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In this Letter we describe a simple randomized benchmarking protocol for quantum information
processors and obtain a sequence of models for the observable fidelity decay as a function of a
perturbative expansion of the errors. We are able to prove that the protocol provides an efficient
and reliable estimate of an average error-rate for a set operations (gates) under a general noise model
that allows for both time and gate-dependent errors. We determine the conditions under which this
estimate remains valid and illustrate the protocol through numerical examples.

The challenge of characterizing the level of coherent
control over a quantum system is a central problem in
contemporary experimental physics and a fundamental
task in the design of quantum information processing
devices. Full characterization of any quantum process
is possible though quantum process tomography (QPT)
[1]. This has been successfully applied to the measure-
ment of up to three coupled qubits (two-level systems) in
NMR [2, 3], linear optics [4], atomic ions [5] and super-
conducting qubits [6, 7]. However, QPT sufferers from
two shortcomings: the first is the often unrealistic as-
sumption that the set of measurements and state prepa-
rations admit much lower errors than the process which is
being characterized; the second is that the number of ex-
periments required grows exponentially with the number
of qubits, and hence QPT becomes infeasible in practice
for systems consisting of more then just a few qubits.

Recently there has been significant interest in scalable
methods for partial characterization of the noise affect-
ing a quantum process [8–10]. In particular, randomized
benchmarking (RB) protocols [11–13] have been conjec-
tured to provide a means for characterizing the level of
coherent control over a set of quantum transformations,
or gates, in a way that overcomes the two shortcoming of
QPT identified above. The practical feasibility of these
procedures has lead to initial experimental implementa-
tions of RB in atomic ions for different types of traps
[13, 14], NMR [15], superconducting qubits [6, 16], and
atoms in optical lattices [17]. In such protocols one sim-
ply measures the exponential decay rate of the fidelity as
a function of the sequence length for random sequences
of gates. The measured decay rate is presumed to give
an estimate of the average error probability per gate [11–
13, 18]. However, it is easy to show (via a counter exam-
ple with gate-dependent errors that consist of the exact
inverse of the gate applied) that the decay rate estimated
via RB methods can be totally unrelated to the actual
error-rate.

In this Letter we develop a perturbative expansion
for the error superoperators that leads to a sequence of
increasingly precise fitting models for the experimental
data, requiring only that the variation in the errors over

the RB gate set is not too strong. Our analysis is valid
for a realistic noise model admitting time-dependent and
gate-dependent errors and also accounts for state prepa-
ration and measurement errors. We derive an explicit
first-order fitting model for estimating the average error-
rate, as well as the degree of gate-dependence in the er-
rors associated with the RB gate set.

A RB protocol consists of the following steps:

Step 1. Generate a sequence of m + 1 quantum op-
erations with the first m operations chosen uniformly at
random from some group G ⊆ U(d) and the final opera-
tion (m+ 1) chosen so that the net sequence (if realized
without errors) is the identity operation. We are pri-
marily interested in the case where G corresponds to the
Clifford group on n-qubits (d = 2n) because each ele-
ment of the Clifford group can be realized efficiently on a
quantum processor, and because the required correction
operation can be pre-computed efficiently [19]. In prac-
tice each operation Cij will have some associated error
and the entire sequence can be modeled by the operation

Sim =©m+1
j=1

(
Λij ,j ◦ Cij

)
, (1)

where im is the m-tuple (i1, ..., im) and im+1 is uniquely
determined by im. In the above, Λij ,j is a linear superop-
erator representing the error (e.g., a completely positive
trace-preserving map) associated with the operation Cij ,
and is allowed to depend independently on the time-step
j. This is a very general noise model – the only assump-
tion is that the correlation time of the environment is
negligible on time-scales longer than the time of the op-
eration Cij .

Step 2. For each sequence the survival probability
Tr[EψSim(ρψ)] is measured. Here ρψ is the initial state
taking into account preparation errors and Eψ is the
POVM element that takes into account measurement er-
rors. In the ideal noise-free case ρψ = Eψ = |ψ〉〈ψ|.

Step 3. Average over random realizations of the se-
quence to find the averaged sequence fidelity,

Fseq(m,ψ) = Tr[EψSm(ρψ)], (2)
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where

Sm =
1

|{im}|

|{im}|∑
im

Sim (3)

is the average sequence operation.
Step 4. Fit the results for the averaged sequence fi-

delity [Eq. (2)] to the model

F (1)
seq (m,ψ) = A1p

m +B1 + C1(m− 1)(q − p2)pm−2 (4)

derived below. The coefficients A1, B1, and C1 absorb
the state preparation and measurement errors as well as
an edge effect from the error on the final gate. The differ-
ence q−p2 is a measure of the degree of gate-dependence
in the errors, and p determines the average error-rate r
according to the relation

r = 1− p− (1− p)/d. (5)

In the case of gate-independent and time-independent
errors the results will fit the simpler model

F (0)
seq (m,ψ) = A0p

m +B0 (6)

derived below, where A0 and B0 absorb state preparation
and measurement errors as well as an edge effect from the
error on the final gate.

The average error-rate r that is determined by the
above protocol has the following independent meaning.
For each error Λij ,j (associated with the implementation
of the ideal operation Cij ), the probability of no error
occurring for input state φ is just the survival probabil-
ity sij ,j(φ) = 〈φ|Λij ,j(|φ〉〈φ|)|φ〉. The (state-dependent)
error probability for this operation is 1 − sij ,j(ψ). If we
average this error probability over all pure input states
using the invariant (Haar) measure dφ, this defines a
Haar-averaged error-rate for each operation 1 − sij ,j =
1−
∫
dφ sij ,j(φ). Then, given any set of errors {Λij ,j} as-

sociated with a set of operations {Cij}, we invoke another
average over this error set in the usual way,

r ≡ 1

|{(ij , j)}|

|{(ij ,j)}|∑
ij ,j

(1− sij ,j). (7)

which defines r, the average error-rate we want to esti-
mate.

The average error-rate r can be determined from the
observed fidelity decay in an RB experiment when the
set {Ci} is a unitary 2-design [18] as well as a subgroup
of U(d). The former condition allows us to write

sij ,j =
1

K

∑
l

〈ψ|C†l ◦ Λij ,j ◦ Cl (|ψ〉〈ψ|) |ψ〉, (8)

where K is the size of the Clifford group on n-
qubits. Direct evaluation of the average over Cliffords

[18, 20], or equivalently the Haar-average [11, 21], gives∫
dψ〈ψ|Λij ,j(|ψ〉〈ψ|)|ψ〉 = pij ,j+(1−pij ,j)/d, where pij ,j

is a Haar-invariant (depolarization) parameter charac-
terizing each error operator Λij ,j . The average p ≡

1
|{(ij ,j)}|

∑
(ij ,j)

pij ,j is the parameter appearing in the

fitting models presented in Eqs. (4) and (6), which we
now derive.

In the idealized case of gate-independent and time-
independent errors we have Λij ,j = Λ for each (ij , j).

Repeated application of the identity operation Cij ◦ C
†
ij

in Eq. (1) gives

S(0)im
=Λ ◦©m

j=1

(
D†ij ◦ Λ ◦ Dij

)
(9)

where we have used Cim+1
◦ · · · ◦ Ci1 = 11 and for each j

defined a new gate Dij = Cij ◦ · · · ◦ Ci1 that is indepen-
dent from the gates which where performed at time-steps
earlier than j (Cij−1 etc ). Substituting this into Eqs. (2)
and (3) the average sequence fidelity is

F (0)
seq (m,ψ) = Tr[EψΛ ◦ Λ◦mtwirl(ρψ)], (10)

where Λtwirl =
∑
ij

Λ̃ij/K with Λ̃ij = D†ij ◦ Λ ◦ Dij . We
are left with an m-fold composition of gate-independent
twirls over the Clifford group which implies the twirled
operation Λtwirl is a depolarizing channel (Λdep) [18].
Hence the gate-independent sequence fidelity reduces
to Eq. (6) with A0 = Tr[EψΛ(ρψ − 11/d)] and B0 =
Tr[EψΛ(11/d)].

More realistically the noise operator can be both gate
and time-dependent Λ → Λij ,j . We can character-
ize the behavior of Fseq(m,ψ) by considering a pertur-
bative expansion of each Λij ,j about the mean error

Λ ≡ 1
|{(ij ,j)}|

∑|{(ij ,j)}|
ij ,j

Λij ,j . Defining δΛij ,j = Λij ,j − Λ

∀ij , our perturbative approach will be valid provided
δΛij ,j is small for each ij in a sense to be made precise
later. Note that each δΛij ,j is a Hermitian-preserving,
trace-annihilating linear superoperator.

Using the same change of variables described above, ie,

Dim =©m
j=1Cij , we find that Sim = S(0)im

+ S(1)im
+ S(2)im

...

where S(0)im
corresponds to the gate independent case, S(1)im

is the first order correction and so on. The first order
correction consists of three terms: (1a) the small gate-
dependent perturbation acts on the first gate, (1b) it acts
somewhere in the middle (there are m−1 of these terms),
and (1c) it acts on the final gate. Explicitly,

S(1a)im
=Λ ◦ Λ̃im ◦ ... ◦ Λ̃i2 ◦

(
D†i1 ◦ δΛi1,1 ◦ Di1

)
S(1b)im

=Λ ◦ Λ̃im ◦ ... ◦
(
D†ij ◦ δΛij ,j ◦ Dij

)
◦ ... ◦ Λ̃i1

S(1c)im
=δΛim+1,m+1 ◦ Λ̃im ◦ ... ◦ Λ̃i1 .

(11)

Averaging each of these terms over im gives

S(1a)m =Λ ◦ Λ◦m−1dep ◦ (Q1 − Λdep), (12)
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where we define for each j, Qj =
∑
ij
Dij
†◦Λij ,j ◦Dij/K.

Note the correlations between the noise and the gate op-
erations prevent this from resulting in a depolarized chan-
nel.

For the m − 1 first-order terms with j ∈ {2, ...,m}
(case b) averaging gives S(1b)m =

∑m
j=2 Λ ◦ Λ◦m−jdep ◦(

(Qj ◦ Λ)dep − Λ◦2dep

)
◦ Λ◦j−2dep where the subscript “dep”

represents the depolarization of the operator within
brackets. For these terms the main trick is to realize
that we can re-expand Dij = Cij ◦ Dij−1

in order to de-

polarize C†ij ◦ δΛij ,j ◦ Cij ◦Λ under the twirling operation∑
ij−1
D†ij−1

◦·◦Dij−1/K. Using the fact that depolarizing

channels commute, S(1b)m simplifies to

S(1b)m =

m∑
j=2

Λ ◦
(

(Qj ◦ Λ)dep − Λ◦2dep

)
◦ Λ◦m−2dep . (13)

To find the expression for S(1c)m we have to use the fact
that the Cliffords are a group. If i1, ..., im−1 are fixed,
averaging over the im index runs through every Clifford
element with equal frequency in the Dim random vari-
able. Since Λim+1,m+1 is just the error associated with

the gate D†im ,
∑
im
δΛim+1,m+1 ◦

(
D†im ◦ Λ ◦ Dim

)
/K is

independent of the i1, ..., im−1 indices and

S(1c)m = (Rm+1 − Λ ◦ Λdep) ◦ Λ◦m−1dep (14)

where Rm+1 =
∑
im

Λi′m,m+1 ◦
(
C†im ◦ Λ ◦ Cim

)
/K. In

the above sum Λi′m,m+1 denotes the error that arises

when the Clifford operation C†im is applied at final time-
step m+ 1.

Combining these three terms it can be shown that the
average sequence fidelity is given by Eq. (4) with

A1 = Tr

[
EψΛ

(
Q1(ρψ)

p
− ρψ +

(p− 1)11

pd

)]
+Tr

[
EψRm+1

(
ρψ
p
− 11

pd

)]
(15)

B1 = Tr

[
EψRm+1

(
11

d

)]
(16)

C1 = Tr

[
EψΛ

(
ρψ −

11

d

)]
(17)

where q =
∑m
j=2 qj/(m − 1) and qj is depolarizing pa-

rameter defined by (Qj ◦ Λ)dep(ρ) = qjρ + (1 − qj)11/d.
Here we see that the edge effects are represented by the
three coefficients A1, B1, and C1 and there is a slight
m dependence in the A1, and B1 coefficients due to the
last gate. This is unavoidable but as long as m is large
enough the exponential dependence will be distinguished
from this dependence. Furthermore, if the errors don’t
change as a function of time and only depend on the
gate implemented (not time) then this dependence also
disappears.

We now give conditions for when it is justified in stop-
ping the expansion at first order. We use the “1 → 1”
norm on linear superoperators maximized over Hermi-
tian inputs, denoted || · ||H1→1, to make this precise [22].
Applying the triangle inequality multiple times we find
that for each order k∥∥∥S(k)

m

∥∥∥H
1→1
≤

∑
jk>...>j1

γjk ...γj1 (18)

where γj :=
∑
i

∥∥Λij − Λ
∥∥H
1→1

/K is a measure of the
variation in noise. In the case where the noise is time-
independent Eq. (18) becomes ‖S(k)

m ‖H1→1 ≤
(
m+1
k

)
γk.

Note that this norm bounds the fidelity and thus we have

|F (k+1)−F (k)| ≤
∥∥∥S(k)

m

∥∥∥H
1→1
≤
(
m+1
k

)
γk. Hence the k+1

order correction to the fidelity formula can be neglected
provided that

(m+ 1− k)γ/(1 + k)� 1.

Therefore we can ignore second order terms when the
variation in error strengths satisfies γ � 2/m. Note that
in practice one also needs m � 1 in order to generate
enough data points for a reasonable estimate of p in the
fitting model.

As an example of the procedure, we first consider
the case of benchmarking a single qubit under time-
independent unitary errors with no state-preparation or
measurement errors. For each Cj , the unitary error was
constructed by finding the Hamiltonian that generates
the Clifford operation via Cj(ρ) = exp(−iHj)ρ exp(iHj).
For eachHj , the unitary exp(−iHj) was diagonalized and
to simulate the error one of the eigenvalues was multiplied
by eiδ and the other by e−iδ. Physically this corresponds
to over/under rotations around Hj .

Two cases for δ were analyzed: δ = 0.1 (case A) and
δ chosen uniformly at random in the range [0.075, 1.125]
(case B). Numerical values for Fseq(m,ψ) are shown in
Fig. 1 as blue points. Note that we have subtracted the
DC offset in the model so that pure exponentials appear
as straight lines on the semilog plot. In the present case
B1 = B0 = 1/2 since the noise is unital and there are
no state preparation or measurement errors. For both
cases the first order result fits the data extremely well
(green line) while the zero’th order (red dashed) only
approximates the sequence fidelity when the variation
in δ is small (case A). Furthermore, in case B the non-
exponential behaviour of the average sequence fidelity is
clearly visible. This is also apparent in Table I which
shows that the gate-dependence fit parameter q − p2 is
much larger for case B than case A.

We also considered two other error models of practi-
cal relevance: unitary error with depolarizing noise and
unitary error with amplitude damping. The depolariz-
ing and damping parameters were chosen randomly in
0.9875 ± 0.01 with the unitary error chosen in the same



4

 

 

F s
eq

(m
,ψ

) -
1/

2

Sequence length, m

Numerics
Zero order
First order

A

B

0 5 10 15 20 25 30 35 40 45 50
10-2

10-1

FIG. 1. (color online) Average sequence fidelity as a function
of sequence length for a error model with unitary noise. See
text for details.

Unitary A Unitary B Unitary and Dep. Unitary and T1

p 0.980 0.943 0.982 0.988

r 1.05e-2 2.85e-2 8.75e-3 5.85e-3

q − p2 -2.73e-4 -6.83e-3 -2.77e-8 -2.80e-8

TABLE I. Numerical results for the parameter p, error rate
r, and our gate dependence measure q − p2 for the four cases
of noise models considered. See text for details.

way as case A. The results are summarized in Table I - in
both these cases the simulations are well approximated
by the zero’th order solution. These results further illus-
trate that the zero’th-order randomized benchmarking
model gives a robust estimate of the error-rate for a va-
riety of error models provided that the variation in the
noise is small enough.

The size of the Clifford group scales as 2O(n2) [23] and

so the number of sequences of length m scales as 2mO(n2).
Hence full averaging over the Clifford group is not effi-
cient. Fortunately, random sampling provides an efficient
means of estimating the full average. Intuitively this can
be understood by realizing that the end goal is simply to
estimate a single probability for each m, and the number
of repetitions required for this should be no more than
what is required to estimate the bias of a coin. More
precisely, Hoeffding’s inequality specifies that, with con-
fidence δ and accuracy ε, the number of trials k needed for
approximating the average sequence fidelity is no larger
then k = ln(2/δ)/2ε2, which is independent of m and
n. This result assumes one can sample uniformly from
the Clifford group. For experiments on just a few qubits,
one can sample uniformly from the Clifford group by con-
structing an exhaustive list of distinct Clifford elements
and then sampling uniformly from that list.

For arbitrary n, the efficiency of our protocol relies on
the ability to sample uniformly either from the full Clif-
ford group or some approximate 2-design that is also a
group, in an efficient way. One method for producing ap-
proximately uniformly random elements of the full Clif-

ford group (and hence creating an approximate 2-design),
proposed in Ref. [20], consists of randomly applying gates
from a specific generating set G for the Clifford group. In
this approach the number of gates b that are required is
shown to scale polynomially in n when the generating set
consists of C-NOT’s on all pairs of qubits, and all single
qubit Hadamards and phase gates (with inverses).

Another approach is to take the generating set to be
the full two-qubit Clifford group on each pair of qubits,
in which case the number of gates needed to generate
an approximate 2-design on n qubits is a polynomial of
substantially smaller degree [24]. In any of these random
circuit approaches the RB protocol yields an error-rate r
that is associated with the cumulative error operator for
a sequential block of one and two-qubit generating gates
of size b. The total number of gates in the RB protocol is
mb, where m is the number of operations sampled from
the corresponding approximate 2-design.

In conclusion we have described a protocol for estima-
tion of error-rates in noisy quantum information proces-
sors that consists of applying random sequences of Clif-
ford operations and measuring the average sequence fi-
delity. We prove that, provided the variation in the errors
is not too strong, this protocol gives an efficient and reli-
able estimate of the average error-rate for a realistic noise
model which admits both gate and time-dependent er-
rors. We derive zero’th-order and first-order fitting mod-
els for the experimental data and numerically illustrate
the relevance of both models.
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