariance matrix of the maximum likelihoodestimators is
equal to the inverse of the Fisher information function:

Iθ
−1 = (1+ ξ )

(

ξ +1, −β
−β , 2β 2

)

(2.5)

ASB As (I −1
θ )1,1,(I

−1
θ )2,1 6= 0, both components of the influence curve are un-

bounded (although only growing in absolute value at rate log(x)). Hence, for any
neighborhood of positive radius, we can induce arbitrarilylarge bias, so MLE is not
robust.
FSBPBy standard arguments, MLE is shown to have a FSBP of 1/n, i.e.; arbitrarily
close to 0 for largen. Admittedly, though, one only can approximate this breakdown
for finite samples and finite contamination with really largecontaminations.

2.2 Skipped Maximum Likelihood Estimators

Skipped Maximum Likelihood Estimators (SMLE) are ordinaryMLE, skipping the
largestk observations. This has to be distinguished from the better investigatedtrimmed/weighted
MLE, studied by Field and Smith (1994), Hadi and Luceño (1997),Vandev and Neykov
(1998), Müller and Neykov (2001), where trimming/weighting is done according to
the size (in absolute value) of the log-likelihood.
In general these concepts fall apart as they refer to different orderings; in our situation
though they coincide due to the monotonicity of the likelihood in the observations.

As this skipping is not done symmetrically, it induces a non-vanishing biasBn =
Bn,θ already present in the ideal model. To cope with such biases three strategies
can be used—the first two already considered in detail in Dupuis and Morgenthaler
(2002, Section 2.2): (1) correcting the criterion functionfor the skipped summands,
(2) correcting the estimator for biasBn, and (3) no bias correction at all, but, con-
formal to our shrinking neighborhood setting, to let the skipping proportionα shrink
at the same rate. Strategy (3) reflects the common practice whereα is often chosen
small, and the bias correction is omitted. In the sequel, we only study Strategy (3)
with α = αn = r ′/

√
n for somer ′ larger than the actualr. This way indeed bias

becomes asymptotically negligible:

Lemma 2.1 In our ideal GPD model, eventually in n, the bias Bn of SMLE with
skipping rateαn is bounded from above bȳcαn log(n) for somec̄< ∞.

If for some0<β≤1, lim infn αnnβ > 0, then alsolim infnnβ Bn≥ clim infnnβ αn log(n)
for some c> 0.

If 0<α = lim infn αn <α0 for α0 = exp(−3−1/ξ ), thenlim infn Bn≥ c′α(− log(α))
for some c′ > 0.
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A proof to this Lemma can be found in R. and H. (2010a).
Hence, for higher FSBPs, we need to correct for the then considerable bias. Ob-

viously this can cope withαnn outliers.
IF As we have seen, SMLE in fact does not estimateθ but d(θ ) = θ +Bθ , for the
biasBθ already present in the ideal model. So to determine the IF forthis estimator,
we only compute the influence function for the functional estimating d(θ ). To this
end, we may use the underlying order statistics of theXi and obtain the IF of SMLE
just as the IF of the L-estimate to the following functional:

T(F) =
1

1−α

∫ 1−α

0
Λθ (F

−1(s))ds (2.6)

The influence function, referring to Huber (1981, Chapter 3.3), is analogous to the
influence function of the trimmed mean (withuα := F−1(1−α)):

IFθ (z;SMLE,F) = Iθ
−1
{ 1

1−α [Λθ (z)−W(F)], 0≤ x≤ uα
1

1−α [Λθ (uα)−W(F)], x> uα
(2.7)

W(F) = (1−α)SMLE(F)+αΛθ (uα) (2.8)

It enjoys the same (asympt.) equivariance (1.5) as the MLE.
ASV Analytic terms of the asymptotic covariance of the SMLE are not available;
instead we only include numerical values in the tables in Section 3.
ASB By Lemma 2.1, for a shrinking rateαn = r ′/

√
n, asymptotic bias of SMLE is

finite for eachn, but, standardized by
√

n, is of order log(n), hence unbounded. As
the IF is bounded locally uniform inθ , the extra bias induced by contamination is
dominated byBn eventually.
FSBP In our shrinking setting the proportion of the skipped data tends to 0, so it is
this proportion which delivers the active bound for the breakdown point: Just replace
⌈αnn⌉+1 observations by something sufficiently large and argue as for the MLE to
show that FSBP=αn.

2.3 Cramér-von-Mises Minimum Distance Estimators

General minimum distance estimators are defined as minimizers of a suitable distance
between the theoreticalF and empirical distribution̂Fn. Optimization of this distance
in general has to be done numerically and, as for MLE and SMLE,depends on a
suitable initialization. We use Cramér-von-Mises distance defined for c.d.f.’sF , G
and someσ -finite measureν onBk as

dCvM(F,G)2 =

∫

(F(x)−G(x))2 ν(dx) (2.9)

i.e.; by MDE we denote

MDE = argminθ dCvM(F̂n,Fθ ) (2.10)

In this paper, we use1 ν =Pθ . Hybr from Subsection 2.6 again serves as initialization.
MDE is known to have good global robustness properties: it isan ALE with bounded

1 Another setting common in the literature uses the empirical, ν = P̂n.
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IF (Rieder, 1994, Rem 6.3.9(a), 4.2 eq.(55)) and, accordingto Donoho and Liu (1988),
up to factor 2 achieves the smallest sensitivity to contamination among Fisher-consistent
estimators.
IF For the influence function of MDE, we follow Rieder (1994, Example 4.2.15,
Theorem 6.3.8) and obtain

IF(x;MDE,F) =: Jθ
−1(ϕ̃ξ (x), ϕ̃β (x)) (2.11)

where forv from (1.3) it holds that

ϕ̃ξ (v(z)) =
19+5ξ

36(3+ξ )(2+ξ ) +
1
ξ v2 log(v)+ 2−ξ

4ξ 2 v2− 1
ξ 2(2+ξ )v

2+ξ (2.12)

ϕ̃β (v(z)) =
5+ξ

6(3+ξ )(2+ξ )β − 1
2ξ β v2+ 1

ξ β (2+ξ )v
2+ξ (2.13)

and Jθ is the CvM Fisher information as defined, e.g. in Rieder (1994, Defini-
tion 2.3.11)). We have

Jθ
−1 = 3(ξ +3)2

(

18(ξ+3)
(2ξ+9) , −3β
−3β , 2β 2

)

(2.14)

Apparently the same (asympt.) in-/equivariance as for MLE and SMLE holds again.

Remark 2.2 The fact that MDE is asymptotically linear with the IF just given allows for an alternative
to the numerical minimization of the distance: we could instead use a corresponding one-step construction
built up on a suitable starting estimator. Asymptotically both variants will be indistinguishable.

ASV The asymptotic covariance of the CvM minimum distance estimators can be
found analytically or numerically. Its analytic terms2 are rational functions inξ and
β :

asVar(MDE) =
(3+ ξ )2

125(5+2ξ )(5+ ξ )2

(

V1,1, V1,2

V1,2, V2,2

)

(2.15)

for

V1,1 = 81
(

16ξ 5+272ξ 4+1694ξ 3+4853ξ 2+7276ξ +6245
)

(2ξ +9)−2, (2.16)

V1,2 =−9β
(

4ξ 4+86ξ 3+648ξ 2+2623ξ +4535
)

(2ξ +9)−1, (2.17)

V2,2 = β 2(26ξ 3+601ξ 2+3154ξ +5255
)

(2.18)

ASB As noted, the IF of MDE is known to be bounded, so ASB is finite.
FSBP Due to the lack of invariance in the GPD situation, Donoho andLiu (1988,
Propositions 4.1 and 6.4) only provide bounds for the FSBP, telling us that its FSBP
must be no smaller than 1/2 the FSBP of the FSBP-optimal procedure. As MDE is
a minimum of the smooth CvM distance, it has to fulfill the firstorder condition for
the corresponding M-equation, i.e.; forVi = (1+ ξ

β Xi)
−1/ξ ,

∑i ϕ̃ξ (Vi ;ξ ) = 0, ∑i ϕ̃β (Vi ;ξ ) = 0 (2.19)

2 For the interested reader willing to control these formula,we haveMAPLE scripts to determine them.
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Fig. 1 Empirical Bias for FSBP of MDE CvM

Arguing as for the breakdown point of an M-estimator, exceptfor the optimization in
ξ , we obtain the following analogue to Huber (1981, Chap. 3, eqs. (2.39) and (2.40)):

ε∗n ≤ min
{ − infv,ξ ϕ

�

supv,ξ ϕ
�
−infv,ξ ϕ

�

,
supv,ξ ϕ

�

supv,ξ ϕ
�
−infv,ξ ϕ

�

, �= ξ ,β
}

(2.20)

although, to make the inequality in (2.20) an equality, we would need to show that
we cannot produce a breakdown with less than this bound. Evaluating bound (2.20)
numerically gives a value of 4/9

.
= 36.37%, which is achieved forv= 0 (andξ → 0)

or, equivalently, letting them replacing observations in Definition 1.2 tend to∞.

Remark 2.3 To see how realistic this value is, in Figure 1, we produce an empirical max-bias-curve,
simulatingM = 100 samples of sizen = 1000 observations from a GPD withξ = 0.7, β = 1, and after
replacingm observations, form= 1, . . . ,400 by value 1010 compute the bias. There is a steep increase
around 354, so we conjecture that (E)FSBP should be approximately 0.35; on the other side, MDE cannot
have a higher FSBP than its initialization, and so far the best known initialization has (E)FSBP of 0.346.

2.4 Pickands Estimator

Estimators based on the empirical quantiles of GPD are described in the Elementary
Percentile Method (EPM) by Castillo and Hadi (1997). Pickands estimator (PE), a
special case of EPM, is based on the empirical 50% and 75% quantiles M2 andM4

respectively, and has first been proposed by Pickands (1975). The construction behind
PE is not limited to 50% and 75% quantiles. More specifically,let a> 1 and consider
the empiricalαi -quantiles forα1 = 1−1/a andα2 = 1− 1/a2 denoted byM2(a),
M4(a), respectively. Then PE is obtained fora = 2, and as theoretical quantiles we
obtainM♮

2(a) =
β
ξ (a

ξ −1), M♮
4(a) =

β
ξ (a

2ξ −1), and the (generalized) PE denoted by

PE(a) forξ andβ is

ξ̂ = 1
loga log M4(a)−M2(a)

M2(a)
, β̂ = ξ̂ M2(a)

2

M4(a)−2M2(a)
(2.21)

Apparently for anya> 1, PE(a) enjoys the corresponding equivariance as MLE,
SMLE, and MDE.
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IF The influence function of linear combinationsTL of the quantile functionalsF−1(αi)=
Ti(F) for probabilitiesαi and weightshi , i = 1, ...,k may be read off from Rieder
(1994, Chapter 1.5) and gives

IF(x;TL,F) = ∑k
i=1hi

(

αi − I(x≤ F−1(αi))
)

/ f (F−1(αi)) (2.22)

Using the∆ -method, the influence functions of PE(a) hence is

IF
�
(x;PE(a),F) = ∑i=1,2h

�,i(a)
αi(a)−I(x≤M2i(a))

f (M2i(a))
, �= ξ ,β (2.23)

with weightsh
�,i(a) to be read off from R. and H. (2010a, eqs.(2.43)-(2.45)) Appar-

ently we have again (asympt.) equivariance,

IF(ξ ,β )(x;PE(a),F) = dβ IF(ξ ,1)(x/β ;PE(a),F) (2.24)

ASV Abbreviatingαi(a) by αi , 1−αi by ᾱi , andh
�,1(a) by h

�,1, �= ξ ,β , the asymp-
totic covariance for PE(a) is

asVar(PE(a)) = D(a)TΣ(a)D(a), (2.25)

Σ(a) = β 2

(

α1ᾱ−1−2ξ
1 α1ᾱ−1−ξ

1 ᾱ−ξ
2

α1ᾱ−1−ξ
1 ᾱ−ξ

2 α2ᾱ−1−2ξ
2

)

, D(a) =

(

hξ ,1 hξ ,2
hβ ,1 hβ ,2

)

(2.26)

ASB The IF of PE(a) is bounded, so ASB is finite.
FSBPWith simple generalizations we may refer to R. and H. (2010b)to show that

ε∗n = min{1/a2, N̂0/n}, N̂0
n := #{Xi

∣

∣2M2(a)≤ Xi ≤ M4(a)} (2.27)

By usual LLN arguments,̂N0/n→ πξ (a) = (2aξ −1)−1/ξ −1/a2, so that

ε̄∗ = ε̄∗(a) = min{πξ (a),1/a2} (2.28)

For ξ = 0.7, the classical PE achieves an ABP ofε̄∗(a= 2)
.
= 6.42%; as to EFSBP,

for n= 40,100,1000 we obtain̄ε∗n = 9.48%,7.61%,6.53%, respectively (R. and H.,
2010b, Table 2).

Remark 2.4 Optimizing for a high (E)FSBP within the class of PE(a) estimator, one obtains estimator
PE* (R. and H., 2010a), which in case of our reference parameter ξ = 0.7 givesa∗ = 2.658 with a EFSBP
of 7.02%, so we have not won much. Similarly, tuning for a better variance by averaging several PE(a)’s
for varyinga (PicM in the cited reference) does improve the efficiencies,but still does not give convincing
results.

2.5 Method of Medians Estimator

The Method of Medians estimator of Peng and Welsch (2001) consists in fitting the
(population) medians of the the two coordinates of the scores functionΛθ against the
corresponding sample medians, i.e.; we have to solve the system of equations

Median(Xi)/β = F−1
1,ξ (1/2) = (2ξ −1)/ξ =: mξ (2.29)

Median
(

log(1+ ξ Xi/β )β−2− (1+ ξ )Xi(β ξ + ξ 2Xi)
−1
)

= z(ξ ) (2.30)
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wherez(ξ ) is the population median of theξ -coordinate ofΛ(1,ξ )(X), Λ(1,ξ );2(X) for
X ∼ GPD(1,ξ ). Solving the first equation forβ and plugging in the corresponding
expression inξ into the second equation, we obtain a one-dimensional root-finding
problem to be solved, e.g. inR by uniroot. In the same sense as the estimators
considered so far, the MMed is equivariant.
IF The IF of MMed is a linear combination of the IF of the sample median already
used for the PE, and the IF of the median of theξ -coordinate ofΛ(1,ξ );2(X). Now,
as can be seen when plotting the functionx 7→ Λ(1,ξ );2(x), for ξ = 0.7, the level set
Λ(1,ξ );2(X)≤ z(ξ ) is of form [q1(ξ ),q2(ξ )], so that

IF(x;Λ -Med,F) =
I(q1 ≤ x≤ q2)−1/2
fθ (q2)/l2− fθ (q1)/l1

(2.31)

wherel i := ∂
∂xΛ(1,ξ );2(qi). More precisely, forξ = 0.7, we obtainq1

.
= 0.3457 and

q2
.
= 2.5449. In analogy to the Pickands-type estimators we could now determine a

corresponding JacobianD in closed form such that

IF(x;MMed,F) = D(IF(x;Median,F), IF(x;Λ -Med,F))τ (2.32)

but in our context it is easier to determineD̃ numerically by

D̃−1 = Eθ ηθΛ τ
θ for ηθ (x) =

(

I(x≤ mξ )−1/2, I(q1 ≤ x≤ q2)−1/2
)τ

(2.33)

and then to write

IF(x;MMed,F) = D̃ηθ (2.34)

Corresponding analytic terms may be found in Peng and Welsch(2001, p. 60).
ASV Similarly, we obtain

asVar(MMed) = D̃Σ(a)D̃τ , Σ(a) =
1
4

(

1 c
c 1

)

, c= 1−4F(q1) (2.35)

ASB The IF of MMed is bounded, so ASB is finite.

FSBP We have not found analytic values for neither the asymptoticnor the finite
sample breakdown point. While 50% by equivariance is an upper bound, the high
frequency of failures in the simulation study for small sample sizes however indi-
cates that (E)FSBP should be considerably smaller; a similar study for the empirical
maxBias as the one for MDE gives that for sample sizen from a rate of outliers of
εn on, we have but failures in solving for MMed, forε40 = 42.5%, ε100 = 35.0%,
ε1000= 25.1%, andε10000= 20.1%. So we conjecture that the asymptotic breakdown
pointε∗ ≤ 20%.
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2.6 kMedMAD

Empirical median ˆm= m̂n and median of absolute deviations (MAD)̂M = M̂n are
well known for their high breakdown point, jointly attaining the highest possible ABP
of 50% among all affine equivariant estimators at symmetric,continuous univariate
distributions.

Hence it is plausible to define an estimator forξ and β , matchingm̂ and M̂
against their population counterpartsm andM within the GPD model. Now it turns
out that the mapping(ξ ,β ) 7→ (m,M)(Fθ ) is indeed a diffeomorphism, hence we can
solve the implicit equations forξ ,β to obtain an estimator introduced asMedMAD
in R. and H. (2010a).

Due to the considerable skewness to the right of the GPD, thisestimator can be
improved though by using a scale estimator that takes this skewness into account: For
a distributionF onR with medianm let us define fork> 0

kMAD(F,k) := inf
{

t > 0
∣

∣F(m+ kt)−F(m− t)≥ 1/2
}

(2.36)

wherek in our case is chosen to be a suitable number larger than 1, andk= 1 would
reproduce the MAD; i.e.; within the class of intervals aboutthe medianmwith cover-
ing probability 50%, we only search those where the part right to m is k times longer
than the one left tom. WheneverF is continuous, kMAD preserves the FSBP of the
MAD of 50%.

The corresponding estimator forξ and β is calledkMedMADand consists of
two estimating equations. The first equation is for the median of the GPD, which is
m= m(ξ ,β ) = F−1(0.5) = β (2ξ −1)/ξ . The second equation is for the respective
kMAD, which has to be solved numerically as unique rootM of fm,ξ ,β ;k(M) for

fm,ξ ,β ;k(M) =−v++ v−− 1
2

(2.37)

where

v+ :=
(

1+ ξ kM+m
β

)− 1
ξ
, v− :=

(

1+ ξ m−M
β

)− 1
ξ (2.38)

Note that for any distributionG onR with G((−∞; p]) = 0 for some finitep, and
anyk> 0, kMAD(G;k)≤median(G) with equality if and only ifG({median(G)})≥
0.5. Consequently,fm,ξ ,β ;k(M)> 0 for M ≥m, hence the population kMADMk(ξ ,β )
in the GPD must always be smaller than its median, orMk(ξ ,β )/m(ξ ,β )< 1.

Now, kMAD is scale-invariant, i.e.;Mk(ξ ,β ) = βMk(ξ ,1), and the empirical
kMAD M̂k is scale-equivariant, i.e.;̂Mk(βx1, . . .βxn) = β M̂k(x1, . . .xn). The same in-
/equivariance also holds for the median; hence the quotientqk(ξ ) :=Mk(ξ ,β )/m(ξ ,β )
and its empirical counter part ˆqk;n are scale-free; so we have reduced the problem by
one dimension.

In R. and H. (2010b), plotting for givenk the functionξ 7→ qk(ξ ), one sees that
qk is strictly isotone, but that there is a second restriction of the same sort as that
qk(ξ )< 1, induced by the fact that for allξ > 0

qk(ξ )≥ lim
ξ→0

qk(ξ ) =: q̌k (2.39)
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Hence matching ˆqk;n againstqk(ξ ) amounts to finding a zerôξn of G(ξ )= qk(ξ )−
q̂k;n in the interval(q̌k;1) which can easily be solved with a standard univariate root-
finding tool likeuniroot in R.

A corresponding estimator forβ is then simply given by

β̂n = m̂/m(ξ̂n,1) (2.40)

so by construction kMedMad is equivariant in the sense of (1.5).
IF The implicit function of the two equations we have to solve inorder to find the
kMedMAD estimates is defined as follows:

G((ξ ,β );(M,m)) = (G(1),G(2))τ =
(

fm,ξ ,β ;k(M), β 2ξ−1
ξ −m

)τ
(2.41)

By the implicit function theorem, the Jacobian in the Delta method is

D =−
(

∂G
∂ (ξ ,β )

)−1 ∂G
∂ (M,m)

(2.42)

Then the influence function of MedMAD estimator is

IF(x;MedMAD,F) = D(IF(x;kMAD ,F), IF(x;Median,F))τ (2.43)

where the influence functions of median and MAD can be found inRieder (1994,
Chapter 1.5), and the one of kMAD is a simple generalization:

IF(x;m,F) =
(

1
2 − I(x≤ m)

)

/ f (m) (2.44)

IF(x;M,F) =
1
2−I(−M≤x−m≤kM)

f (m+kM)− f (m−M) + f (m+kM)− f (m−M)
k f(m+kM)+ f (m−M)

I(x≤m)− 1
2

f (m) (2.45)

while for the entries ofD we note that

∂G(1)

∂ξ =−v
(

vξ−1
ξ 2 − 1

ξ log(v)
) ∣

∣

∣

v+

v=v−

∂G(1)

∂β = v
ξ β 2 (v

ξ −1)
∣

∣

∣

v+

v=v−
,

∂G(2)

∂ξ = β
ξ

(

2ξ log(2)− 2ξ−1
ξ

)

, ∂G(2)

∂β = 2ξ−1
ξ ,

∂G(1)

∂M =
kvξ+1

+ +vξ+1
−

β , ∂G(1)

∂m = vξ+1

β

∣

∣

∣

v+

v=v−
, ∂G(2)

∂M = 0, ∂G(2)

∂m =−1

Again, we have equivariance,

IF(ξ ,β )(x;kMedMAD,F) = dβ IF(ξ ,1)(x/β ;kMedMAD,F) (2.46)

ASV The asymptotic covariance of the kMedMAD estimator is

asVar(T) = DTΣD, Σ =

(

σ1,1 σ1,2

σ2,1 σ2,2

)

(2.47)
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where with obvious generalizations,Σ may be read off from Serfling and Mazumder
(2009) as the asymptotic covariance of median and kMAD:

a= f (m−M)+ f (m+ kM), b= f (m−M)− f (m+ kM),

c= f (m−M)+ k f(m+ kM), d = b2+4(1−a)b f(m), (2.48)

σ1,1 = (4 f (m))−2, σ2,2 = f (m)2(4c2( f (m)2+d))−1

σ1,2 = σ2,1 = (4 f (m)c)−1(1−4F(m−M)+b/ f (m)
)

, (2.49)

ASB The IF of kMedMAD is bounded, so the asymptotic bias is finite.
FSBPWe may again refer to R. and H. (2010b) where it is shown that

ε∗n = min{N̂′
n, N̂

′′
n}/n (2.50)

for

N̂′
n = #{Xi |m̂< Xi ≤ (k+1)m̂}, (2.51)

N̂′′
n = ⌈n/2⌉−#{Xi |(1− q̌k)m̂≤ Xi ≤ (kq̌k+1)m̂} (2.52)

Hence, by the usual LLN arguments,

ε̄∗ = min
(

Fθ ((k+1)m)− 1
2, Fθ

(

(kq̌k+1)m
)

−Fθ
(

(1−q̌k)m
)

− 1
2

)

(2.53)

For ξ = 0.7, the EFSBP is given by the first alternative ifk < 3.23 and by the
second one otherwise. On first glance, this would make for a “definition breakdown”,
but if, e.g. we move the observations to(k+1)m̂−0, we obtain as estimator̂β = 0+0

andξ̂ = ∞, hence a breakdown in the original sense.
As to the choice ofk, it turns out that a value ofk = 10 gives reasonable values

of ABP, asVar, asBias for a wide range of parametersξ , as documented in Table 1. In
the sequel this will be our reference value fork; as to EFSBP, forn= 40,100,1000
we obtainε̄∗n = 29.16%,30.28%,30.94%, respectively (R. and H., 2010b, Table 2).

ξ GES GESopt asVar asVaropt asMSE asMSEopt ABP ABPopt

0.01 4.09 2.71 12.08 3.04 16.26 7.58 0.249 0.322
0.10 3.83 2.84 10.90 3.41 14.58 8.39 0.259 0.325
0.70 4.38 3.66 12.80 6.29 17.60 14.13 0.310 0.342
1.50 5.85 4.82 19.50 11.25 28.06 24.03 0.355 0.358
4.00 10.58 8.42 52.90 35.00 80.90 56.86 0.221 0.379

Table 1 Robustness properties of kMedMAD fork = 10 and several shape parameters compared to
corresponding optimal values, i.e.; MBRE (GES), MLE (asVar), OMSE (asMSE), kMedMAD(kABP),
kABP = argmaxk ABP(kMedMAD(k)) (ABP)

The results when optimizing kMedMAD ink w.r.t. the different robustness criteria
for ξ = 0.7 can be looked up in R. and H. (2010a, Table 5).

Remark 2.5 Admittedly, for givenk, eventually inn, E(ξ ,β)[ε∗n(kMedMAD(k))] is decreasing inξ
s.t. limξ→∞ E(ξ ,β)[ε∗n(kMedMAD(k))] = 0. At the same time, eventually inn, ξ 7→ E(ξ ,β)[ε∗n (PE∗)] is
increasing with limξ→∞ E(ξ ,β)[ε∗n(PE∗)] = 1/4. In particular, fork= 10, for ξ ≥ 4.964, PE* has a better
EFSBP / ABP, in this casēε∗(PE∗)≥ 19.0%. But, eventually inn, the EFSBP of kMedMAD for the ABP-
optimal kABP = kABP(ξ ) never drops below 32.1% for ξ ∈ (0,10] and below 25% forξ ∈ (0,437], and
achieves 39.9% for ξ = 7.20.
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Hybrid Estimator Still, for small sample sizes we encounter failures to solvethe
corresponding equations for kMedMAD fork = 10—8% forn = 40 and 2.3% for
n= 100, compare Table 4 and R. and H. (2010a, Table 9). To lower this failure rate
also in these cases, a hybrid estimator Hybr is used, that by default returns kMedMAD
for k= 10, and by failure—tries out several values fork in a loop and returns the first
estimator not failing: We start atk = 3.23 (producing maximal ABP), and then at
each iteration multiplyk by 3, and try out at most 20k-values. This leads to failure
rates of 2.3% forn= 40 and 0.0% forn= 100. Asymptotically, Hybr coincides with
kMedMAD, k= 10.

2.7 Most bias-robust Estimator: MBRE

Minimizing the maximal bias on convex contamination neighborhoods, we obtain the
MBRE estimator; in the terminology of Hampel et al. (1986) this is themost B-robust
estimator. In our smooth situation, MBRE can also be obtained as a limit within the
class of OBRE estimators, letting bias boundb tend to its minimum, the minimax
biasωmin

c (see below).
Note however that contrary to Dupuis (1998), Dupuis and Field (1998) we use

normnβ from (1.7) to achieve the discussed invariance.
Its optimality is determined solely by its IF̄ψ , the determining equations of which

are given below. To this optimal IF, we have to find an ALE with̄ψ as influence
function. This may be achieved in several ways (see Rieder (1994, chap. 6); in the
literature most often M-estimators are used; we use a one-step construction, i.e. to a

suitably consistent starting estimatorθ (0)
n (Hybr in our case), the corresponding ALE

is defined as

MBRE= θ (0)
n +

1
n

n

∑
i=1

ψ̄
θ (0)

n
(Xi) (2.54)

The IF minimizing asBias among all ALEs may be read off from Rieder (1994,
Thm. 5.5.1(b)), its gross error sensitivity is given by

ωmin
c = max

{

trd−1
β Ad−1

β

/

Enβ (AΛ −a), a∈ R
2,0 6= A∈ R

2×2
}

(2.55)

while the optimal IFψ̄ is given by

ψ̄ = ωmin
c (AΛ −a)/nβ (AΛ −a) (2.56)

where the event{AΛ − a = 0} carries probability 0. Apparently, (2.56) only deter-
mines expressionAΛ −a up to a positive scalar multiple. For the values below, we
have standardized this expression such thatA1,1 = 1. There are no closed form ex-
pressions forA, a, andωmin

c , though. Corresponding algorithms to determineA, a, and
ωmin

c are implemented toR within theROptEst package Kohl and R. (2009) available
on CRAN.

Remark 2.6 Although algorithms are implemented for generalL2-differentiable models inROptEst,
particular algorithms and techniques are needed for the computation of the expectations under GPD.
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In our model, we obtain

AMBRE =

(

1.00−0.18
−0.18 0.22

)

, aMBRE = (−0.18,0.00), ωmin
c = 3.67 (2.57)

The use of normnβ enforces (asympt.) in-/equivariance,

ψ̄(ξ ,β )(x) = dβ ψ̄(ξ ,1)(x/β ) (2.58)

or, suppressing subscriptMBRE, with

Y(ξ ,β ) = A(ξ ,β )Λ(ξ ,β )(x/β )−a(ξ ,β ) (2.59)

A(ξ ,β ) = dβ A(ξ ,1)dβ , a(ξ ,β ) = dβ a(ξ ,1),
nβ (Y(ξ ,β )) = n1(Y(ξ ,1)), ωmin

c (ξ ,β ) = ωmin
c (ξ ,1) (2.60)

2.8 Estimator minimizing maximal MSE: OMSE

For an estimator minimizing maximal MSE on neighborhoods (OMSE), we proceed
similarly as for the MBRE: We determine the IF̂ψ of the corresponding optimal
procedure and then use a one-step construction (with Hybr asstarting estimator) to
define an ALE with this IF as

OMSE= θ (0)
n +

1
n

n

∑
i=1

ψ̂
θ (0)

n
(Xi) (2.61)

In the generalL2 differentiable setting, the form of̂ψ may be read off from Rieder
(1994, Thm. 5.5.7):

ψ̂ =Ymin{1,b/nβ(Y)}, Y = AΛ −a (2.62)

whereA∈ R
2×2 anda∈ R

2 are such that̂ψ is an IF, i.e.; (1.13) holds, andb is such
that

r2b= E(|Y|−b)+ (2.63)

Again, there are no closed form expressions forA, a, andb, but corresponding algo-
rithms to determineA, a, andb are implemented toR within theROptEst package
available on CRAN. In our model, we obtain

AOMSE =

(

10.26−2.89
−2.89 3.87

)

, aOMSE= (−1.08,0.12), bOMSE = 4.40 (2.64)

Again, the use of normnβ enforces (asympt.) in-/equivariance, i.e.; (2.58) holds mu-
tatis mutandis, or again, (without the expressionωmin

c and after suppressingOMSE),
corresponding equations (2.59) and (2.60) together with

b(ξ ,β ) = b(ξ ,1) (2.65)
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Remark 2.7 (a) OMSE also solves the “Lemma 5 problem” for bias bound its own GES (Rieder, 1994,
Thm. 5.5.7), hence it is a particular OBRE in the terminologyof Dupuis (1998), Dupuis and Field (1998).
These authors, though, do not pursue the goal to find the MSE-optimal bias bound, and so our OMSE will
in general beat their OBRE (w.r.t. MSE at our radiusr). On the other hand, for given bias boundb, (2.63)
also gives a radiusr(b) a given OBRE is MSE-optimal for; in this sense, bias boundb and radiusr are
equivalent parametrizations of the degree of robustness required for the solution.

(b) Passing to another risk does not in general invalidate our optimality (R. and Rieder, 2004): When-
ever the asymptotic risk is representable asG(trasVar, |asBias|) for some convex functionG isotone in
both arguments, the optimal IF is again in the class of OBRE estimators—with possibly another bias
weight. In addition, the radius-minimax procedure for MSE,i.e.; OMSE forr = 0.486 (Rem. 1.3) is si-
multaneously optimal for all homogenous risks according toThm. 6.1 in the cited reference.

Computational AspectsDue to the lack of invariance inξ , solving for equations (2.62)

and (2.63) can be quite slow: for any new found starting estimateθ (0)
n the solution has

to be computed anew. Of course, we can reduce the problem by one dimension due
to scale invariance, i.e.; we only would need to know the influence curves for “all”
valuesξ > 0. To speed up computation, especially for our simulation study, we there-
fore have used the following approximative approach, already realized in M. Kohl’sR
packageRobLox for the Gaussian one-dimensional location and scale model3, Kohl
(2009):

Algorithm 2.8 For a grid of size M values of ξ , giving parameter values θi = (ξi ,1)
and to given radius r = 0.5, we offline determine the optimal IF’s ψ̂θi , solving
equations (2.62)and (2.63) for each θi and suitably store the respective Lagrange
multipliers A, a, and b, denoted by Ai , ai , bi . In the actual evaluation of OMSE

at a given data set, for given starting estimate θ (0)
n , we reduce the problem by

invariance and pass over to parameter value θ ′ = (ξ (0)
n ,1). For this value, we find

values A♮, a♮, and b♮ by simple inter-/extrapolation for the stored grid values Ai ,
ai , bi. This gives us Y♮ = A♮Λθ ′ − a♮, and w♮ = min

(

1,b♮/nβ (Y
♮)
)

. So far, Y♮w♮

would not satisfy (1.13) at θ ′; thus, similarly to Rieder (1994, Rem. 5.5.2), we
generate an approximating IF ψ♯ by defining

z♯ = Eθ ′ [Λθ ′w♮]/Eθ ′ [w♮], A♯ =
{

Eθ ′ [(Λθ ′ − z♯)(Λθ ′ − z♯)τ w♮]
}−1

, (2.66)

a♯ = A♯z♯, and Y♯ = A♯Λθ ′ − a♯, and set ψ♯ = ψ♯w♮. By construction Eθ ′ ψ♯ = 0
and Eθ ′ ψ♯Λ τ

θ ′ = I2, so ψ♯ is indeed an IF at θ ′.

Remark 2.9 ψ ♯ produced in this way in general does not solve (2.62) and (2.63), i.e.A♮ 6= A♯, a♮ 6= a♯,
nor holds equality in (2.63), but if the grid is dense enough,due to the smoothness of our model, we
will have approximate equality in all these equations. For this smoothness (R. and H., 2010a, Figure 2).
We have checked the accuracy in terms of efficiency loss w.r.t. the actual optimal IF in terms of relative
asMSE: At the true parameterξ = 1, we achieve 99.3% efficiency for OMSE and 99.0% for MBRE, while
at ξ = 0.1, ξ = 1.3 we never drop below 99% efficiency.

The speed gain obtainable by Algorithm 2.8 is by a factor of roughly 125, and for
largern can be increased by yet another factor 10 if we may skip the re-centering/stan-
dardization and instead returnY♮w♮. We apply Algorithm 2.8 for both MBRE and
OMSE.

3 Due to the affine equivariance of MBRE, OBRE, OMSE in the location and scale setting, interpolation
in packageRobLox is done only for varying radiusr .
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3 Synopsis of the Theoretical Properties

In a condensed form, in Table 2, we summarize our findings so far, evaluating criteria
FSBP (where possible), asBias= r GES, trasVar, and asMSE (atr = 0.5). To give
non-degenerate limits (in the shrinking neighborhood setting) and to be able to com-
pare the results for different sample sizesn, these figures are standardized by then
(respectively

√
n for the bias). We also determine efficiencies eff.id, eff.re, and eff.ru.

For FSBP of MLE, SMLE, we evaluate terms at sample sizen = 1000, sor ′ = 0.7
entailsαn = 2.2%. Finally, we document the ranges of least favorablex-valuesxl.f.,
at which the considered IFs take their maximum innβ -norm. Infinitesimally, these
are the most vulnerable points of the resp. estimators, as contamination placing mass
therein will render bias maximal. In all situations where∞ ∈ xl.f., 1010 will suffice to
produce maximal bias in the displayed accuracy. On the otherhand, Pickands estima-
tor PE, as well as MMed are most harmfully contaminated by placing extra mass at
smallish values of, say, aboutx= 1.5 (for β = 1).

The results for SMLE have to be read with care: asBias and asMSE do not ac-
count for the biasBn already present in the ideal model, but only for the extra bias
induced by contamination. Lemma 2.1 entails thatBn is of exact unstandardized or-
der O(log(n)/

√
n), hence consequently, asBias and asMSE should both be∞, and

the efficiencies in ideal and contaminated situation would both be 0. Forn = 1000,
though, asBias and asMSE are finite: According to Lemma 2.1,B1000≈ 0.17 (unstan-
dardized), resp., 5.38, when multiplied by

√
n, while the entry of 3.75 in Table 2 is

just GES and is at large due to an underestimation ofξ by 0.17.

As noted, MLE achieves smallest asVar, hence cannot be beaten in the ideal
model, but at the price of a minimal FSBP and an infinite GES, soat any sample
one large observation size suffices to render MSE arbitrarily large.
kMedMAD gives very acceptable results in both asMSE and (E)FSBP; contrary to
MDE, MLE, SMLE, MBRE, and OMSE it does not rely on a starting estimator
though, as we only have to find zeros by univariate algorithmsin canonically given
search intervals.

The best breakdown behavior so far has been achieved by Hybr,with ε∗ ≈ 1/3
for a reasonable range ofξ -values. MDE shares an excellent reliability with Hybr,
but contrary to the former needs a reliable starting value for the optimization. As to
computation, it is quite fast though.
MBRE and OMSE are constructed as one-step estimators, so inherit the FSBP of the
starting estimator (Hybr), while at the same time MBRE achieves lowest GES (un-
standardized byn of order 0.1 atn= 1000), and OMSE is best according to asMSE;
admittedly, though, MDE comes quite close in both efficiencyand FSBP.

Considering unknown contamination radius and least favorable efficiency eff.ru,
OMSE for r = 0.5 is best among the considered estimators and guarantees an effi-
ciency of 0.68 over all radii. MDE, kMedMAD/Hybr, and MBRE also give accept-
able least favorable efficiencies, never dropping considerably below 0.5, while all
other estimators are less convincing.

In Figure 2, we display the influence curves (ICs)ψθ of the considered estimators.
All of them are invariant so thatψ(ξ ,β )(x) = dβ ψ(ξ ,1)(x/β ).
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estimator asBias trasVar asMSE eff.id eff.re eff.ru xl.f. ε̄∗1000
MLE ∞ 6.29 ∞ 1.00 0.00 0.00 ∞ 0.00
PE 4.08 24.24 40.87 0.26 0.35 0.20 [0.89;2.34] 0.06
MMed 2.62 17.45 24.32 0.36 0.58 0.32 [0.00;0.34]∪ [0.90;2.54] 0.25?

kMedMAD 2.19 12.80 17.60 0.49 0.80 0.49 [0.54;0.89]∪ [4.42;∞) 0.31
SMLE 3.75 7.03 21.08 0.90 0.67 0.03 [20.67;∞) 0.02
MDE 2.45 9.76 15.74 0.64 0.90 0.56 {0,∞} 0.35?

MBRE 1.84 13.44 16.80 0.47 0.84 0.47 [0.00;∞) 0.35∗

OMSE 2.20 9.73 14.13 0.64 1.00 0.68 [0.00;0.07]∪ [5.92;∞) 0.35∗

Table 2 Comparison of the asymptotic robustness properties of the estimators
∗: inherited from starting estimator Hybr;?: conjectured.
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Fig. 2 Influence Functions
of MLE, SMLE (with ≈ 0.7 · √n skipped value), MDE CvM, MBRE, OMSE, PE, MMed, kMedMAD
estimators of the generalized Pareto distribution; mind the logarithmic scale of thex-axis

Intuitively, based on optimality withinL2(Pθ ), in order to achieve high efficiency
(in the ideal or contaminated situation), the IF should be asclose as possible inL2-
sense to the resp. optimal one. So, on first glance, it is astonishing, that kMedMAD
achieves a reasonable efficiency in the contaminated situation, although its corre-
sponding curves look quite different from the optimal ones of OMSE; but, of course,
the difference occurs predominantly in regions of lowFθ -probability.
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Fig. 3 Efficiencies for varying shape
of MLE, SMLE (with ≈ 0.7 · √n skipped value), MDE CvM, MBRE, OMSE, PE, MMed, kMedMAD
estimators for scaleβ = 1 and varying shapeξ .

ξ = 0.7 is typical: Concerning the obtainable efficiencies, i.e. the conclusions we
just have drawn as to the ranking of the procedures remain valid for other parameter
values, as visible in Figure 3. Note that due to the scale invariance we do not need to
considerβ 6= 1. From this figure we may in particular read off the minimal value for
the efficiencies as extracted in Table 3.

estimator MLE PE MMed kMedMAD SMLE MDE MBRE OMSE
minξ eff.id 1.00 0.16 0.07 0.40 0.00 0.45 0.41 0.58
minξ eff.re 0.00 0.24 0.12 0.78 0.00 0.69 0.78 1.00
minξ eff.ru 0.00 0.15 0.07 0.40 0.00 0.43 0.41 0.58

Table 3 Minimal efficiencies forξ varying in [0,2] in the ideal model and for contamination of known
and unknown radius
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4 Simulation Study

4.1 Setup

For sample sizen = 40, we simulate data from both the ideal GPD with parameter
valuesµ = 0, ξ = 0.7, β = 1. Additional tables and plots forn= 100,1000 can be
found in R. and H. (2010a). We evaluate the estimators from the previous section
at M = 10000 runs in the respective situation (ideal/contaminated and sample size
n= 40).

The contaminated data stems from the (shrinking) Gross Error Model (1.9), (1.10)
with r = 0.5. Forn = 40, this amounts an actual contamination rate ofr40 = 7.9%.
As contaminating data distribution, we useGn,i = Dirac(1010), except for estimators
PE and MMed, where we useG′

n,i = unif(1.42,1.59) in accordance withxl.f. from
Table 2. For MMed and kMedMAD, it turns out that, for maximal MSE we should
useGn,i while G′

n,i produces higher failure rates, so that in these two cases, for all
entries except for the failure rate, we useGn,i , and for column “NA” we useG′

n,i .

4.2 Results

Results are summarized in Tables 4. Values fornβ (Bias), trVar, and for MSE (stan-
dardized by

√
40 and 40, respectively) all come with corresponding CLT-based 95%-

confidence intervals. Column “NA” gives the failure rate in the computation in per-
cent; basically, these are failures of MMed or kMedMAD to finda zero, which due
to the use of Hybr as initialization is then propagated to MLE, SMLE, MDE, MBRE,
and OMSE. Column “time” gives the aggregated computation time in seconds on a
recent dual core processor for the 10000 evaluations of the estimator for ideal and
contaminated situation. For MLE, SMLE, MDE, MBRE, and OMSE we do not in-
clude the time for evaluating the starting estimator (Hybr)but only write down the
values for the evaluations given the respective starting estimate. The row with the
respective best estimator is printed in bold face.

The simulation study confirms our findings of Section 3; figures are—at large—
close to the ones of Table 2. This holds in particular for the ideal situation, and for
the efficiencies, where in the latter case we obtain reasonable approximations already
for n= 100 (R. and H., 2010a, Tables 8,9)—at the exception of SMLE and the PE-
variants.

Essentially, the ranking given by asymptotics is valid already at sample size 40—
as predicted by asymptotic theory, OMSE in its interpolatedand IF-corrected variant
at significance 95% is the best considered estimator as to MSE, although, especially
for small sample sizes, MDE, MBRE, and Hybr come quite close as to efficiency in
the contaminated situation.

Using Hybr as starting estimator, the number of failures canbe kept low already
at n= 40—less than 1% in the ideal model and about 3% under contamination. This
is not true for MMed and kMedMAD, which suffer from up to 33% failure rate at
thisn under contamination. So Hybr is a real improvement.
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ideal situation:

estimator nβ (Bias) trVar MSE eff NA time
MLE 0.55 ±0.05 7.41 ±0.21 7.72 ±0.21 1.00 3.60 113
PE 0.85 ±0.27 19.30 ±1.54 20.01 ±1.67 0.39 0.00 13
MMed 8.91 ±1.98 1.02e5 ±2.42e3 1.02e5 ±2.46e3 0.00 10.44 168
kMedMAD 0.47 ±0.07 11.55 ±0.30 11.78 ±0.29 0.66 8.08 197
Hybr 0.71 ±0.07 11.96 ±0.31 12.46 ±0.30 0.62 0.79 223
SMLE 4.70 ±0.06 9.49 ±0.30 31.62 ±0.47 0.24 0.79 75
MDE 0.40 ±0.06 10.56 ±0.27 10.72 ±0.25 0.72 0.79 384
MBRE 0.49 ±0.08 15.68 ±0.46 15.92 ±0.44 0.48 0.79 302
OMSE 0.26 ±0.06 9.62 ±0.23 9.68 ±0.22 0.80 0.79 600

contaminated situation:

estimator nβ (Bias) trVar MSE eff NA
MLE 394.12 ±22.92 1.37e7 ±1.20e6 1.52e7 ±1.37e6 0.00 3.61
PE 2.32 ±0.49 62.25 ±67.90 67.64 ±69.35 0.39 0.00
MMed 5.13 ±1.17 3.56e3 ±1.44e3 3.59e3 ±1.45e3 0.01 23.11
kMedMAD 2.32 ±0.09 18.82 ±0.49 24.21 ±0.67 0.91 19.10
Hybr 2.23 ±0.09 19.23 ±0.50 24.21 ±0.67 0.91 3.03
SMLE 7.44 ±3.10 2.51e5 ±1.52e5 2.52e5 ±1.52e5 0.00 3.61
MDE 2.64 ±0.08 16.19 ±0.43 23.15 ±0.59 0.95 3.61
MBRE 1.77 ±0.09 20.06 ±0.59 23.19 ±0.63 0.95 3.03
OMSE 2.75 ±0.07 14.39 ±0.42 21.93 ±0.61 1.00 3.03

Table 4 Comparison of the empirical robustness properties of the estimators atn= 40

The results for sample size 40 are illustrated in boxplots inFigures 4(a) and 4(b),
respectively. In Figure 4(a), the underestimation of shapeparameterξ by SMLE in
the ideal situation stands out; all other estimators in the ideal model are bias-free at
large, while PE is somewhat less precise; under contamination (Figure 4(b)), all esti-
mators are affected, producing bias, most prominently in coordinateξ . As expected,
this effect is most pronounced for MLE which is completely driven away, while the
other estimators, at least in their medians stay near the true parameter value.

5 Conclusion

We have compared MLE, SMLE, MDE CvM, PE, MMed, kMedMAD, and the opti-
mally robust MBRE and OMSE as estimators for scale and shape parametersξ and
β of the GPD on ideal and contaminated data in terms of local andglobal robustness
properties.

Asymptotic theory and empirical simulations show that Hybr, kMedMAD, MDE,
MBRE, and OMSE estimators can withstand relatively high outliers rates as ex-
pressed by a(n) (E)FSBP of roughly 1/3. SMLE in the variant without bias correction
as used in this paper, but with shrinking skipping rate, and MLE have minimal FSBP
of 1/n, hence should be avoided.

High failure rates for MMed and kMedMAD for smalln, and under contamination
limit their usability considerably, while Hybr works reliably.

Looking at the influence functions, we see that, except for MLE, all estimators
have bounded IFs, so finite GES. As visible in Figure 3, the estimators do differ
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though in how they use the information present in an observation. This is reflected
in asymptotic, as well as (simulated) finite sample risks: Overall, we can recommend
OMSE with Hybr as initialization; it has achieved best risk in the simulations, may
be computed fast, is efficient (100%) for contamination of known radius and, for
ξ ∈ [0,2], never drops below 58% efficiency in the ideal model and for contamina-
tion of unknown radius (see Table 3). MBRE, and MDE come closeto OMSE with
minimal efficiencies eff.id = eff.ru= 41%, eff.re= 78% (MBRE) and eff.id = 45%,
eff.re= 69%, eff.ru= 43% (MDE). Among the potential starting estimators, clearly
kMedMAD in its variant Hybr stands out and comes closest to the aforementioned
group—eff.id = eff.ru= 40%, eff.re= 78%. PE is also robust, but not really advis-
ably due to its low breakdown point and non-convincing efficiencies; the only reason
for using PE is its ease of computation, which should not be sodecisive, though.
Even worse is the popular SMLE without bias correction, which does provide some,
but much too little protection against outliers. Worst, of course, as to all robustness
aspects is MLE.
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Juárez, S. F., Schucany, W. R.: Robust and Efficient Estimation for the Generalized Pareto Distribution.
Extremes 7(3), 237–251 (2004)

Kohl, M.: Numerical Contributions to the Asymptotic Theoryof Robustness. PhD Thesis, Universität
Bayreuth.http://stamats.de/ThesisMKohl.pdf (2005)

Kohl, M.: RobLox: Optimally robust influence curves and estimators for location and scale.R Package
available in version0.7 onCRAN, http://cran.r-project.org/ (2009)

Kohl, M., Rieder H., Ruckdeschel, P.: Infinitesimally Robust Estimation in General Smoothly
Parametrized Models. To appear in Stat. Meth. & Appl. (2010)

Kohl, M., Ruckdeschel, P.: ROptEst: Optimally robust estimation.R Package available in version0.7 on
CRAN, http://cran.r-project.org/ (2009)

Müller, C. H., Neykov, N.: Breakdown points of trimmed likelihood estimators and related estimators in
generalited linear models. J. Statist. Plann. Inference 116, 503–519 (2003)

Neslehova, J., Chavez-Demoulin, V., Embrechts, P.: Infinite Mean models and the LDA for operational
risk. Journal of Operational Risk 1(1), 3–25 (2006)

Peng, L., Welsch, A. H.: Robust Estimation of the Generalized Pareto Distribution. Extremes 4(1), 53–65
(2001)

PICKANDS, J.: Statistical Inference Using Extreme Order Statistics. Annals of Statistics 3(1), 119–131
(1975)

R Development Core TeamR: A language and environment for statistical computing.R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org (2009)

Ribatet, M.: POT: Generalized Pareto Distribution and Peaks Over Threshold.R package, version1.1-0
http://cran.r-project.org/ (2009)

Rieder, H.: Robust Asymptotical Statistics. Springer (1994)
Rieder, H.: A robust asymptotic testing model. Annals of Statistics 6, 1080–1094 (1978)
Rieder, H., Kohl, M., Ruckdeschel, P.: The Cost of not Knowing the Radius. Stat. Meth. & Appl., 17(1),

13–40 (2008)
Ruckdeschel P., Horbenko, N.: Robustness Properties of Estimators in Generalized Pareto Models. Tech-

nical Report No. 182, Fraunhofer ITWM, Kaiserslautern (2010a)
Ruckdeschel P., Horbenko, N.: Yet another breakdown point notion: EFSBP. Preprint. Submitted ArXiv

No. (2010b)
Ruckdeschel, P. and Rieder, H. Optimal influence curves for general loss functions. Statistics and Deci-

sions 22: 201–223 (2004)
Serfling, R., Mazumder, S.: Exponential Probability Inequality and Convergence Results for the Median

Absolute Deviation and Its Modifications. Statistics and Probability Letters 79, 1767–1773 (2009)
Smith, L. R.: Estimating tails of probability distributions. Annals of Statistics 15(3), 1174–1207 (1987)
van der Vaart, A. W.: Asymptotic statistics. Cambridge Univ. Press, Cambridge (1998)
Vandev, D. L., Neykov, N. M.: About regression estimators with high breakdown point. Statistics 32,

111–129 (1998)
Witting, H.: Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang. B.G.

Teubner, Stuttgart (1985)

http://www.smu.edu/statistics/faculty/SergioDiss1.pdf
http://www.smu.edu/statistics/faculty/SergioDiss1.pdf
http://stamats.de/ThesisMKohl.pdf
http://stamats.de/ThesisMKohl.pdf
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://www.R-project.org
http://www.R-project.org
http://cran.r-project.org/
http://cran.r-project.org/


28

MLE PE MMed kMedMAD Hybr SMLE MDE MBRE OMSE

−1

0

1

2

β

MLE PE MMed kMedMAD Hybr SMLE MDE MBRE OMSE

−1

0

1

2

ξ

(a) no contamination, 40 sample size
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Fig. 4 Boxplots
for MLE, PE, MMed, kMedMAD, Hybr, SMLE (with≈ 0.7 ·√n skipped values), MDE, MBRE, OMSE
estimators for shapeξ and scaleβ of the generalized Pareto distribution on the ideal (above)and con-
taminated data (below), (a), (b), number of simulations: 10000; the red dashed line is the true parameter
value.
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