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Abstract We study global and local robustness properties of sevstihators for
shape and scale in a generalized Pareto model. The estintatasidered in this pa-
per cover maximum likelihood estimators, skipped maximikalihood estimators,
Cramér-von-Mises Minimum Distance estimators, and, gseaial case of quantile-
based estimators, Pickands Estimator.

We further consider an estimator matching the populatiodiameand an asym-
metric, robust estimator of scale (kMAD) to the empiricabsrtkMedMAD), which
may be tuned to an expected FSBP of 34%.

These estimators are compared to one-step estimatorgyiistihed as optimal in
the shrinking neighborhood setting, i.e.; the most bidsisb estimator minimizing
the maximal (asymptotic) bias and the estimator minimizimg maximal (asymp-
totic) MSE. For each of these estimators, we determine tlite Bample breakdown
point, the influence function, as well as statistical accuraeasured by asymptotic
bias, variance, and mean squared error—all evaluatedramif@n shrinking convex
contamination neighborhoods. Finally, we check these psytic theoretical find-
ings against finite sample behavior by an extensive sinauragiudy.

Keywords global robustnesslocal robustnessfinite sample breakdown point
generalized Pareto distribution

Mathematics Subject Classification (20000MSC 62F35

This work was supported by a DAAD scholarship for N.H.

P. RuckdeschelN. Horbenko

Fraunhofer ITWM, Department of Financial Mathematics,

Fraunhofer-Platz 1, D-67663 Kaiserslautern

and Dept. of Mathematics, Univerisity of Kaiserslautern,

P.O.Box 3049, D-67653 Kaiserslautern

E-mail: peter.ruckdeschel@itwm.fraunhofer.de
nataliya.horbenko@itwm.fraunhofer.de


http://arxiv.org/abs/1005.1476v2

1 Introduction

The topic of this paper is robust parameter estimation iregized Pareto distribu-
tions (GPDs). These arise naturally in many situations w/loee is interested in the
behavior of extreme events as motivated by the PickandseBal-de Haan extreme
value theorem (PBHT), cf. Balkema and de Haan (1974), Puk&h975). The ap-
plication we have in mind is the calculation of the regulgatoapital as required by
Basel Il (2006) for a bank to cover operational risk. In qifgintg this risk, usually
the tail behavior of the underlying distribution is cruciaktimating these population
guantiles by their empirical counterparts apparently astically prone to outliers.
This is where extreme value theory enters, suggesting itna&st these quantiles pa-
rameterically using, e.g., GPDs, see e€.d. Neslehova €2@06). This per se is no
remedy,however. Maximum Likelihood Estimators (MLEs)tioyal in this paramet-
ric context, still attribute unbounded influence to someasegul observations. Robust
Statistics in contrast offers procedures bounding theémite of single observations,
so provides reliable inference in the presence of modematiations from the under-
lying model assumptions, respectively the mechanismsnyidg the PBHT. Admit-
tedly, this comes at the price of some efficiency loss in tiealichodel.

Literature Estimating the three-parameter GPD has been a challengitdem for
statisticians for long, with many proposed approaches MhEg for the GPD is very
popular for practitioners, and has been studied in detabimith (1987). To study
the instability of this procedure, Cope et al. (2009) coesikipping some extremal
data peaks, thereby reducing the influence of extreme vairessly speaking this
amounts to using a Skipped Maximum Likelihood EstimatofdI(§). Close to this
is the weighted likelihood method proposed.in Dupuis anddéathaler(2002). Fol-
lowing the general lines to obtain optimally-robust estions,| Dupuis|(1998) and
Dupuis and Field (1998) recommend an Optimal Bias-Robustator (OBRE): to
a given bound on the bias in the neighborhood, its influenoetfon minimizes the
trace of the variance | (Hampeletfall, 1986, 2.4 Thm. 1). Gsiérg
He and Fung (1997), Peng and Welsch (2001) propose a metmoedifin estimator
claimed to be very robust, which is based on solving the ioit#iquations matching
the population medians of the coordinates of the scorediumio the data. A special
case of the Elementary Percentile Method (EPM) introdugeastillo and Hadi
(1997) may be seen in Pickands estimator (PE), Pickand$),18ffiking out for its
closed form representation. Brazauskas and Serfling (26@0) different parametriza-

tion of the GPD, i.e.; instead of observatiogs~<" GPD(3, &) in our notation, con-
sider observation¥ = X; + /& and parametrize their model loy= & ! ando =
B/&. In their setting,Z (log(Y;)) = Z(log(B/¢) +E/¢&), E ~ Exp(1), so they can
transform the problem to a location-scale problem for thgoeential distribution.
In our setting though, their procedures are not directlyliagple, asp/¢& is un-
known. Other approaches cover the Method of Moments and #thdd of Proba-
bility Weighted Moments (Hosking and Wallis, 1987) and Minim Density Power
Divergence (distance) Estimator (Juarez, 2003; JuaréSahucany, 2004). We do
not study these estimators here, though.

Estimators consideredin this paper (for actual definitions see secfibn 2):
— the Maximum Likelihood Estimator (MLE)



— the Skipped Maximum Likelihood Estimator (SMLE)

— the Cramér-von-Mises Minimum Distance estimator (MDE)

— Pickands Estimator (PE)

— the Method-of-Median estimator (MMed)

— an estimator based on median and kKMAD (kMedMAD)

— the most bias-robust estimator minimizing the maximal KMBRE)
— the estimator minimizing the maximal MSE (OMSE)

MLE, MBRE, and OMSE are optimal in certain settings, so se&xvéenchmarks.
PE, MMed, and kMedMAD are candidates for (robust) initiatian estimators, and
SMLE, MDE are competitors in our application.

We compare these estimators as to standard local and gtdhetness properties
as well as by efficiencies in the ideal model and on suitabightrhoods.
Remark 1.1 This paper is a part of the PhD thesis of the second authoglinimary version of it is
Ruckdeschel and Horbenko (2010a), abbreviated hencefortesp. H. It contains additional tables and
figures and covers, in addition, moment-based estimatMsdkAD for k = 1, and variants of Pickands

estimator tuned for optimal FSBP (in the class of PE-typienegbrs) and better variance. These estimators
though have not been convincing and hence are left out here.

Structure of the paper In Sectiong IT11 and 1.2, we outline the generalized Pareto
distribution, define contamination neighborhoods, analtegiobal (finite sample
breakdown point) and local (influence function) robustreegsria for estimators, to-
gether with accuracy measures such as asymptotic biaaneariand mean squared
error (MSE). Sectiohl2 gathers the robustness propertiteeaibove-mentioned es-
timators: We analytically calculate the influence functipbreakdown points and
asymptotic accuracy measures for MLE, SMLE, PE, kMedMADd MDE, and,
numerically, for MMed, MBRE, and OMSE estimators.

Our contribution is the kMedMAD estimator which improves tfnitiali-zation-
free” estimators known so far considerably. Also, in the Gé&btext, MBRE and
OMSE have not yet been compared to the cited estimators hsit@symptotic vari-
ances, and maximal MSEs. Another important contributicthisfpaper is a synopsis
Sectior 8 where in tables and graphics we summarize our fisdiha representative
reference parameter setting; (see also Figlre 3. and Thithedgh). A simulation
study in Section4 checks for the validity of the theoretmahcepts, so far all based
on asymptotics, i.e.; for sample siretending to infinity. In contrast to other ap-
proaches, for realistic comparisons, we allow for estimapecific contamination
such that each estimator has to prove its usefulness inditdual worst contamina-
tion situation. This is particularly important for estiroed with redescending influ-
ence function, where drastically large observations vali Ine the worst situation to
produce bias. The conclusions from our findings are summeaiiz Sectionb.

1.1 Model Setting

Generalized Pareto Distribution The three-parameter generalized Pareto distribu-
tion (GPD) has c.d.f. and density

Fdx)l(l%%), fe(><)%<1+f%)§l (1.1)

aSII=Y



4

wherex > u for £ > 0, andu <x< U ,% if & <O0. Itis parametrized by =
(&,8,u)", for locationp, scalef3 > 0 and shape&. Special cases of GPDs are the
uniform (¢ = —1), the exponential§ = 0, u = 0), and Pareto§ > 0, B = 1) dis-
tributions. We limit ourselves to the case shape 0 and known locatioru = 0
here.

GPD is a good candidate for modeling the distributionastiibm the threshold
point i on as motivated by the PBHT.

For all graphics and both numerical and simulational evadna we use the ref-
erence parameter valufs= 1 andé =0.7.

For known i, the model is smooth, i.d.,-differentiable, as the densitfy is
differentiable inB and the corresponding Fisher information is finite and cardus
in 6 (Witting, 11985, Satz 1.194), with,-derivative

T —
No(@ = (Elog(1+82) — Pofgi-F+ 5 k) . 2= (2

For integrations it turns out useful to introduce

ve=1+&z (1.3)
and to write/\g(z) asAg(V(z)). Up to transformation — 1 — v, this is just the quan-
tile transformation, i.e.; the distribution w(Ag(xﬁ%“)) for X ~ GPD(9) is just

Z(Ag(V)) for V ~ unif(0,1).
Using transformatiori(113), we easily obtain Fisher infation .7 as

1 (2 B
o= (2E+1)(E+1) (Bl, BZ(EH)) &4

As 4 is positive definite fo€ > 0, B > 0, the model is (locally) identifiable.
The model also iscale invariant Using matrixdg = diag(1,3). Correspond-
ingly, an estimatoBfor 8 = (&, 3) is called(scale)-equivarianif

S(BX1,...,BX%n) = dgS(X,...,%n) (1.5)
and in terms of thé&, derivative, we have

To preserve this invariance when determining the “lengftd parameter, Robust
Statistics uses special norms for the parameter spaceirapla scale invariant norm,
we use the weighted norm

ng(xy) = ldg (6 y)|| = /32 +y?/ B2 1.7)

Remark 1.2 For the shape parameter there is no obvious such invariarcept for the quantile trans-
formation, of course, i.e.;

9(6,0':x) = FytoFp(x) = [(1+ &x/B)¥/¢ —1]p/ /&’ (1.8)

transforming arfg-distributed observatioX into anFy -distributed one. The only values gfinvariant
under arbitraryg(0,0’; -) are {0,}, as in the pure scale case. However, with this group, we deemt
any form of reasonable equivariance.



Gross Error Model Instead of working only with ideal distributions, Robusatit-
tics considers suitable distributional neighborhoodsualiois ideal model. In this
paper, we limit ourselves to theross Error Modeli.e.; our neighborhoods are the
sets of all distribution& " representable as

Fe=(1—&)F9+gF (1.9)

for some given size or radius> 0, whereF" is the underlying ideal distribution
andF® some arbitrary, unknown, and uncontrollable contamimgadiistribution. For
fixed e > 0, bias and variance scale at different rategl{QOO(1/n), resp.). Hence to
balance these scales, in the shrinking neighborhood agipreradeveloped (a.0.) in
Huber-Carol|(1970), Rieder (1994, 1978), and Bickel (198hp lets the radius of
these neighborhoods shrink with growing sample gigee.;

eE=rp=r/yn (1.10)

(and the contaminatio® may vary inn as well).

In reality one rarely knows or r, but Rieder et al. (2008) give objective criteria
for their choice to specify a procedure in situations where lbas no or only limited
knowledge of the “true” radius. For our numerical and sintiolzal evaluations, we
use a starting radius= 0.5.

Remark 1.3 r = 0.5 is very close to the minimax radius in the situation wherehaee no knowledge
at all about the radius, which faf = 0.7, = 1 would be 0486, leading to a maximin efficiency of
0.683, i.e.; using the resp. radius minimax procedure, thiopeance of this procedure would never be
worse than #64 times the maximal asMSE (see below) of the optimal praeekinowing the radius. The

minimal efficiency of the OMSE to radius= 0.5 is in fact only 0678 (achieved when used for unknown
radiusr = 0).

1.2 Robustness

Robustness distinguishes local properties (measuringtimtesimal influence of a
single observation) like thimfluence functior(IF) and global ones (measuring the
effect of massive deviations) like theeakdown point
Influence FunctionDefining an estimator as a functiorfabvaluated at the empirical
distribution, the IF ofT is the functional derivative of the estimator with respedhie
distribution. Historically, in Hampel (1968) this is defthas the Gateaux derivative
in the direction of a Dirac measudg (provided the limit exists): Fdf; = (1—€)F +
£d andF the underlying distribution, the influence function (IF)tbg estimatoil
atxthenis

IF(xT,F) = lim T(F) - T(F)

£—0 &

This definition however has its flaws (Kohl ef al., 2010, idiiotion). Fortunately,
using the (finite-dim.) Delta method, in our context, eveiyg can be reduced to the
guestion of differentiability of the likelihood (MLE, SMLE of quantiles (PE, PE*,
PicM, MMed, MedMAD, kMedMAD), and of the c.d.f. (MDE), so tke gaps can be
closed by results from_Fernhblz (1979), Rieder (1994, Chafor our estimators;
the results on one-step estimators of Rieder (1994, Chaghd@y that MBRE and
OMSE do have influence functions.

(1.11)



Remark 1.4 Assuming anL-differentiable model, for our purposes, we need the ptypiat the
estimatorS, has the expansion in the observatiohss

n—oo

sn:eﬁziwe(mmn, VAR 50 PY-stoch. (112)

for Yg € Lo(Pg) the IF of S, for which we require
EoWo=0, EgpN§=1Ik (1.13)

Equation[[T.1B) may be motivated eithei by Rieder (1994,mem.2.18) or R. and H. (2010a, Lemma1.3).
An estimator with[[T.IR) is calledsymptotically lineaor ALE. We note that all estimators considered in
this paper are ALEs.

In shrinking neighborhood approach, if well initialized,r@levant asymptotic prop-
erties of an ALE except for its breakdown point only dependsii:

Asymptotic Variance The asymptotic (co)variance matrix ASV of an Alg may
be determined as

asvats,) = [ woydFs (1.14)

(Rieder; 1994, Rem. 4.2.17(b)).
Asymptotic Bias Thegross error sensitivittGES, see Hampel etlal. (1986, Chapter
2.1c), is defined as

GES = sup|gy(X)] (1.15)

It may be shownl|(Rieder, 1994, Lemma 5.3.3), that in the Emgnhneighborhood
setup, the/n-standardized, maximal asymptotic bias of an A&Hn the gross error

model [1.9),[(2.70) is just
asBiagS,) = r GES=r sup g (X)| (1.16)

Asymptotic MSE As a consequence of the previous two paragraphs, the (maxima
standardized) asymptotic mean squared error (MSE) altlgria the gross error
model [1.9),[(Z.T0) with starting radiusan be calculated as

asMSHES,) = r’GES + tr(asVars,)) (1.17)

Suitable constructions (Rieder, 1994, chap. 6) allow terttiange quantors and
asMSE also is the standardized asymptotic maximal MSE.

Remark 1.5 It is common in Robust Statistics to use high breakdown pedtimators (see below)
tuned to a high efficiency (say 95%) in the ideal model in a ighteng step. But efficiency in the ideal
model is a bad scale in the presence of outliers, as the ansarpremium” paid in terms of the 5%
efficiency loss does not reflect the protection “bought”,has protection will vary from model to model,
and in our non-invariant case even frého 6. Instead, we prefer the minimax criteria asMSE, asBias on
whole neighborhoods to define optimally robust estimat@®ISE, MBRE). lllustrating this, the OBRE
tuned for 95% efficiency in the ideal model&t= 0.7 may drop down to 14% efficiency for sufficiently
large radius (in comparison to the best procedure knowiegatius), while OMSE never falls below 68%
no matter what radius.



Efficiency We also determine efficiencies of estimat8gsn the ideal model (eff.id)
and under contamination of radius- 0.5 (eff.re),
. tr(.7 1) asMSEOMSE)
eff.id(S) = tr(asvars,))’ eff.re(S) = asMSES,)
In addition, for the situation wher@adiusr is unknown, we also compute the least
favorable efficiency of each (fixed) estimator (i.e.; wel Sguess” thatr = 0.5 for
OMSE, although this is presumably false) w.r.t. the mostieifit procedure knowing
the radius, denoted by effi. For this notion, see Rieder et al. (2008). These efficien-
cies may be read as the relative amount of observationsptitaa procedure (MLE
in the ideal setting, OMSE( 5 under contamination of known radius= 0.5, and
OMSE_,,; for least favorable actual radiug. for contamination of unknown ra-
dius) would need to achieve the same accuracy as the estiorater consideration.
As inlKoh! (2005, Lemma 2.2.3(a)), we see that for all consdeestimator$,

eff.ru(S,) = min (eff.id(S,), GES(MBRE)/GES(S)) (1.19)

Thus the least favorable (unknown) radius is eitherO orr = o, and, to be precise,
for all estimators but kMedMAD and MBRE, it is= .

Breakdown Point The breakdown point in the gross error model}(1.9) gives the
largest radius at which the estimator still produces reliable results. \Aleetthe
definitions from Hampel et al. (1986, 2.2 Definitions 1,2):

The asymptotic breakdown point (ABR) of the sequence of estimatofs for pa-
rameterd € © at probabilityF is given by

(1.18)

£ = sup{s € (0,1); thereis a compact s&; C O s.t.
nF,G) <& = G({The KE})”ﬂl}, (1.20)

whereris Prokhorov distance.
The finite sample breakdown point (FSBE] of the estimatorT, at the sample
(X1,...,%n) is given by

E(Thi X, ey Xn) i= }max{m;_max sup |Ta(za,....2n)| < oo}, (1.21)
n i1,mimyq . ym

where the samplézy, ..., z,) is obtained by replacing the data poi®ts ..., x,, by ar-
bitrary valuesy, ...,ym. The ABP was introduced in Hampel (1968), and the FSBP in
Donoho and Huber (1983). For deciding upon which procedutakebeforehav-
ing made observations, in particular for ranking procedime simulation study, the
FSBP from [1.211) has some drawbacks: for some of the comsidestimators, the
dependence on possibly highly improbable configuratiorta@ksample entails that
not even a non-trivial lower bound for the FSBP exists. Torigkof this dependence
to some extent at least, but still preserving the aspect ofta 8ample, we hence use
theexpected-SBP as proposed and worked out to some detail in R. and HO(R01
ie.;

&1 (Tn) == Eg(Tn; X1, -, %n) (1.22)
where expectation is evaluated in the ideal model. We alssider the limite* (T ) :=
limn-e &: (Tn) and also call it EFSBP where unambigous.



1.3 Computational and Numerical Aspects

For an estimator to be useful in practice also computatiasgécts deserve attention.
In this respect, our estimator can be divided into four @ass

1. Estimators in closed-form expressions like PE (aftessjodg sorting the ob-
servations). As to computation time, their evaluation isriggnitudes faster than of
the other groups, which makes them attractive for batch.uses

2. M-estimators like MLE, SMLE, and MDE, obtained by optiinig a corre-
sponding criterion function and solved iteratively by wsR function optim and
hence need a suitable initialization to find the “right” lboptimum.

3. Z-estimators like MMed and kMedMAD, i.e.; the zero of a(system of)
equation(s). In fact, both cases may be reduced to uniegpiatblems, hence may
useR functionuniroot, with canonical search interval.

4. One-step constructions like MBRE and OMSE, depending smitably cho-
sen starting estimator. Once this starting estimate isdamd the respective influ-
ence function at the starting estimate determined, cortipataf MBRE and OMSE
is extremely fast, just involving an average. The comparatf the influence func-
tion at the starting estimate is not trivial, however, andpeed this up, we present
Algorithm[2.3.

For computations, we u$g R Development Core Team (2009), and addon-packages
ROptEst,Kohland R.|(2009)p0T,|Ribatet|(2009), available Grran.r-project.org

2 Estimators

2.1 Maximum Likelihood Estimator

The maximum likelihood estimator is the maximizer @hof the (product-log-) like-
lihoodIn(6;X,...,X%n) of our model

|n(e;x1,...,xn)_i|9(xi), lg(X) =log fg(X) (2.1)

For the GPD, this maximizer has no closed-form solutionstasito be determined
numerically, using a suitable initialization; in our siratibn study, we use the Hybr
estimator as defined in Subsection 2.6.

IF The MLE admits as influence function

IFg(zMLE,F) = 75 g (2) (2.2)

Regularity conditions, e.g. van der Vaart (1998, Thm. 5.88) easily be checked
due to the smoothness of the scores function. In particMIBE attains the smallest
asymptotic variance among all ALEs according to the Asyniptislinimax The-
orem, Rieder[(1994, Thm. 3.3.8). Using the quantile-tygeresentation[(1]13), we
obtain

E24 8)log(v) 4 (282 +3E + 1)VE — (52+35+1))

_ e
PV =" ( glog(v) — (282 +3E + 1V + (3¢ +1) @


http://cran.r-project.org

As to in-/equivariance, we note that
IF (¢ 5)(; MLE, F) = dg IF ¢ 1) (X/B; MLE,F) (2.4)

hence, as MLE is an ALE, we have asymptotic equivarianc€Iihzjl
ASV The asymptotic covariance matrix of the maximum likelihaextimators is
equal to the inverse of the Fisher information function:

To = (1+8) (Ezl’ z_pﬁz) (2.5)

ASB As (fe’l)l’l, (ﬂe’l)z,l # 0, both components of the influence curve are un-
bounded (although only growing in absolute value at ratéxpgHence, for any
neighborhood of positive radius, we can induce arbitrdatge bias, so MLE is not
robust.

FSBP By standard arguments, MLE is shown to have a FSBP/of ile.; arbitrarily
close to 0 for larger. Admittedly, though, one only can approximate this breakdo
for finite samples and finite contamination with really lacga@taminations.

2.2 Skipped Maximum Likelihood Estimators

Skipped Maximum Likelihood Estimators (SMLE) are ordindiLE, skipping the
largesk observations. This has to be distinguished from the bettestigatedrimmed/weighted
MLE, studied by Field and Smith (1994), Hadi and Lucefio (19¢andev and Neykov
(1998), Muller and Neykov (2001), where trimming/weigligtiis done according to
the size (in absolute value) of the log-likelihood.
In general these concepts fall apart as they refer to diffenelerings; in our situation
though they coincide due to the monotonicity of the likebldon the observations.
As this skipping is not done symmetrically, it induces a mamishing bia8, =
Bnh ¢ already present in the ideal model. To cope with such bidse® tstrategies
can be used—the first two already considered in detail in Busmud Morgenthaler
(2002, Section 2.2): (1) correcting the criterion functfonthe skipped summands,
(2) correcting the estimator for bid,, and (3) no bias correction at all, but, con-
formal to our shrinking neighborhood setting, to let thepgling proportionar shrink
at the same rate. Strategy (3) reflects the common practieeawhis often chosen
small, and the bias correction is omitted. In the sequel, wg study Strategy (3)
with o = an = r’/+/n for somer’ larger than the actual This way indeed bias
becomes asymptotically negligible:

Lemma 2.1 In our ideal GPD model, eventually in n, the biag Bf SMLE with
skipping rateay, is bounded from above lagr, log(n) for somec < .

If for somed< B <1, liminf, annf > 0, then alsdiminf,nfB, > climinf,nf aylog(n)
for some c> 0.

If 0 < a =liminfyan < ag for ag =exp(—3—1/&), thenliminf,B, > c'a(—log(a))
for some €> 0.



10

A proof to this Lemma can be foundlin R. and H. (2010a).

Hence, for higher FSBPs, we need to correct for the then derable bias. Ob-
viously this can cope witl,n outliers.
IF As we have seen, SMLE in fact does not estimisut d(0) = 8 + By, for the
biasBg already present in the ideal model. So to determine the IEhfsrestimator,
we only compute the influence function for the functionalreatingd(6). To this
end, we may use the underlying order statistics of¢hand obtain the IF of SMLE
just as the IF of the L-estimate to the fcl)llowing functional:

—a
T(F) = L/ No(F1(s))ds (2.6)
1-aJo

The influence function, referring 1o Huber (1981, Chapt&),3s analogous to the

influence function of the trimmed mean (witly := F~1(1— a)):

1 _
IFg(z SMLE,F) = fel{ %Kzgi) YVV(VF(::])] gi l)jf o 2.7)
W(F) = (1— a) SMLE(F) + a/Ag(uq) (2.8)

It enjoys the same (asympt.) equivariaricel(1.5) as the MLE.

ASV Analytic terms of the asymptotic covariance of the SMLE ao¢ available;
instead we only include numerical values in the tables iniGe@.

ASB By Lemma[ 2.1, for a shrinking rate, = r’/,/n, asymptotic bias of SMLE is
finite for eachn, but, standardized by/n, is of order logn), hence unbounded. As
the IF is bounded locally uniform i8, the extra bias induced by contamination is
dominated byBy, eventually.

FSBP In our shrinking setting the proportion of the skipped deatads to 0, so it is
this proportion which delivers the active bound for the ldeavn point: Just replace
[ann] + 1 observations by something sufficiently large and arguethé MLE to
show that FSBPer,.

2.3 Crameér-von-Mises Minimum Distance Estimators

General minimum distance estimators are defined as minisi#ea suitable distance
between the theoretickl and empirical distributiof,. Optimization of this distance
in general has to be done numerically and, as for MLE and SMidpends on a
suitable initialization. We use Cramér-von-Mises disemefined for c.d.f’'§, G
and some-finite measure’ onBX as

down(F, G)2 = /(F(x) — G(x)2v(dx) (2.9)
i.e.; by MDE we denote
MDE = argmiry dewu (Fn, Fo) (2.10)

In this paper, we ulley = Py. Hybr from Subsectioin 216 again serves as initialization.
MDE is known to have good global robustness propertiesahig\LE with bounded

1 Another setting common in the literature uses the empijricat P,.
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IF (Rieder! 1994, Rem 6.3.9(a), 4.2 eq.(55)) and, accotdibmnoho and Liu (1988),
up to factor 2 achieves the smallest sensitivity to contativm among Fisher-consistent
estimators.

IF For the influence function of MDE, we follow Rieder (1994, Bxale 4.2.15,
Theorem 6.3.8) and obtain

IF(x;MDE,F) = _#5 (¢ (x), $5(x)) (2.11)

where forv from (1.3) it holds that

2—
B (V(2) = % +V2log(v) + Ffvz -Vt (2.12)
s (V) = sarersres — 25+ e (2.13)

and _Zg is the CvM Fisher information as defined, e.g.Lin Rieder (1 99fini-
tion 2.3.11)). We have

73[37 2[32

Apparently the same (asympt.) in-/equivariance as for Mh& S@MLE holds again.

18(¢-+3
o l=3(¢ +3)? ( ero 3P ) (2.14)

Remark 2.2 The fact that MDE is asymptotically linear with the IF justen allows for an alternative
to the numerical minimization of the distance: we couldeast use a corresponding one-step construction
built up on a suitable starting estimator. Asymptoticalbtibvariants will be indistinguishable.

ASV The asymptotic covariance of the CvM minimum distance esiims can be
found analytically or numerically. Its analytic tedfare rational functions i and

B:

_ (3+ 5)2 Vi1, Vi
asVa{MDE) = 125(5+ 28) (51 £ (Vl,z, V272> (2.15)

for

Vii= 81(1655+ 27264+ 169431 485324+ 7276 + 6245) (26 +9)72, (2.16)
Vip = —9B (4844 868>+ 64852 1 2623 + 4535 (2 +9) 72, (2.17)
Vo = B2 (263 + 60162 + 3154 + 5255 (2.18)
ASB As noted, the IF of MDE is known to be bounded, so ASB is finite.

FSBP Due to the lack of invariance in the GPD situation, Donoho laind(1988,
Propositions 4.1 and 6.4) only provide bounds for the FS&8¢) us that its FSBP
must be no smaller thar/2 the FSBP of the FSBP-optimal procedure. As MDE is

a minimum of the smooth CvM distance, it has to fulfill the fiostler condition for
the corresponding M-equation, i.e.; fdr= (1+ %Xi)*l/f,

>0 (Vii§)=0,  3;dp(Vi;§)=0 (2.19)

2 For the interested reader willing to control these formula,haveMAPLE scripts to determine them.
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FSBP for MDE

Fig. 1 Empirical Bias for FSBP of MDE CvM

Arguing as for the breakdown point of an M-estimator, exéepthe optimization in
&, we obtain the following analoguelto Huber (1981, Chap. 8, &)39) and (2.40)):

" . —infy ¢ ¢. SUR¢ . _
& = mm{ SURE g N9 Suped o =P (2.20)
although, to make the inequality ih (2]20) an equality, wauldaneed to show that
we cannot produce a breakdown with less than this bounduBtiay bound[(Z.20)
numerically gives a value of/® = 36.37%, which is achieved for= 0 (and¢ — 0)

or, equivalently, letting then replacing observations in Definition 1.2 tendkto
Remark 2.3 To see how realistic this value is, in Figlile 1, we producerapigcal max-bias-curve,
simulatingM = 100 samples of size = 1000 observations from a GPD with= 0.7, 8 = 1, and after
replacingm observations, fom= 1,...,400 by value 1& compute the bias. There is a steep increase

around 354, so we conjecture that (E)FSBP should be appabeiynQ35; on the other side, MDE cannot
have a higher FSBP than its initialization, and so far the keswn initialization has (E)FSBP of 846.

2.4 Pickands Estimator

Estimators based on the empirical quantiles of GPD are ithestin the Elementary
Percentile Method (EPM) by Castillo and Hadi (1997). Pidsaestimator (PE), a
special case of EPM, is based on the empirical 50% and 75%itpsavl, andM,
respectively, and has first been proposed by Pickands!(1B@&xonstruction behind
PE is not limited to 50% and 75% quantiles. More specificédya > 1 and consider
the empiricalaj-quantiles fora; = 1 —1/a anda, = 1— 1/a2 denoted byM,(a),
My(a), respectively. Then PE is obtained fae= 2, and as theoretical quantiles we
obtainMJ(a) = %(a‘s —1), Mi(a) = %(azf —1), and the (generalized) PE denoted by
PE(a) for andp is

£ Ma(2)—M A Mya)?
¢ = alog ™. b=t anw (2.21)

Apparently for anya > 1, PE(a) enjoys the corresponding equivariance as MLE,
SMLE, and MDE.
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IF The influence function of linear combinatiofsof the quantile functionalt ~*(a;) =
Ti(F) for probabilitiesa; and weightsh;, i = 1,...,k may be read off from Rieder
(1994, Chapter 1.5) and gives

IFCTLF) = $ 1 (= I(x < F (@) /£ (F (@) (2.22)

Using theA-method, the influence functions of PE(a) hence is
F.(GPE@).F) =y hi@*Emmap®,  .=&p  (229)

with weightsh_j(a) to be read off from R. and H. (2010a, egs.(2.43)-(2.45)) Appa
ently we have again (asympt.) equivariance,

ASV Abbreviatingai(a) by ai, 1— aj by a;, andh, 1(a) by h,1, . = £,, the asymp-
totic covariance for PE(a) is

asVafPEa)) = D(a)" = (a)D(a), (2.25)
~—1-2¢ ~—1-& =—¢§ h: 1 h

S@=p% “%, % %) Da ( = va> 2.26

(@ =P (alorllforz'f azaz’l’zf @ hg.1 hg2 ( )

ASB The IF of PE(a) is bounded, so ASB is finite.
FSBP With simple generalizations we may refer to R. and H. (2016lshow that

& =min{1/a®,N%/n},  NQ:=#{X|2Mz(a) < X < Ma(a)} (2.27)
By usual LLN arguments\®/n — 1 (a) = (2a° — 1)"%¢ — 1/a2, so that
£ = &' (a) = min{rg (a),1/a%} (2.28)

For & = 0.7, the classical PE achieves an ABPetfa = 2) = 6.42%; as to EFSBP,
for n = 40,100,1000 we obtairg; = 9.48% 7.61% 6.53%, respectively (R. and H.,
2010b, Table 2).

Remark 2.4 Optimizing for a high (E)FSBP within the class of PE(a) estian, one obtains estimator
PE* (R..and H.. 2010a), which in case of our reference pamndet 0.7 givesa* = 2.658 with a EFSBP
of 7.02%, so we have not won much. Similarly, tuning for a betteravece by averaging several PE(a)’s

for varyinga (PicM in the cited reference) does improve the efficienddes still does not give convincing
results.

2.5 Method of Medians Estimator

The Method of Medians estimator [of Peng and Welsch (20013istmin fitting the
(population) medians of the the two coordinates of the scfanection/\g against the
corresponding sample medians, i.e.; we have to solve thersyd equations

Median(X)/B = F, }(1/2) = (2* —1)/& = m; (2.29)
Median( log(1+ §X/B)B 2~ (1+&)X(BE +&2%) 1) =2¢)  (2.30)
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wherez(&) is the population median of the-coordinate of\(1 g)(X), A1 ¢).2(X) for

X ~ GPD(1,¢). Solving the first equation foB and plugging in the corresponding
expression ir€ into the second equation, we obtain a one-dimensionalfioding
problem to be solved, e.g. iR by uniroot. In the same sense as the estimators
considered so far, the MMed is equivariant.

IF The IF of MMed is a linear combination of the IF of the samplediaa already
used for the PE, and the IF of the median of §eoordinate ofA\(; ).(X). Now,
as can be seen when plotting the function> A1 5).2(x), for § = 0.7, the level set
N,e)2(X) < 2(§) is of form [y (&), d2(&)], so that

IF(x A-Med,F) — LGS X=0) —1/2 (2.31)

~ fo(a2) /12— fo(an)/In

wherel; ;= %A(Lf);z(qi). More precisely, fo = 0.7, we obtaing; = 0.3457 and
g2 = 2.5449. In analogy to the Pickands-type estimators we could determine a
corresponding Jacobidhin closed form such that

IF(x;MMed, F) = D(IF(x; Median F),IF(x; A-Med, F))* (2.32)

but in our context it is easier to determiBenumerically by
~ T
51 = EgneAd for ng(x) = (]I(x <mg)—1/2, I < X < Qo) — 1/2) (2.33)

and then to write
IF(x; MMed,F) = Dnjg (2.34)

Corresponding analytic terms may be found.in Peng and WgEail, p. 60).
ASV Similarly, we obtain

asVatMMed) = B (a)B7, =(a) = % (i i) . c=1-4F(q)  (2.35)

ASB The IF of MMed is bounded, so ASB is finite.

FSBP We have not found analytic values for neither the asymptuticthe finite
sample breakdown point. While 50% by equivariance is an uppand, the high
frequency of failures in the simulation study for small séengizes however indi-
cates that (E)FSBP should be considerably smaller; a sistilay for the empirical
maxBias as the one for MDE gives that for sample sifeom a rate of outliers of

& on, we have but failures in solving for MMed, falig = 42.5%, €100 = 35.0%,
€1000= 25.1%, ande1gpoo= 20.1%. So we conjecture that the asymptotic breakdown
pointe* < 20%.
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2.6 kMedMAD

Empirical mediarm’= iy, and median of absolute deviations (MAD) = M, are
well known for their high breakdown point, jointly attaimjthe highest possible ABP
of 50% among all affine equivariant estimators at symmetoatinuous univariate
distributions.

Hence it is plausible to define an estimator forand 8, matchingni and M
against their population counterpanisandM within the GPD model. Now it turns
out that the mapping, ) — (m,M)(Fg) is indeed a diffeomorphism, hence we can
solve the implicit equations fof, 8 to obtain an estimator introduced edMAD
inR.and H.[(2010a).

Due to the considerable skewness to the right of the GPDegttimator can be
improved though by using a scale estimator that takes tliss&ss into account: For
a distributionF on R with medianm let us define fok > 0

kMAD (F,k) :=inf {t > O|F(m+kt) - F(m—t) > 1/2} (2.36)

wherek in our case is chosen to be a suitable number larger than X -arfdwould
reproduce the MAD; i.e.; within the class of intervals abitvet medianm with cover-
ing probability 50%, we only search those where the partttigmis k times longer
than the one left taon. WhenevelF is continuous, KMAD preserves the FSBP of the
MAD of 50%.

The corresponding estimator f@rand g is calledkMedMADand consists of
two estimating equations. The first equation is for the mediathe GPD, which is
m=m(&,B) = F1(0.5) = B(2¢ — 1)/&. The second equation is for the respective
kKMAD, which has to be solved numerically as unique ioof fy, s g.((M) for

1
fm,E,B;k(M) - —V+ +V7 - E (237)

where

1
vy = (1+EKM%") S vo= (1+5%)
Note that for any distributio® on R with G((—c0; p]) = 0 for some finitep, and
anyk > 0, KMAD(G; k) < mediar{G) with equality if and only ifG({media{G)}) >
0.5. Consequentlyfy, s g.«(M) > 0 forM > m, hence the population kMADI (&, B)

in the GPD must always be smaller than its mediatMg(i€, 3)/m(&,B) < 1.

Now, kMAD is scale-invariant, i.e.My(&,8) = BMy(&,1), and the empirical
kMAD My is scale-equivariant, i.el.\zlk(Bxl, . Bxn) = Bl\7lk(x1, ...Xn). The same in-
lequivariance also holds for the median; hence the quatig¢é := My (&, 8)/m(&,B)
and its empirical counter pag., are scale-free; so we have reduced the problem by
one dimension.

InR.and H. [(2010b), plotting for givekthe functioné — qx(&), one sees that
Ok is strictly isotone, but that there is a second restrictibthe same sort as that
0k(&) < 1, induced by the fact that for &fl > 0

k(&) > lim k(&) =: Gk (2.39)

-0

¢ (2.38)
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Hence matchingy,, againsty (&) amounts to finding a zeléh of G(&)=au(&)—
Okn in the interval(gi; 1) which can easily be solved with a standard univariate root-
finding tool likeuniroot in R.

A corresponding estimator fgt is then simply given by

Bn = /m(&, 1) (2.40)
so by construction kMedMad is equivariant in the sens& &)(1.

IF The implicit function of the two equations we have to solveoider to find the
kMedMAD estimates is defined as follows:

G((E,B):(M.m) = (GY,62)" = (fng M), BEFA-m)"  (241)

By the implicit function theorem, the Jacobian in the Deltathod is

-1
— G G
D=~ (m,m) aM.m) (2.42)

Then the influence function of MedMAD estimator is
IF(x;MedMAD, F) = D (IF(x;KMAD, F), IF(x; Median F))* (2.43)

where the influence functions of median and MAD can be fourRigder (1994,
Chapter 1.5), and the one of kMAD is a simple generalization:

IFOcmF) = (3~ I(x<m))/f(m) (2.44)
) 3-I(-M<x-m<kM) | f(m+kM)—f(m=M) I(x<m)—3
IF(X'M’F) = zf(m+kM)7f(me) kf((m+kl\/l))+f((r:1117M)) f(m) : (2'45)

while for the entries oD we note that

gl vicl 1 V96 v V+

0F = *V(—Ez —F |09(V)) vy OB — g_BZ(VE -1) vy’
G _ B 21 9G@ _ 281

ot —?(25'09(2)_ £ ) B =

o6 _ kAT e Y 6@ 0 98® _ 4
oM~ B0 om B |y oM — % Tom —

Again, we have equivariance,
IF £ g)(x; kMedMAD, F) = dg IF ¢ 1(x/B; kMedMAD, F) (2.46)

ASV The asymptotic covariance of the kMedMAD estimator is

asVafT)=D'sD, = ( 911912 (2.47)
021 022



17

where with obvious generalizations,may be read off from Serfling and Mazumder
(2009) as the asymptotic covariance of median and kMAD:

a=f(m—M)+ f(m+kM), b= f(m—M)— f(m+kM),
c=f(m—M)+kf(m+kM), d=Db’>+4(1—a)bf(m), (2.48)
011 = (4f(m))72,  0p2 = F(M)?(4c3(f(M)?+d))~t

012 = 021 = (4f(m)c) " (1 - 4F(m— M) +b/f(m)), (2.49)

ASB The IF of kMedMAD is bounded, so the asymptotic bias is finite.
FSBP We may again refer to R. and|/H. (2010b) where it is shown that

g =min{N,, N/} /n (2.50)

for
N, = #{X [Mm< X < (k+ 1)}, (2.51)
Ny = [n/2] —#{Xi| (1 - G < X < (kg + 1)} (2.52)

Hence, by the usual LLN arguments,
£ =min (Fg((k+1)m) — 1, Fo (ke 1)m) — Fa ((1—Gm) — %) (2.53)

For & = 0.7, the EFSBP is given by the first alternativekik 3.23 and by the
second one otherwise. On first glance, this would make foeéirfdion breakdown”,
but if, e.g. we move the observationg(to+ 1)i—o, we obtain as estimatd = 0+o
andé = «, hence a breakdown in the original sense.

As to the choice ok, it turns out that a value d€ = 10 gives reasonable values
of ABP, asVar, asBias for a wide range of parameferss documented in Taldlé 1. In
the sequel this will be our reference value kpias to EFSBP, fon = 40,100,1000
we obtaing = 29.16% 30.28% 30.94%, respectively (R. and H., 2010b, Table 2).

& GES GE®' | asVar asVd™ | asMSE asMS®' | ABP  ABP°™
0.01 4.09 271 | 1208 304 16.26 758 | 0.249 Q322
0.10 3.83 284 | 10.90 341 14.58 839 | 0.259 Q325
0.70 4.38 366 | 1280 629 17.60 1413 | 0.310 Q342
1.50 5.85 482 | 1950 1125 28.06 2403 | 0.355 Q358
4.00 | 1058 842 | 5290 3500 80.90 5686 | 0.221 Q379

Table 1 Robustness properties of kMedMAD fé&r= 10 and several shape parameters compared to
corresponding optimal values, i.e.; MBRE (GES), MLE (a3V®MSE (asMSE), kMedMALK"5P),
k8P = argmax ABP(kMedMAD (k)) (ABP)

The results when optimizing kMedMAD iw.r.t. the different robustness criteria
for £ = 0.7 can be looked up in R..and H. (2010a, Table 5).

Remark 2.5 Admittedly, for givenk, eventually inn, E(¢ p)[€4(kMedMAD(k))] is decreasing iré
s.t. Iimé_%oo EQE‘B)'[s;(kMedMAD(k))] = 0. At the same time, eventually in § — Es g€ (PEx)] is
increasing with lim_,., E(¢ g)[& (PEx)] = 1/4. In particular, fork = 10, for{ > 4.964, PE* has a better
EFSBP / ABP, in this case"(PE«) > 19.0%. But, eventually im, the EFSBP of kMedMAD for the ABP-
optimal k*8P = kA8” (&) never drops below 32% for & € (0,10] and below 25% fo € (0,437, and
achieves 39% for & = 7.20.
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Hybrid Estimator Still, for small sample sizes we encounter failures to stohe
corresponding equations for kMedMAD far= 10—8% forn = 40 and 23% for
n= 100, compare Tablg 4 and R. and H. (2010a, Table 9). To loviefdhure rate
also in these cases, a hybrid estimator Hybr is used, thagflayitt returns kMedMAD
for k=10, and by failure—tries out several valueskan a loop and returns the first
estimator not failing: We start & = 3.23 (producing maximal ABP), and then at
each iteration multiphk by 3, and try out at most 2k-values. This leads to failure
rates of 23% forn = 40 and 00% forn = 100. Asymptotically, Hybr coincides with
kMedMAD, k = 10.

2.7 Most bias-robust Estimator: MBRE

Minimizing the maximal bias on convex contamination neigtiimods, we obtain the
MBRE estimator; in the terminology of Hampel et al. (1988% ik themost B-robust

estimator. In our smooth situation, MBRE can also be obthasea limit within the

class of OBRE estimators, letting bias boumtend to its minimum, the minimax
biasw™ (see below).

Note however that contrary to Dupuls (1998), Dupuis andoF{&R98) we use
normng from (1.7) to achieve the discussed invariance.

Its optimality is determined solely by its I, the determining equations of which
are given below. To this optimal IF, we have to find an ALE withas influence
function. This may be achieved in several ways (see Ried¥4/1chap. 6); in the
literature most often M-estimators are used; we use a @peesinstruction, i.e. to a
suitably consistent starting estimaﬁ,ﬁo) (Hybr in our case), the corresponding ALE
is defined as

0 1& -
MBRE = 6. + - i;wen@ (X) (2.54)

The IF minimizing asBias among all ALEs may be read off fronedRir (1994,
Thm. 5.5.1(b)), its gross error sensitivity is given by

W = max{trdglAdgl/ Eng(M —a), acR%0#Ac RM} (2.55)
while the optimal IF( is given by
P =w™(AA —a)/ng(AA —a) (2.56)

where the even{AA — a = 0} carries probability 0. Apparently, (Z56) only deter-
mines expressioA/A — a up to a positive scalar multiple. For the values below, we
have standardized this expression such #fhat= 1. There are no closed form ex-
pressions foA, a, andw™, though. Corresponding algorithms to determne, and
w"™ are implemented t& within theROptEst package Kohl and R. (2009) available
on CRAN.

Remark 2.6 Although algorithms are implemented for gendraldifferentiable models iROptEst,
particular algorithms and techniques are needed for thepatation of the expectations under GPD.
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In our model, we obtain

1.00-0.18 min
AMBRE<_0.18 022), avere = (—0.18,0.00), " =3.67 (2.57)

The use of nornmg enforces (asympt.) in-/equivariance,

B p)() = dpPie.1) (/) (2.58)
or, suppressing subscripdre, with
Yie.p) = A/ Nep)(X/B) —a p) (2.59)
Aep)  =dgAcyds. g = dpdea) » 60
= &"(¢,1) (260

ns(Mep) = m¥ey), ™, B)

2.8 Estimator minimizing maximal MSE: OMSE

For an estimator minimizing maximal MSE on neighborhoodsIE), we proceed
similarly as for the MBRE: We determine the IF of the corresponding optimal
procedure and then use a one-step construction (with Hybtagting estimator) to
define an ALE with this IF as

0 1
OMSE= 69 + - i;%éo) (%) (2.61)

In the general, differentiable setting, the form ap may be read off from_Rieder
(1994, Thm. 5.5.7):

g=Ymin{l,b/ng(Y)}, Y=AA-a (2.62)

whereA € R?*2 anda € R? are such thaf is an IF, i.e.;[1.13) holds, arlis such
that
r’b=E(Y|-b), (2.63)

Again, there are no closed form expressions&pa, andb, but corresponding algo-
rithms to determind\, a, andb are implemented t&® within the ROptEst package
available on CRAN. In our model, we obtain

10.26 —2.89
Aomse = (—2.89 387) , aowse=(—1.08,0.12), bouse =4.40 (2.64)

Again, the use of normg enforces (asympt.) in-/equivariance, i.e.; (2.58) holads m
tatis mutandis, or again, (without the expressigfi® and after suppressingyse),
corresponding equatioris (2]159) ahd (2.60) together with

be.p) = b (2.65)
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Remark 2.7 (a) OMSE also solves the “Lemma 5 problem” for bias boundiits GES (Riedéf, 1994,
Thm. 5.5.7), hence it is a particular OBRE in the terminolo§upuis (1998). Dupuis and Field (1998).
These authors, though, do not pursue the goal to find the M@iBxal bias bound, and so our OMSE will
in general beat their OBRE (w.r.t. MSE at our radiysOn the other hand, for given bias boundZ.63)
also gives a radius(b) a given OBRE is MSE-optimal for; in this sense, bias bobrahd radius are
equivalent parametrizations of the degree of robustnegsresl for the solution.

(b) Passing to another risk does not in general invalidateptimality (R. and Rieder. 2004): When-
ever the asymptotic risk is representableGitrasVar|asBiag) for some convex functio® isotone in
both arguments, the optimal IF is again in the class of OBREnastors—with possibly another bias
weight. In addition, the radius-minimax procedure for MSE,; OMSE forr = 0.486 (Rem[LB) is si-
multaneously optimal for all homogenous risks accordinghm. 6.1 in the cited reference.

Computational AspectsDue to the lack of invariance if, solving for equation$ (2.62)

and [2.68) can be quite slow: for any new found starting attid)\”) the solution has
to be computed anew. Of course, we can reduce the problemédgiorension due
to scale invariance, i.e.; we only would need to know the @fte curves for “all”
valuesé > 0. To speed up computation, especially for our simulatiodgtwe there-
fore have used the following approximative approach, dyeaalized in M. KohlI'sR
packagekobLox for the Gaussian one-dimensional location and scale Hoehl
(2009):

Algorithm 2.8 For a grid of size M values of &, giving parameter values 6 = (&, 1)
and to given radius r = 0.5, we offline determine the optimal IF's {Jg, solving
equations (2.62)and (2.63) for each 6 and suitably store the respective Lagrange
multipliers A, a, and b, denoted by A;, &, b;. In the actual evaluation of OMSE
at a given data set, for given starting estimate Br(lo), we reduce the problem by
invariance and pass over to parameter value 8’ = (Ergo),l). For this value, we find
values A?, &%, and b? by simple inter-/extrapolation for the stored grid values A,
a;, bj. This gives us Y! = AlAy —a’, and W = min(l,b”/nB(Y“)). So far, Yiw?
would not satisfy (I.I3) at €’; thus, similarly to Rieder (1994, Rem. 5.5.2), we
generate an approximating IF (U by defining

ZIi =Ey [/\g/VVh]/ Eg [\Nh], A= {Eg/[(/\g/ — Zu)(/\gl — Zﬁ)r\/\lh]}il7 (266)

al = AZ, and Y? = AlAg —af, and set ! = YP*w!. By construction Eg (f =0
and Eg YA}, =1, so * is indeed an IF at 6.

Remark 2.9 y? produced in this way in general does not solve (P.62) BndB)2ie. A" £ A*, a° £ af,

nor holds equality in[(2.83), but if the grid is dense enoudiie to the smoothness of our model, we
will have approximate equality in all these equations. s smoothness (R. and H., 2010a, Figure 2).
We have checked the accuracy in terms of efficiency loss. ¥hetactual optimal IF in terms of relative
asMSE: At the true parametér= 1, we achieve 93% efficiency for OMSE and 90% for MBRE, while
até =0.1, ¢ = 1.3 we never drop below 99% efficiency.

The speed gain obtainable by Algorithm]2.8 is by a factor efgidy 125, and for
largern can be increased by yet another factor 10 if we may skip tleengering/stan-
dardization and instead retuMiw’. We apply Algorithn 2B for both MBRE and
OMSE.

3 Due to the affine equivariance of MBRE, OBRE, OMSE in the limraaind scale setting, interpolation
in packageRobLox is done only for varying radius.
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3 Synopsis of the Theoretical Properties

In a condensed form, in Tall¢ 2, we summarize our findingsrsevaluating criteria
FSBP (where possible), asBiasr GES, trasVar, and asMSE (at= 0.5). To give
non-degenerate limits (in the shrinking neighborhoodrsgttand to be able to com-
pare the results for different sample sizeghese figures are standardized by the
(respectively/n for the bias). We also determine efficienciesidffeff.re, and effru.
For FSBP of MLE, SMLE, we evaluate terms at sample size 1000, sor’ = 0.7
entailsa, = 2.2%. Finally, we document the ranges of least favorablaluesx;,,
at which the considered IFs take their maximumpinorm. Infinitesimally, these
are the most vulnerable points of the resp. estimators,@sigonation placing mass
therein will render bias maximal. In all situations wheres x;;, 101° will suffice to
produce maximal bias in the displayed accuracy. On the tidued, Pickands estima-
tor PE, as well as MMed are most harmfully contaminated bgiptaextra mass at
smallish values of, say, aboxt= 1.5 (for § = 1).

The results for SMLE have to be read with care: asBias and &stitSnot ac-
count for the bia8,, already present in the ideal model, but only for the extra bia
induced by contamination. LemrhaPR.1 entails Bais of exact unstandardized or-
der Qlog(n)/+/n), hence consequently, asBias and asMSE should both, laed
the efficiencies in ideal and contaminated situation woulthtbe 0. Fom = 1000,
though, asBias and asMSE are finite: According to LefmaB gbo~ 0.17 (unstan-
dardized), resp.,.88, when multiplied by/n, while the entry of 375 in Tabld2 is
just GES and is at large due to an underestimatiohlo§ 0.17.

As noted, MLE achieves smallest asVar, hence cannot berb@atie ideal
model, but at the price of a minimal FSBP and an infinite GESatsany sample
one large observation size suffices to render MSE arbirianige.
kMedMAD gives very acceptable results in both asMSE and $BJF;, contrary to
MDE, MLE, SMLE, MBRE, and OMSE it does not rely on a startingimsitor
though, as we only have to find zeros by univariate algoritimtanonically given
search intervals.

The best breakdown behavior so far has been achieved by tithre* ~ 1/3
for a reasonable range éfvalues. MDE shares an excellent reliability with Hybr,
but contrary to the former needs a reliable starting valuéHe optimization. As to
computation, it is quite fast though.
MBRE and OMSE are constructed as one-step estimators, edtitie FSBP of the
starting estimator (Hybr), while at the same time MBRE aebdelowest GES (un-
standardized by of order 01 atn = 1000), and OMSE is best according to asMSE;
admittedly, though, MDE comes quite close in both efficicanyg FSBP.

Considering unknown contamination radius and least fdlerefficiency effru,
OMSE forr = 0.5 is best among the considered estimators and guarantedf-an e
ciency of 068 over all radii. MDE, kMedMAD/Hybr, and MBRE also give agte
able least favorable efficiencies, never dropping conalagrbelow 05, while all
other estimators are less convincing.

In Figurd2, we display the influence curves (1@g)of the considered estimators.
All of them are invariant so thap¢ g (X) = dg (s 1)(X/B)-
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estimator | asBias trasVar asMSE &tf effre effru X1, €000
MLE 0 6.29 o 100 000 000 0 0.00
PE 408 2424 4087 026 035 020 [0.89;234 0.06
MMed 262 1745 2432 036 058 032 [0.00;034U[0.90;254 0.25°
kMedMAD | 219 1280 1760 049 080 049 [0.54;,089U[4.42;0) 0.31
SMLE 3.75 703 2108 090 067 003 [20.67;00) 0.02
MDE 2.45 976 1574 064 090 056 {0, 00} 0.3%
MBRE 184 1344 1680 047 084 047 [0.00;) 0.35
OMSE 2.20 973 1413 064 100 068 [0.00;007/U[5.92;) 0.35

Table 2 Comparison of the asymptotic robustness properties ofdtimators
*: inherited from starting estimator Hybr?: conjectured.
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Fig. 2 Influence Functions
of MLE, SMLE (with ~ 0.7 - /n skipped value), MDE CvM, MBRE, OMSE, PE, MMed, kMedMAD
estimators of the generalized Pareto distribution; mirddlgarithmic scale of the-axis
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Intuitively, based on optimality withil.,(Ps), in order to achieve high efficiency
(in the ideal or contaminated situation), the IF should belase as possible ih;-
sense to the resp. optimal one. So, on first glance, it is iss$tiog, that kMedMAD
achieves a reasonable efficiency in the contaminated isityadlthough its corre-
sponding curves look quite different from the optimal onE®MSE; but, of course,
the difference occurs predominantly in regions of leyvprobability.
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of MLE, SMLE (with ~ 0.7 - /n skipped value), MDE CvM, MBRE, OMSE, PE, MMed, kMedMAD
estimators for scal@ = 1 and varying shapé.

& = 0.7 is typical: Concerning the obtainable efficiencies, i.e. the conchssiwe
just have drawn as to the ranking of the procedures remaid feal other parameter
values, as visible in Figufé 3. Note that due to the scaleianae we do not need to
considerB # 1. From this figure we may in particular read off the minimdlresfor
the efficiencies as extracted in Table 3.

estimator | MLE PE MMed kMedMAD SMLE MDE MBRE
ming effid | 1.00 Q16 007 040 000 045 041
ming effre | 0.00 024 012 078 000 069 078
ming effru | 0.00 015 007 040 000 043 041

Table 3 Minimal efficiencies foré varying in [0,2] in the ideal model and for contamination of known
and unknown radius
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4 Simulation Study
4.1 Setup

For sample sizen = 40, we simulate data from both the ideal GPD with parameter
valuesy =0, & = 0.7, 8 = 1. Additional tables and plots far= 1001000 can be
found in|R..and H.|(2010a). We evaluate the estimators froenptievious section
at M = 10000 runs in the respective situation (ideal/contamihated sample size
n = 40).

The contaminated data stems from the (shrinking) Gross Etodel (1.9), [1.ID)
with r = 0.5. Forn = 40, this amounts an actual contamination rate,gf= 7.9%.
As contaminating data distribution, we uSg; = Dirac(10%0), except for estimators
PE and MMed, where we us@’m = unif(1.42,1.59) in accordance with; from
Table[2. For MMed and kMedMAD, it turns out that, for maximaBS® we should
useGn; while Gy,; produces higher failure rates, so that in these two cases|Ifo
entries except for the failure rate, we u3g;, and for column “NA” we use&s, ;.

4.2 Results

Results are summarized in Tablés 4. Valuesig(Bias), trVar, and for MSE (stan-
dardized by/40 and 40, respectively) all come with corresponding CL3enb05%-
confidence intervals. Column “NA” gives the failure rate e tcomputation in per-
cent; basically, these are failures of MMed or kMedMAD to fmdero, which due
to the use of Hybr as initialization is then propagated to MEEILE, MDE, MBRE,
and OMSE. Column “time” gives the aggregated computatime tin seconds on a
recent dual core processor for the 10000 evaluations of stima&tor for ideal and
contaminated situation. For MLE, SMLE, MDE, MBRE, and OMSE do not in-
clude the time for evaluating the starting estimator (Hyar) only write down the
values for the evaluations given the respective startiignate. The row with the
respective best estimator is printed in bold face.

The simulation study confirms our findings of Secfidn 3; figumee—at large—
close to the ones of Tabfé 2. This holds in particular for theal situation, and for
the efficiencies, where in the latter case we obtain reaseagproximations already
for n= 100 (R..and H.,_2010a, Tables 8,9)—at the exception of SMLd&tha PE-
variants.

Essentially, the ranking given by asymptotics is valid afleat sample size 40—
as predicted by asymptotic theory, OMSE in its interpolated IF-corrected variant
at significance 95% is the best considered estimator as to, BIB®ugh, especially
for small sample sizes, MDE, MBRE, and Hybr come quite clastoefficiency in
the contaminated situation.

Using Hybr as starting estimator, the number of failurestoakept low already
atn = 40—less than 1% in the ideal model and about 3% under congdimim This
is not true for MMed and kMedMAD, which suffer from up to 33%ilfae rate at
thisn under contamination. So Hybr is a real improvement.
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ideal situation:

estimator ng(Bias) trVar MSE eff NA time
MLE 0.55 o005 741 ion 772 1022 100 360 113
PE 0.85 o027 1930 1154 2001 +167  0.39 000 13
MMed 891 1198 1.02e5 i242e3 1.02€5 +246e3  0.00 1044 168
kMedMAD 0.47 +oo07 1155 o030 1178 1029 0.66 808 197
Hybr 0.71 +oo07 1196 +om: 1246  +o030  0.62 Q79 223
SMLE 470 o006 9.49 o030 3162 1047 024 Q79 75
MDE 0.40 o006 1056  +o027 10.72  +o2s 0.72 079 384
MBRE 0.49 -o0s 1568  +o4s 1592 1044  0.48 Q79 302
OMSE 0.26 <006 9.62 1023 9.68 1022 0.80 Q79 600

contaminated situation:

estimator ng(Bias) trVar MSE eff NA
MLE 39412 2292 1.37e7 +120e6 1.52€7 +137¢6  0.00 361
PE 232 o049 6225 +67.90 67.64 16035  0.39 000
MMed 513 1117 3.56e3 i144e3 3.59€3 i145e3  0.01 2311
kMedMAD 232 o009 1882 1049 2421 +0e7 091 1910
Hybr 2.23 o009 1923  ios0 2421 +0er 091 303
SMLE 744 4310 251e5 11525 2.52€5 i152e5  0.00 361
MDE 2.64 o008 16.19  +o043 2315 o059  0.95 361
MBRE 1.77 o009 20.06  :o0s9 2319 i0e3 095 303
OMSE 275 +oo07 1439 1042 2193 061 1.00 303

Table 4 Comparison of the empirical robustness properties of thimators an = 40

The results for sample size 40 are illustrated in boxplotEgureg 4(g) and 4(pb),
respectively. In Figurg 4(p), the underestimation of shagramete€ by SMLE in
the ideal situation stands out; all other estimators in tleal model are bias-free at
large, while PE is somewhat less precise; under contaromgfigureg 4(0)), all esti-
mators are affected, producing bias, most prominently ordioateé. As expected,
this effect is most pronounced for MLE which is completeliwven away, while the
other estimators, at least in their medians stay near tleeptameter value.

5 Conclusion

We have compared MLE, SMLE, MDE CvM, PE, MMed, kMedMAD, ane thpti-
mally robust MBRE and OMSE as estimators for scale and shapereter€ and
B of the GPD on ideal and contaminated data in terms of locabéoihl robustness
properties.

Asymptotic theory and empirical simulations show that HiMedMAD, MDE,
MBRE, and OMSE estimators can withstand relatively highlietg rates as ex-
pressed by a(n) (E)FSBP of roughly3 SMLE in the variant without bias correction
as used in this paper, but with shrinking skipping rate, ahdENMave minimal FSBP
of 1/n, hence should be avoided.

High failure rates for MMed and kMedMAD for smai] and under contamination
limit their usability considerably, while Hybr works rehiby.

Looking at the influence functions, we see that, except folBviall estimators
have bounded IFs, so finite GES. As visible in Figlire 3, thamedgors do differ
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though in how they use the information present in an obsemvathis is reflected
in asymptotic, as well as (simulated) finite sample risksex@ll, we can recommend
OMSE with Hybr as initialization; it has achieved best rigktiie simulations, may
be computed fast, is efficient (100%) for contamination obwn radius and, for
& €10,2], never drops below 58% efficiency in the ideal model and fortamina-
tion of unknown radius (see Talilé¢ 3). MBRE, and MDE come ctos®@MSE with
minimal efficiencies effd = eff.ru = 41%, effre = 78% (MBRE) and efid = 45%,
eff.re = 69%, effru = 43% (MDE). Among the potential starting estimators, chgarl
kMedMAD in its variant Hybr stands out and comes closest tbaforementioned
group—eftid = eff.ru = 40%, effre= 78%. PE is also robust, but not really advis-
ably due to its low breakdown point and non-convincing edficies; the only reason
for using PE is its ease of computation, which should not bdesmsive, though.
Even worse is the popular SMLE without bias correction, \whdoes provide some,
but much too little protection against outliers. Worst, oficse, as to all robustness
aspects is MLE.
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Fig. 4 Boxplots
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