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Abstract

In this paper we study how perturbing a matrix changes its non-

negative rank. We show that the non-negative rank is upper-semi-

continuos and we describe some special families of perturbations. We

apply our results to the study of statistical models.
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1 Introduction

The rank of a matrix gives the least number of rank one matrices, or dyadic
products, needed to write the matrix as a sum of dyads. More precisely a
n×m matrix P such that rk(P ) = k can be written as

P = c1(r1)
t + . . .+ ck(rk)

t , (1)
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where the column vectors ci and ri have the proper size. Even if P has
non-negative entries, the vectors ci and ri, are allowed to have negative en-
tries. If we require the vectors to have non-negative entries the least number
of summands is called the non-negative rank of P , namely rk+(P ). The
non-negativity constraints make the situation more complex, and the non-
negative rank of a matrix is harder to study than the ordinary rank, see e.g.
[CR88]. In general rk+(P ) ≥ rk(P ). Therefore, it could not be possible to
decompose a rank k matrix into the sum of exactly k dyadic products ci(ri)

t,
where ci and ri are non-negative vectors. The relations between the ordinary
rank and the non-negative rank have received an increasing attention in the
last years, both from a theoretical and an applied point of view. Some recent
references are [BL09], [DLC08], [LC10], [PPP06] and [CR10].

As far as we know, there is no efficient way to compute the non-negative
rank of a matrix in the general situation. However, there are many recently
proposed algorithms to deal with the analogous problem of non-negative ma-
trix factorization, e.g. see [LS01] or [HVD08] for an application to stochastic
matrices.

In this paper we study how the non-negative rank of a matrix is affected
by small perturbations of the matrix. This is of particular interest when the
matrix arises in Probability of Statistics.

Here, a perturbation is intended in the following topological sense. Given
a matrix P we consider a neighborhood of P in the Euclidean metric topology.
We call any matrix in the neighborhood a perturbation of P . Clearly this
notion is more meaningful and interesting when a small neighborhood is
considered and hence matrices close to P are studied.

We show that the non-negative rank is upper-semicontinuos in the Eu-
clidean topology, see Theorem 3.1, and hence it cannot decrease by small
perturbations of the matrix. We also produce examples of perturbations
preserving the non-negative rank, see Proposition 3.2. Using a Jacobian an-
alytic approach we show that, under suitable conditions, perturbing a matrix
leaving the ordinary rank fixed also leaves the non-negative rank unchanged,
see Proposition 4.2.

The notion of non-negative rank has also relevant applications in Proba-
bility and Statistics. In fact, a probability matrix with dyadic expansion as
in Equation (1) belongs to the mixture of k independence models for cate-
gorical data. Mixture models play a central role in applied probability, as
they are the key tool in modelling partially observed phenomena, see [Agr02]
for more details. More recently, mixture models have been considered also
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in the framework of Algebraic Statistics, a branch of Statistics which makes
use of notions and techniques from Computational Algebra and Algebraic
Geometry, see [PS05, DSS09, GRRW10].

The paper is structured as follows. In Section 2 we recall some basic no-
tions. In Section 3 and Section 4 we use a topological and analytic approach
to study perturbations. In Section 5 we use our results to work out some
significant examples. Finally, in Section 6 we show how our results relate to
Statistics.

2 Basic facts

In this section, we recall some known fact about the non-negative rank. The
definitions and the results presented below will be use throughout the paper.
Non-negative matrices. A non-negative n ×m matrix is a point in R

nm
≥0

where

R
nm
≥0 = {(pi,j) : pi,j ∈ R, pi,j ≥ 0} .

Stochastic matrices. A stochastic matrix is a non-negative matrix having
column sum equal to one. To each non-negative matrix we can associate a
stochastic matrix. Denote by P = [c1, c2, . . . , cm] the set of columns of a
nonnegative matrix. Define the scaling factor σ(P ) by

σ(P ) := diag{||c1||1, . . . , ||cm||1}

where || · ||1 is the 1-norm in R
n, and the pullback map θ(A) by

θ(A) = Aσ(A)−1.

Remark 2.1. In Probability, stochastic matrices are defined as the non-
negative matrices having row sums equal to one. Here we adopt the conven-
tion of normalizing the columns. As the rank and the non-negative rank are
clearly invariant under transposition this convention do not affect our results.

Simplex. The n-simplex in R
n is

∆n =

{

(x1, . . . , xn) ∈ R
n : xi ≥ 0,

n
∑

i=1

xi ≤ 1

}

.
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Note that a n × m stochastic matrix P can be seen as a collection of m
points in ∆n. More precisely we consider the map πn assigning to a matrix
the set of its columns, that is πn(P ) = {c1, . . . , cm} ⊂ ∆n. All the points ci
lie on the same face of the n-simplex, which is a (n− 1)-simplex. Hence, by
dropping the last component of each ci, we have a map πn−1 sending P into
a collection of m points in ∆n−1.
Non-negative rank. Given a n × m non-negative matrix P , the non-
negative rank of P is the smallest integer k such that

P = c1(r1)
t + . . .+ ck(rk)

t

where the vectors ci ∈ R
n and the vectors ri ∈ R

m have non-negative entries.
The non-negative rank of the matrix P is denoted with rk+(P ).

Remark 2.2. Notice that, for a non-negative matrix P , the following holds:
rk+(P ) = rk+(θ(P )). Hence, the study of the non-negative rank of stochastic
matrices and the study of the non-negative rank of non-negative matrices
coincide (see [LC10]).

Geometry and non-negative rank. Let Z be a set of points in ∆n−1 ⊂
R

n−1. The set Z is a (k, r)-set if k is the minimum integer i such that
Z ⊂ ∆k−1 and r is the minimum integer j such that Z ⊂ ∆n ∩Hj−1 where
Ht is an affine space of dimension t. To apply this to non-negative rank we
proceed as follows.

Lemma 2.3. Let P be a n×m non-negative matrix and let Z = πn−1θ(P ).
Then, Z is a (k, r)-set if and only if rk+(P ) = k and rk(P ) = r.

Another geometric interpretation is given by the nested polygons problem
[GG10]. Given a set of points Z in a r-side convex polygon Pr does there
exist a s-side convex polygon Ps with s < r such that

Z ⊂ Ps ⊂ Pr?

If we consider a n×m non-negative matrix P we let Z = πn−1(θ(P )). Then
Pr is ∆

n−1 ∩H where H is the linear span of Z. Then we have the following
Lemma.

Lemma 2.4. rk+(P ) = s if and only if s is the minimal integer such that
there exists a s-side convex polygon Ps, with Z ⊂ Ps ⊂ Pr.
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3 Upper-semicontinuity of non-negative rank

In this section we will use the ideas recalled in Section 2 to show that the
non-negative rank is upper-semicontiuos in the Euclidean topology.

Given a non-negative matrix P ∈ R
nm
≥0 and ǫ > 0 define the ball of center

P and radius ǫ

B(P, ǫ) =

{

N = (ni,j) ∈ R
nm
≥0 :

√

∑

(pi,j − ni,j)2 < ǫ

}

.

Theorem 3.1. Let P be an n×m matrix of non-negative rank k, then there
exists a ball B(P, ǫ) such that, for all N ∈ B(P, ǫ), rk+(N) ≥ k.

Proof. We give a proof by contradiction. Suppose that for all natural num-
bers r there exists N(r) ∈ B(P, 1

r
) such that rk+(N(r)) < k. Clearly, the

limit of the sequence N(r) is P . By hypothesis we know that there exist
convex polygons P(r) ⊂ ∆n−1, each having less than k sides, such that

πn−1(θ(N(r))) ⊂ P(r).

Let the vertices of P(r) be

q1(r), . . . , qh(r) ∈ ∆n−1

and notice that each sequence qi(r) has a converging subsequence having
limit point q̄i ∈ ∆n−1. Thus there exists a h-side limit polygon P̄ ⊂ ∆n−1.
As h < k it is enough to show that πn−1(θ(P )) ⊂ P̄ to get a contradiction
using Lemma 2.4.

Let
πn−1(θ(N(r))) = {c1(r), . . . , cm(r)}

and
πn−1(θ(P )) = {c1, . . . , cm}

and notice that the limit of ci(r) is ci. Also notice that for each i we have

ci(r) = αi,1(r)q1(r) + . . .+ αi,h(r)qh(r)

where the coefficients αi,j(r) vary in the compact set [0, 1]. Taking the limit
we get for each i

ci = ᾱi,1q̄1 + . . .+ ᾱi,hq̄h

and hence ci ∈ P̄ . This completes the proof.
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Thus, for a matrix M of a given non-negative rank, we have that, in a
suitable neighborhood of M the non-negative rank can only increase, i.e. the
non-negative rank is upper-semicontinous.

Clearly each neighborhood of a matrix P contains a matrix having the
same non-negative rank of P , the matrix P itself. But even more is true.

Proposition 3.2 (Barycentric perturbation). Let P be a non-negative n×m
matrix. For any ǫ > 0 there exists N ∈ B(P, ǫ) such that N 6= P and
rk+(N) = rk+(P ).

Proof. Let P have columns ci and consider the vector b = 1
m

∑

i ci. Roughly
speaking b correspond to the barycenter of the points πn−1(θ(P )). Then we
consider the n×m matrix Nǫ having the i-th column defined as

ci + ǫ(b− ci).

As ǫ increases the points πn−1(θ(Nǫ)) approach the barycenter of πn−1(θ(P )).
It is enough to prove the statement for 0 < ǫ < 1. Thus, by Lemma 2.4,
rk+(Nǫ) ≤ rk+(P ). Then, the conclusion follows applying Theorem 3.1.

4 Jacobian approach

Throughout this section we assume k ≤ min{n,m} and we let Xn×m,k ⊂ R
mn

be the variety of n × m matrices of rank at most k. It is well-known that
dim(Xn×m,k) = k(n+m− k).

Consider the map f : Rk(n+m) → R
mn which sends the point

p = (x1,1, . . . , x1,n, y1,1, . . . , y1,m, . . . , xk,1, . . . , xk,n, yk,1, . . . , yk,m)

to the matrix

f(p) =

k
∑

i=1







xi,1
...

xi,n







(

yi,1 . . . yi,m
)

Let f+ be the restriction of f to the non-negative octant R
k(n+m)
≥0 . The

image of f+ is the variety X+
n×m,k of n×m matrices of non-negative rank at

most k. It is clear that X+
n×m,k ⊂ Xn×m,k.
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The local rank of f ∗
+, the Jacobian matrix of f+, gives the local dimension

of the image.
Thus, if a matrix P ∈ f−1

+ (p), where p is not on the boundary of the octant

R
k(n+m)
+ and f ∗

+(P ) has maximal rank, then there exists a neighborhood of
P of matrices of rank at most k and non-negative rank at most k.

Given a point p ∈ R
k(n+m) with coordinates

p = (x1,1, . . . , x1,n, y1,1, . . . , y1,m, . . . , xk,1, . . . , xk,n, yk,1, . . . , yk,m) ;

we say that p satisfies property (+) if

1) (xi,1, . . . , xi,n), i = 1, . . . , k are linearly independent vectors of Rn;

2) (yi,1, . . . , yi,m), i = 1, . . . , k are linearly independent vectors of Rm;

3) the linear span V =< (yi,1, . . . , yi,m), i = 1, . . . , k > does not contain
m− k coordinate vectors ei of R

m.

Theorem 4.1. If p satisfies (+) then rk(f ∗
+(p)) = k(n +m− k).

Proof. Since the Jacobian is given by all possible derivatives with respect to
xi,j and ya,b, it is enough to show that exactly k(m + n − k) of them are
linearly independent. First of all we notice that the derivative with respect
to xi,j is a matrix of the form

fxi,j
=























0
...
0
1
0
...
0























(

yi,1 . . . yi,m
)

while the derivative with respect to ya,b is a matrix of the form

fya,b =







xa,1
...

xa,n







(

0 . . . 0 1 0 . . . 0
)

That is, the derivative with respect to xi,j , j = 1, . . . n is a matrix with all
zeros but the j-th row consisting of the vector (yi,1, . . . , yi,m). Similarly the
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derivative with respect to ya,b, b = 1, . . .m is a matrix with all zeros but the
b-th column consisting of the vector (xa,1, . . . , xa,n).

We now build a set M consisting of k(m+ n− k) independent matrices
and hence we prove the statement.

The set of n derivatives fx1,j
j = 1, . . . n are clearly independent. We

can consider the other set of m derivatives fx2,j
j = 1, . . . n, requiring that

(y2,1, . . . , y2,m) is not proportional to (y1,1, . . . , y1,m). This is satisfied by
property (+). Iterating the process we add toM the kn independent matrices
of the form fxi,j

, i = 1, . . . , k, j = 1, . . . , n.
To add the other k(m− k) independent matrices we proceed as follows.
We can assume that condition 3) in (+) is satisfied by the first m − k

coordinates vectors.
Consider first the derivative fy1,1 . This matrix has only the first col-

umn different from zero and can be expressed as a linear combination of the
previous matrices fxi,j

if and only if the vector (1, 0, . . . , 0) lies in the span
V =< (yi,1, . . . , yi,m), i = 1, . . . , k >. Thus, requiring that (1, 0, . . . , 0) /∈ V
we have that M∪fy1,1 consists of independent matrices. A similar argument
applies to all the matrices fya,1, a = 1, . . . k once we require that the vec-
tors (xa,1, . . . , xa,n) are linearly independent, which is exactly condition 2) in
(+). In fact these matrices differ only for the elements in the non-zero column
(the first one) where we found, varying a, the vectors (xa,1, . . . , xa,n). If these
matrices fxi,j

, fya,1 were dependent then we would have a linear combination

α1fy1,1 + · · ·+ αkfyk,1 +
∑

βi,jfxi,j
= 0.

If we write this combination as

α1fy1,1 + . . .+ αkfyk,1 = −
∑

βi,jfxi,j

we notice that the lefthandside is a matrix with non zero elements only in the
first column. By the hypothesis that (1, 0, . . . , 0) /∈ V the previous equality
can hold if and only if both sides are equal to zero, i.e.

α1fy1,1 + . . .+ αkfyk,1 = 0

and
∑

βi,jfxi,j
= 0

which is clearly a contradiction.
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Similarly, as (0, 1, 0, . . . , 0) /∈ V we can add the set of derivatives fyi,2 ,
i = 1, . . . , k to the set M. The process can go further for m− k times. For
each of the k coordinate vectors we add k derivatives to M. In conclusion,
in M we find km derivatives of the form fxi,j

(i = 1, . . . , k, j = 1, . . . , n) and
k(m − k) derivatives of the form fya,b (a = 1, . . . , k and b = 1, . . . , m − k)
which are linearly independent.

We can use this Jacobian approach to investigate properties of the non-
negative rank under perturbations preserving the rank.

Proposition 4.2 (Isorank perturbation). Let P = f+(p) such that p satisfies
(+) and p has positive coordinates. Then there exists a ball B(P, ǫ) such that
for each N ∈ B(P, ǫ) ∩Xn×m,k we have

rk+(N) = rk+(P ).

Proof. If P = f+(p) and p satisfies (+) then by Proposition 4.1 we know that
f is locally invertible. Hence there exist balls B(P, ǫ) and B(p, δ) such that
each N ∈ B(P, ǫ)∩Xn×m,k has a unique preimage in B(p, δ) using the map f .
Moreover, if p has positive coordinates we can find a, possibly smaller, ǫ and
q ∈ f−1(N) such that q has positive coordinates. Hence rk+(N) ≤ rk+(P ).
The conclusion follows by Theorem 3.1.

Remark 4.3. The conditions 1)-2)-3) of property (+) are open conditions
in the Zariski topology. This means that the matrices in R

nm
≥0 not having

property (+) satisfy a set of polynomial equations.

5 Examples

In this section we will present some interesting examples. Some of these
example were inspired to us by the matrix









1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1









which is the most well-known example of a matrix with rank and non-negative
rank which are different (see [CR88]).
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Small cases. Let P be an n × m matrix and assume n ≤ m. We want
to describe how the non-negative rank of P changes under perturbations for
small values of n. If n ≤ 3, then it is easy to show that rk(P ) = rk+(P ),
see [CR88]. Thus the first interesting cases are for n = 4 and rk(P ) =
3. If rk+(P ) = 4 then any small perturbation will not change the non-
negative rank by Theorem 3.1. Thus, let us assume that rk+(P ) = 3. Using
Proposition 3.2, we know that there are small perturbations preserving the
non-negative rank. Of course, there are small perturbations not preserving
it: it is enough to increase the ordinary rank. Hence, we ask: are there small
perturbations of P , say Pǫ, such that rk(Pǫ) = rk(P ) and rk+(Pǫ) = 4? Not
surprisingly, the answer depends on the choice of P . It is easy to construct a
matrix P with the required ranks and satisfying the hypothesis of Proposition
4.2. Thus, in this case, the answer to our question is no. But, for a different
choice of P , the answer can be yes. Consider, for example, Pǫ defined as
follows:

Pǫ =









2 0 2 1
0 2 0 1
0 0 2 1 + ǫ
2 2 0 1− ǫ









,

and let P = P0. It easy to see that rk(Pǫ) = 3 for all ǫ while rk+(P0) = 3
and rk+(Pǫ) = 4 for small positive values of ǫ, see Figure 1. We denote
with c1, . . . , c4 the points corresponding to the columns of P while c4(ǫ)
corresponds to the fourth column of Pǫ. In Figure 1, and in the following
figures, we use the graphic representation described in [LC10] and related to
the map π3. More precisely, a 4× 4 matrix will be presented as a set of four
points in a tetrahedron. This presentation allows for an easy visualization of
rank related properties. We notice, for example, that a rank two matrix will
correspond to four coplanar points.
Failing of upper-semicontinuity. The upper-semicontinuity of the non-
negative rank is of course a local property as shown by the following example.
Consider the matrix

Mǫ =
1

2(1 + 2ǫ)









1 + ǫ ǫ 1 + ǫ ǫ
1 + ǫ ǫ ǫ 1 + ǫ
ǫ 1 + ǫ 1 + ǫ ǫ
ǫ 1 + ǫ ǫ 1 + ǫ









and let ci(ǫ)’s be the four column vectors where we set ci = ci(0). When
ǫ = 0 the matrix has non-negative rank equal to four. Since each ci is a
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c1

c2

c3

4c
4c ( )ε

c ( )ε
4

c1

c

c2

3

c4

Figure 1: The matrices Pǫ for ǫ = 0 and a small positive value of ǫ represented
in the tetrahedron and in the plane.

vector of sum one, we can use the map π3 to represent the columns in the
simplex ∆3, which is a tetrahedron in R

3. To simplify the drawings, we have
dropped the first coordinate of each column instead of the last one, but of
course this does not affect our analysis. The four points for the matrix M0

are plotted in Figure 2.
The points c1(ǫ), . . . , c4(ǫ) are the vertices of a rectangle Rǫ which we can

draw in the plane. As ǫ > 0 increases, the four points move along the main
diagonals, as in Figure 3, and Rǫ will eventually be contained in the triangle
ABC where

A = (0,
√
2/2− 1/2) B = (

√
2/4, 1/2) C = (

√
2/2,

√
2/2− 1/2).

It is not hard to show that, for ǫ <
√
2/2 we have rk+(Mǫ) = 4 while

rk+(M√
2/2) = 3. Hence, moving far enough from M0 the non-negative rank

can decrease.
Non-convexity of X+

4×4,3. In the 4 × 4 case, the properties of the non-
negative rank imply that the unique non-trivial case is the case of rank 3.
The matrices in X4×4,3 can belong to X+

4×4,3 or to X+
4×4,4. With the same

graphical approach as above, we can show that the set X+
4×4,3 is not convex

even if the ordinary rank is constant. To do this, it is enough to consider the
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c3

4c

c

c1

2

Figure 2: The matrix M0 in the simplex ∆3.

c ( )ε

c ( )ε

c ( )ε

c ( )ε
4

B

A C

c

c

1

2c4

c3

1 3

2

Figure 3: The points c1(ǫ), . . . , c4(ǫ) in the critical configuration for ǫ =
√
2/2.
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f
2

f
1

c

c

1

2c4

c3

Figure 4: The points c1, . . . , c4, f1, f2 defining the matrices A1 and A2.

two matrices A1 = [c4, c2, c3, f1] and A2 = [c4, c3, c1, f2] where the columns
c1, c2, c3, c4, f1, f2 are displayed in Figure 4 in the same plane as in Figure 3.
It is immediate to see that both A1 and A2 have rank 3 and non-negative
rank 3, but the matrix A = (A1+A2)/2 has rank 3 (its 4 points are coplanar)
but non-negative rank 4. With the same technique, one can also see that the
set X4×4,3 \X+

4×4,3 is not convex.

B1 =









1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1









B2 =









1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1









.

B1 and B2 have rank 3 and non-negative rank 4, as they are obtained from
M0 possibly with permutation of columns, but the matrix B = (B1 + B2)/2
has non-negative rank 3.

6 Applications to the study of statistical mod-

els

The results about the non-negative rank presented above have an useful
counterpart in Probability and Mathematical Statistics. In particular the
notion of nonnegative rank is useful in the study of mixture of independence
models for discrete distributions. We now recall some basic definitions.
Distribution. The distribution (or density) of a random variable X on a
set of n possible outcomes {1, . . . , n} is a vector of n non-negative numbers
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(p1, . . . , pn) such that

pi ≥ 0 for all i and
∑

i

pi = 1 ,

where pi = P(X = i) is the probability that X assumes the value i.
Joint distribution. If we consider a pair (X, Y ) of random variables on
{1, . . . , n} and {1, . . . , m} respectively, the joint distribution of X and Y is
a matrix of non-negative numbers P = (pi,j) such that

pi,j ≥ 0 for all i, j and
∑

i,j

pi,j = 1 , (2)

where pi,j = P(X = i, Y = j) is the probability that (X = i) and (Y = j).
Probability models. A matrix P satisfying the constraints in Equation (2)
is also called a two-way table. The set

∆ =

{

P ∈ R
nm : pi,j ≥ 0 for all i, j and

∑

i,j

pi,j = 1

}

is the n×m (closed) standard simplex and each probability distribution for
a pair (X, Y ) belongs to ∆. A probability model M is a subset of ∆. In
many cases M is defined through a set of polynomial equations, and in such
case we call M an algebraic model.
The independence model. For two-way tables, one among the most simple
models is the independence model. The construction of the independence
model is described for instance in [Agr02]. Under independence of X and Y
we have

P(X = i, Y = j) = P(X = i)P(Y = j)

for all i = 1, . . . , n and for all j = 1, . . . , m, and therefore P is a rank one
matrix, i.e., there exist vectors r and c such that P = c(r)t. Thus, the
independence model for n×m tables is the set:

MI = {P : rank(P ) = 1} ∩∆ .

Remark 6.1. It is a well known fact in Linear Algebra that a non-zero matrix
P has rank 1 if and only if all 2×2 minors of P vanish. This shows that the
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independence model is an algebraic model. Thus, an equivalent definition of
the independence model is as follows. The independence model is the set:

MI = {P : pi,jpk,h − pi,hpk,j = 0

for all 1 ≤ i < k ≤ n, 1 ≤ j < h ≤ m} ∩∆ .

Notice that the model is defined through pure binomials and that the set of
all the 2 × 2 minors of a matrix are a system of generator of a toric ideal.
This is a general fact in the analysis of algebraic statistical models and the
models of this form are called toric models. The reader can refer to [DSS09]
and [Rap07] for further details.

Mixture models. The mixture of two independence models is defined
through the following procedure:

• Take two distributions P1, P2 ∈ MI ;

• Toss a (biased) coin and choose P1 with probability α and P2 with
probability (1− α).

In general, the mixture of k independence models is defined as follows.
The mixture of k independence models is the set

MkI = {P : P = α1c1(r1)
t + . . .+ αkck(rk)

t} (3)

where the vectors ri, the vectors ci and α = (α1, . . . , αk) are probability
distributions. Some results and examples about this type of statistical models
are presented in [FHRZ10].

Notice that in the decomposition in Equation (3), the components must
be non-negative, and therefore the model coincides with the set of n × m
matrices with non-negative rank at most k.

We also notice that it is not possible to approximate a matrix with ordi-
nary rank different from the non-negative rank using matrices with ordinary
rank and non-negative rank which coincide.

Corollary 6.2. Let P be a non-negative matrix such that rk(P ) = k and
rk+(P ) > k. Then there is no sequence of matrices Pn whose limit is P such
that rk(Pn) = rk+(Pn) = k.

Proof. The statement is a straightforward consequence of Proposition 3.1.
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