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Programmable entanglement oscillations in a non Markovian channel
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We suggest and demonstrate an all-optical experimental setup to observe and engineer entangle-
ment oscillations of a pair of polarization qubits in a non-Markovian channel. We generate entangled
photon pairs by spontaneous parametric downconversion (SPDC), and then insert a programmable
spatial light modulator in order to impose a polarization dependent phase-shift on the spatial do-
main of the SPDC output and to create an effective non-Markovian environment. Modulation of
the enviroment spectrum is obtained by inserting a spatial grating on the signal arm. In our exper-
iment, programmable oscillations of entanglement are achieved, with the maximally revived state
that violates Bell’s inequality by 17 standard deviations.

PACS numbers: 03.67.Bg,03.65.Ud,03.65.Yz,42.50.Dv

Entanglement of a bipartite system is usually degraded
by the interaction of each subsystem with the environ-
ment, which induces decoherence, i.e. an irreversibile
loss of information from the system to the rest of the uni-
verse [1, 2]. If the interaction is Markovian, i.e. the loss
of information is unidirectional, from the system to the
environment, then entanglement monotonically decreases
and may be also destroyed in a finite time [3–6]. On the
other hand, when some memory effect is present in the
interaction between the system and the environment, i.e.
when the noisy channel is non-Markovian [7, 8], then a
non monotone behaviour of entanglement and, more gen-
erally, of quantum correlations may be observed [9–17].
In fact, entanglement oscillations are expected in con-
tinuous variable systems [18, 19], whereas collapses and
revivals of entanglement have been observed with polar-
ization qubits [20].

In this Letter we suggest and demonstrate for the
first time an experimental setup to observe and engi-
neer entanglement oscillations in a programmable way.
We address the spatial domain of spontaneous paramet-
ric downconversion, and exploit a programmable spatial
light modulator to impose a polarization- and position-
dependent phase-shift. Since the polarization qubits are
obtained by tracing out the spatial degrees of freedom,
our apparatus allow us to analize the entanglement dy-
namics within the ”coherence time” of the effective non-
Markovian channel. In this framework an effective envi-
ronment spectrum is obtained by acting on the spatial
profile of the SPDC. In turn, in order to investigate en-
tanglement oscillations we insert a spatial grating on the
signal arm to achieve a modulation of the environment
spectrum. Besides fundamental interest, our scheme may
found applications in engineering decoherence, e.g. in
quantum process tomography.

In our setup a two crystal geometry [21–23] is used to
produce two-qubit polarization entangled states by type-
I downconversion in a non-collinear configuration. The

state at the output of the crystal can be written as

|ψ〉∝

∫∫

dθdθ′f(θ, θ′)
[

|Hθ〉|Hθ′〉+ eıΦ(θ,θ′)|V θ〉|V θ′〉
]

where |Pθ〉 denotes a single photon state emitted with
polarization P = H,V at angle θ (θ′) along the signal
(idler) arm, θ and θ′ are the shifts from the central emis-
sion angle (θ0, θ

′
0 ≃ 3◦), and the integrations range from

− 1
2∆ to 1

2∆, ∆ being the angular aperture of two slits
along the downconversion paths, see Fig. 1.
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FIG. 1: (Color online) Schematic diagram of experimental
setup. A linearly polarized cw laser diode at 406 nm (L)
pumps a couple of BBO crystals cut for Type-I downconver-
sion. The horizontal a nd vertical photon pairs are balanced
by a half wave-plate set along the pump path, whereas an
additional BBO crystal is set on the pump path to compen-
sate the temporal delay. Signal and idler cones travel through
the SLM and are spatially selected by two irises and two slits
set at D = 500mm with ∆x = 5mm (∆ = 10mrad). Two
long-pass filters cut-on wavelength 715 nm are used to reduce
the background. A hand-made grating can be inserted on
the signal arm. Photons are focused in two multi-mode fibers
(MMF) and sent to single-photon counting modules. Polariz-
ers at the angles 45◦, −45◦ or 45◦, 45◦ are inserted to measure
visibility whereas a quarter-wave plate, a half-wave plate and
a polarizer are used for the tomographic reconstruction.

The angle-dependent phase-shift Φ(θ, θ′) = φ(θ) +
φ′(θ′) + Φ0 comes from the difference between the op-
tical path of vertically polarized photon pair, generated
in the first crystal, which must travel along the second
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one, and the optical path of the pump beam traversing
the first crystal before generating the horizontally polar-
ized pair in the second crystal. These angular depen-
dent terms are responsible for decoherence of polariza-
tion qubit and should be removed in order to obtain an
effective source of entangled pairs [28]. Upon expand-
ing to first order the terms in Φ(θ, θ′) [31], we arrive at
φ(θ) = γθ and φ′(θ′) = −γθ′. In our apparatus, a one di-
mensional programmable spatial light modulator (SLM),
is set both on signal and idler path (see Fig. 1), and is
used to achieve a complete purification (i.e., Φ = Φ0) by
inserting a linear phase function φSLM (θ) = −γθ on the
signal path and φ′SLM (θ′) = γθ′ on the idler path [29–
32]. The constant phase Φ0 allows to generate different
maximally entangled states. In the present experiment
we set Φ0 = 0 by adding a proper constant phase to
φSLM . In order to obtain an effective non-Markovian
channel the SLM is then used to impose an additional
phase function φs(θ) on the signal arm. Before going
to details, let us devote some attention to the angular
function f(θ, θ′), which will be important for the follow-
ing discussion and assumed to have the factorized form
g(θ)g′(θ′). This assumption has been experimentally ver-
ified by measuring the coincidence counts distribution
C = |fexp(θ, θ

′)|2, within a coincidence time window
of 50ns, as a function of the signal and idler slit posi-
tions θ and θ′. We set two slits of aperture ∆x = 1mm
(∆ = 2mrad) along the down-conversion arms and mea-
sured coincidence counts within a time window of 10s for
slit positions θ, θ′ = −2∆,−∆, . . . ,+2∆. In Fig. 2 we
show the experimental data; the phase matching central
angles correspond to θ, θ′ = 0. The corresponding coinci-
dence counts distribution has then been compared with

the one computed as
|fexp(θ,0)fexp(0,θ

′)|2

|fexp(0,0)|2
and an excellent

agreement was found, also corroborated by a significant
χ2 test (Pχ2>χ2

0
≃ 0.9). From the results of Fig. 2 we also

infer a Gaussian-like shape for the angular distributions
g(θ), g′(θ′), with a FWHM of 8.6mrad.
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FIG. 2: (Color online) Coincidence counts distribution C =
|fexp(θ, θ

′)|2, within a coincidence time window of 50ns, as a
function of the signal and idler slit positions θ and θ′. The
phase matching central angles correspond to θ, θ′ = 0.

Once the state has been purified and the addi-

tional phase φs(θ) = αθ has been imposed to the
signal photon, the dependence on θ′ is traced out,
and thus no terms containing g′(θ′) appear in the
polarization density matrix ̺ = Trθ,θ′ [|ψ〉〈ψ|] =
1
2 (|HH〉〈HH|+ ε|VV〉〈HH|+ ε∗|HH〉〈VV|+ |VV〉〈VV|)

where ε =
∫

dθ |g(θ)|
2
eıαθ is the decoherence factor. It

can be shown that, for the state ̺, the concurrence
is C = |ε| [20]. Since the angular distribution g(θ) is
symmetric, ε is real and positive, and we may write
̺ = ε̺b + (1 − ε)̺m, where ̺b denotes a Bell state and
̺m the corresponding mixture. In turn, in this case,
ε equals the interferometric visibility V (α) = Re[ε]
which, in turn, coincides with the concurrence C. Since
we address the spatial domain, it is straightforward
to insert an amplitude modulation on g(θ), e.g. by
inserting a physical obstacle along the signal optical
path. Moreover, from the expression of the visibility
V (α), we see that a periodic structure of the angular
distribution would induce oscillations, whereas entan-
glement decrease and then death may be expected for a
non periodical angular distribution. In this framework
α may be considered as the evolution parameter of the
dynamics of the (noisy) channel. In our apparatus, the
amplitude modulation is implemented by means of a
hand-made grating with a period δx and a white region
width δw centered along the signal arm (see Fig. 1).
As we will see, the narrower are the white regions
the higher entanglement oscillations are expected.
Formally, the insertion of the grating is equivalent to
the substitution g(θ) → g(θ) · m(θ) in the visibility, up

to the normalization
∫

dθ |g(θ)m(θ)|
2
= 1, where m(θ)

is the periodical unitary step function imposed by the
grating. By simply inserting or removing the grating it
is possible to compare the different dynamics imposed
by a periodical or non-periodical angular distribution.

The experimental setup is shown in Fig. (1): a linearly
polarized cw, 406nm laser diode (Thorlabs LPS-406-FC),
with a transverse profile TEM00, pumps a couple of 1mm
thick BBO crystals cut for Type-I downconversion. The
|HH〉 and |VV〉 pairs are balanced by a half wave-plate set
along the pump path. A BBO crystal with the proper
length and optical axis angle is set on the pump path, and
is used to counteract the decoherence effect due to the
temporal delay between the two components [24–28, 30–
32]. This crystal introduce a delay time between the
horizontal and vertical polarization of the pump which
precompensates the delay time between the |VV〉 pair
generated by the first crystal and the |HH〉 pair from
the second one. Signal and idler cones travel through
the SLM and are spatially selected by two irises and two
slits set at D = 500mm. The low quantum efficiency of
our detectors (∼ 10%) forces us to couple large angu-
lar regions: we set ∆x = 5mm (∆ = 10mrad). As we
discuss in the following, this will decrease the maximum
value of the visibility. The down-conversion output is not
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spectrally filtered, whereas two long-pass filters (cut-on
wavelength 715nm) are used to reduce the background.
A hand-made grating can be inserted on the signal arm.
Photons are focused in two multi-mode fibers (MMF)
and sent to home-made single-photon counting modules,
based on an avalanche photodiode operated in Geiger
mode with passive quenching. In order to measure the
visibility, we insert two polarizers, set at the angles 45◦,
−45◦ for the minimum and 45◦, 45◦ for the maximum.
For the tomographic reconstruction we insert on both
paths a quarter-wave plate, a half-wave plate and a po-
larizer.

After purification we study the behaviour of the visi-
bility as a function of the dimensionless evolution param-
eter α, governing the linear phase function φs(θ) = αθ
imposed to the signal by the SLM. As previously dis-
cussed, oscillations of entanglement are expected when
the grating is inserted. Because of the pixel discretization
a step-function with an angular resolution ζ = 0.3mrad is
physically inserted by the SLM in order to approximate
the linear functions φSLM (θ), φ′SLM (θ′). Experimentally,
using the SLM, we impose the phase functions

φeSLM(n) = −aoptn+ b on idler

φeSLM(n) = aoptn+ φes(n) on signal ,

where n is the distance in pixels from the center of the
signal beam (n = 0 for θ = 0), aopt = 0.12 rad/pixel
is the optimal slope which allows us to achieve a com-
plete purification, and b = −Φ0. The linear function
φes(n) = a n is also inserted to study the dynamics,
where the experimental evolution parameter is given by
a = αh/L rad/pixel, h = 100µm being the pixel width
and L ≃ 330mm the distance between the SLM and the
generating crystals. Since the pixel discretization of the
SLM imposes the condition a≪ 2π/pixel, high values of
a must be neglected in our analysis. We experimentally
verified that the curve V (a) saturates to the uncompen-
sated value when (a+aopt) → 2π. The revival is expected
at arev = 2πD

δx
h
L

or, in terms of the angular grating pe-
riod δθ, αrev = 2π

δθ
. We choose δx = 2mm, which leads

at arev = 0.476 rad/pixel, in order to avoid high val-
ues of the evolution parameter, and we set δw = 0.4δx.
In Fig. (3) we present the experimental results, together
with the theoretical prediction calculated from the ex-
pression of the visibility, as a function of the experimental
evolution parameter a. Blue circles and red squares are
the experimental data obtained with and without grat-
ing, respectively. Blue solid line and red dashed line are
the theoretical predictions.

In order to fully characterize the output state we have
also performed state reconstruction by polarization qubit
tomography for different values of the evolution param-
eter a. The procedure goes as follows: we measure a
suitable set of independent two-qubit projectors [33, 34]
and then reconstruct the density matrix from the exper-

FIG. 3: (Color online) Visibility as a function of the evolution
parameter a. Blue circles and red square are the experimen-
tal data obtained with and without grating (errors within the
symbols). Blue solid line and red dashed line denote the cor-
responding theoretical predictions.

imental probabilities using maximum-likelihood recon-
struction of two-qubit states. The tomographic measure-
ments are obtained by inserting a quarter-wave plate, a
half-wave plate and a polarizer. The purification pro-
cedure with the grating inserted leads to a visibility
V = 0.881 ± 0.004, the density matrix is graphically
represented in the upper left panel of Fig. 4. Increas-
ing the evolution parameter to a = 0.23, the visibil-
ity decreases to V = 0.120 ± 0.016. The correspond-
ing tomographic reconstruction, depicted in the upper
right panel of Fig. 4, well illustrate the degradation
of entanglement. However, we found an relevant re-
vival after a further increasing of the evolution param-
eter to a = 0.48, where we have V = 0.696 ± 0.013.
The corresponding tomographic reconstruction (real and
imaginary parts) are reported in the lower panels of
Fig. 4. In order to show the revival of the nonlocal
correlations we have also measured the Bell parame-
ter B = |E(β1, β2) + E(β1, β

′
2) + E(β′

1, β2)− E(β′
1, β

′
2)|

where E(β1, β2) denotes the correlations between mea-
surements performed at polarization angle βj for the
mode j. We found B = 2.341 ± 0.019, which violates
CHSH-Bell inequality [35] by more than 17 standard de-
viations. Comparing this curve with the one obtained
without the grating we see that in the latter case no re-
vival occurs after the degradation of entanglement. We
also notice that the minimum occurs for lower values of
the evolution parameter compared to the case with the
grating.

The residual lack of visibility after the purification pro-
cedure is mainly due to the very broad downconversion
spectral range that is selected by the slits. In fact, with
the selected slit aperture, ∆x = 5 mm → ∆ = 10mrad,
we estimate that about 200 nm of the downconversion
spectrum are coupled. By narrowing the slit aperture to
∆ = 4mrad only 60 nm are selected, and the visibility is
found to increase at V = 0.963 ± 0.005. This suggests
some achromatic effect in the action of the SLM, which
prevents a perfect purification. The present experiment
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FIG. 4: (Color online) Tomographic reconstruction of a state
evolving in the effective non-Markovian channel. In the up-
per left plot the two-qubit density matrix just after the pu-
rification, with visibility V = 0.881 ± 0.004. Upon increas-
ing the evolution parameter to a = 0.23 we achieve the
minimum of entanglement oscillations: the density matrix is
shown in the upper right plot, the corresponding visibility
is V = 0.120 ± 0.016. In the lower panels, we show the real
and the imaginary part of the reconstructed density matrix at
the maximum of entanglement oscillations, which occurs for
a = 0.48. The corresponding visibility is V = 0.696 ± 0.013,
and the Bell parameter B = 2.341 ± 0.019.

has been performed with the larger aperture to compen-
sate the low quantum efficiency of photodetectors.
In conclusion, we have suggested and demonstrated

an experimental setup to observe oscillations of polariza-
tion entanglement in a programmable way. Our scheme
is based on a spatial light modulator, which is inserted
on the spatial domain of the downconversion output to
achieve an effective non-Markovian environment, and on
a grating, which has been employed to create a tunable
environment spectrum. Our scheme is all-optical and al-
lows us to generate and detect revivals of entanglement
and nonlocality, thus paving the way for engineering of
decoherence for polarization qubits.
MGAP thanks Sabrina Maniscalco, Stefano Olivares,

Ruggero Vasile, Pino Vallone, Marco Genovese, and Bas-
sano Vacchini for useful discussions.
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