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Abstract

This article investigates deterministic design matrices X for the fundamental problems of

error prediction and model selection given observations y = Xβ+ z, where z is a stochastic

error term. We are interested in the so-called ’p ≫ n’ setup where the number p of pre-

dictors is far more important than the number n of observations. Our deterministic design

matrices are constructed from unbalanced expander graphs, and we wonder if it is possible to

accurately estimate Xβ and the support of β using computationally tractable algorithms.

We show that for any adjacency matrix of an unbalanced expander graph and any target

vector β⋆, the lasso (ℓ1-penalized least squares) and the Dantzig selector (ℓ∞-penalized

basis pursuit) satisfy oracle inequalities in error prediction and model selection involving

the s largest (in magnitude) coefficients of β⋆ , i.e. upper bounds in term of the best sparse

approximation. Our oracle inequalities allow error prediction with an accuracy which is the

best, up to a logarithmic factor, one could expect knowing the support of the target β⋆.

From a practical standpoint, these estimators can be computed by solving, either a

simple quadratic program for the lasso, or a linear program for the Dantzig selector. Our

results are non-asymptotic and describe the performance one can expect in all cases.

1 Introduction

This article focuses on the problem of processing high-dimensional data. Our framework is
broadly the compressive sensing where one seeks to acquire the main information of a signal
directly from a minimum of measurements. The field of applications is wide and encom-
passes compressive imaging, MRI (magnetic resonance imaging), NMR (Nuclear Magnetic
resonance) spectroscopy, radar design, real-number error correction, communications and
high-speed analog-to-digital conversions [Can06].

Beyond the wide spectrum of applications, a fundamental question is to find efficient de-
sign matrices for common estimators. Unlike the traditional approach that looks for random
matrices, our goal is to find deterministic design matrices. Our present work is based on
unbalanced expander graphs [BI08, JXHC09] that give outstanding explicit design matrices.
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2 1 INTRODUCTION

1.1 The Deterministic Design Matrix

It emerged recently that compressive sensing and coding theory share similar properties. In
2007, B. Hassibi and W. Xu [HX07] gave a generalization of expander codes [SS96] (which are
linear error-correcting codes derived from expander graphs) to compressive sensing. Fur-
thermore, Berinde et al. [BGI+08] pointed out that unbalanced expander graphs satisfy a
restricted isometry property appeared in compressive sensing.

We recall that, in their fundamental article [CRT06], E. Candès, J. Romberg, and T. Tao
showed that the standard RIP2 property is a sufficient condition that enables compressive
sensing using random projections. Intuitively, it says that the design matrix preserves the
ℓ2-norm of sparse vectors (i.e. it is an almost isometry on the space of sparse vectors). This
property implies that recovery using ℓ1 minimization (i.e. basis pursuit) is possible. In 2008,
Berinde et al. showed that the adjacency matrix X of an expander graph satisfies a very
similar property called the restricted isometry property in the ℓ1-norm (RIP1). They used
this property to show that basis pursuit is still possible in this case. They proved a useful
uncertainty principle connecting the mass on a small subset S, namely ‖γS‖1, to the whole
mass ‖γ‖1. We use this last property to obtain oracle inequalities in error prediction and
model selection.

Adjacency Matrix of a Bipartite Graph

We consider a bipartite graph G = (A, B, E), where A is the set of the left vertices, B the set of
the right vertices, and E the set of the edges between A and B. Denote p and n respectively
the cardinality of A and B.

A B

Figure 1: A bipartite graph G with regular left degree d. Each vertex in A has exactly d
neighbors in B (here d = 2).

A bipartite graph is said to have regular left degree d if every vertex in A has exactly d
neighbors in B, see Figure 1. Suppose that G has regular left degree d, then the renormalized
adjacency matrix X is

Xij =

{
1/d if i is connected to j ,

0 otherwise ,
(1)

where i ∈ [1, p] and j ∈ [1, n]. In the following, the design matrix X will always refer to the
renormalized adjacency matrix of an unbalanced expander graph.

Recently, Guruswami et al. [GUV09] proved that there exist explicit unbalanced expander
graphs which are very close, in terms of asymptotic upper bounds on the number of right
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vertices n as p tends to +∞, to the ’optimum’ expanders build by random constructions.
Quantitatively speaking, the optimum number of right vertices is such that

n = O
p→+∞

(
s log

( p

s

))
,

where s is a parameter of the graph that can be interpreted as the number of largest coeffi-
cients that we want to recover, and the O(.) notation does not depend on s.

Uncertainty Principle

The main property exploited in this article is an uncertainty principle shown in [BGI+08].
For suitable parameters, it holds

∀γ ∈ R
p, ‖γS‖1 ≤ 2 ‖Xγ‖1 +

1

2
‖γSc‖1 , (2)

where γS is the vector that is equal to γ on S and zero elsewhere. In the last inequality, the
cardinality of S is upper bounded by a parameter s derived from the expansion property.
From a practical view point, we are interested in sparse vectors such that s ≪ p, but we will
see in the next section that we can consider whatever value for the parameter s. The property
(2) is derived form the fact that X preserves the ℓ1-norm of vectors with small support (RIP1

property). In particular, if γ belongs to the kernel of X it yields

‖γS‖1 ≤ 1

2
‖γSc‖1 . (3)

This last inequality means that the vectors of the kernel can not be concentrated on small
subsets. In fact, the inequality (3) is a necessary and sufficient condition for the basis pursuit
estimator

βbp = arg min
β∈Rp

‖β‖1 such that Xβbp = Xβ⋆ ,

exactly recovers the target vector β⋆. Thus we can see (2) as a sufficient condition for the lasso
and the Dantzig selector which generalizes the condition (3).

1.2 Error Prediction and Model Selection

Two of the most common problems in statistics are to estimate the response Xβ⋆ (error pre-
diction) and the support (model selection) of β⋆ from the data y ∈ R

n and the linear model

y = Xβ⋆ + z ,

where X is a design matrix, and z ∈ R
n a noise vector. We assume that z is a Gaussian

white noise, and we show, using Lemma 3, that we can consider any correlated Gaussian white
noise. This means that the zi’s have same Gaussian law but they could be correlated, with
z = (z1, . . . , zn).

We introduce a so-called bound on the noise keeping in mind that it allows us to set the
threshold of our tuning parameter λ of our estimators. Denote

Λ = 2 σ
√

log n ,

where σ is the variance of the noise.
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The Lasso

In his fundamental article [Tib96] R. Tibshirani pointed out that the geometry of the ℓ1-norm
produces coefficients that are exactly 0. The lasso estimator is

βl = arg min
β∈Rp

{
‖y − Xβ‖2

2 + λ ‖β‖1

}
,

where λ is a tuning parameter. Intuitively, the lasso estimator will be at the point of contact of
this smooth residual sum of squares function and convex, piecewise-flat constraint surface.
This point of contact is very likely to belong to a k-face (i.e. the k-simplex generated by k
extremal points) of a ball ℓ1. Thus it is very likely to have a lot of coefficients that are exactly
0, see Figure 2.

�

�
l

Figure 2: The lasso estimator produces coefficients that are are exactly 0. The black square
represents a ball in the ℓ1-norm, while the ellipses represent the level sets of the quadratic

criterion ‖y − Xβ‖2
2. For simplicity, this figure is derived from the noiseless case where z = 0.

In this case, β⋆ is at the center of the quadratic criterion ‖y − Xβ‖2
2. In the noisy case, one

has to replace β⋆ by β⋆ + ζ where ζ is such that Xζ is the orthogonal projection of the noise
z onto the subspace spanned by the columns of X.

In this paper, we prove that, with high probability, for any λ ≥ 6Λ and any target vector β⋆,

∥∥∥Xβ⋆ − Xβl
∥∥∥

2

2
+ (λ − 6Λ)

∥∥∥βl
Sc − β⋆

Sc

∥∥∥
1
≤ 4λ

(
2λn + ‖β⋆

Sc‖1

)
, (4)

where n is the number of measurements (i.e. number of lines of the matrix X). Remark that
we do not suppose that the cardinality of the support of β⋆ is upper bounded. In fact, the
inequality (4) stands for all target vectors in R

p.
If the target vector β⋆ is sparse, denote S its support (the set of all nonzero entries) and

suppose that |S| ≤ s. In this case, with high probability, it holds

∥∥∥Xβ⋆ − Xβl
∥∥∥

2

2
+ (λ − 6Λ)

∥∥∥βl
Sc

∥∥∥ ≤ 8λ2n .

If one takes λ = 6Λ, the last inequality yields

∥∥∥Xβ⋆ − Xβl
∥∥∥

2
≤ 24

√
2 σ

√
n log n , (5)
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for any s-sparse target vector β⋆. The inequality (5) shows that we can estimate Xβ⋆ with
nearly the same precision as if one knew in advance the support of β⋆. Indeed, consider the
ordinary least squares:

βols = arg min
β∈Rp

‖y − Xβ‖2 such that supp
(

βols
)
= S ,

where supp
(

βols
)

denotes the support of βols. Observe that this estimator uses a prior

knowledge on the support of β⋆. For this reason, we can say that this estimator is optimal. We
claim that Xβols − Xβ⋆ is the orthogonal projection of z on the subspace spanned by the Xi’s
with i ∈ S. Hence, a simple calculation gives

E

∥∥∥Xβols − Xβ⋆
∥∥∥

2
≤ σ

√
s .

Moreover we know that n = O (
s log

( p
s

))
for optimum unbalanced expander graphs. In

this case, we deduce that the inequality (5) is optimal within the square root of logarithmic
factors. Namely, it holds

∥∥∥Xβ⋆ − Xβl
∥∥∥

2
≤ C .

√
log

( p

s

)
log (n) . σ

√
s , (6)

where C is some positive numerical constant. Since ′n ≪ p′, the log n term is not large
compared to log p.

In 2007, E. J. Candès and Y. Plan obtained a remarkable estimate in error prediction via
the lasso. They used a so-called coherence property following the work of D.L. Donoho et al.
[DET06]. They showed (Theorem 1.2 in [CP09]) that, with high probability, for every design
matrix satisfying the coherence property, it holds

∥∥∥Xβ⋆ − Xβl
∥∥∥

2
≤ C′ .

√
log (p) . σ

√
s , (7)

where C′ is some positive numerical constant. Note that the upper bounds (6) and (7)
are similar. The coherence is the maximum correlation between pairs of predictors. This
property is fundamental and allows to deal with random design matrices. We do not use this
property here, though we get the same accuracy and we extend their error prediction result
to deterministic design matrices.

The Dantzig Selector

In 2005, E. Candès and T. Tao [CT07a] gave a new estimator, the Dantzig selector. This
estimator is the solution to the ℓ1-regularization problem

βd = arg min
β∈Rp

‖β‖1 s.t.
∥∥∥XT(y − Xβ)

∥∥∥
∞
≤ λ ,

where ‖.‖∞ is the ℓ∞-norm and λ a tuning parameter. We consider tuning parameters λ such
that λ ≥ Λ. This last inequality involves that β⋆ is feasible with high probability. We prove
that, with high probability, for any target vector β⋆ and λ ≥ Λ,

∥∥∥Xβ⋆ − Xβd
∥∥∥

2

2
≤ 4(λ + Λ)

(
16(λ + Λ)n + 3 ‖β⋆

Sc‖1

)
.
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In the case where the target vector β⋆ is sparse then, with high probability, it holds
∥∥∥Xβ⋆ − Xβd

∥∥∥
2
≤ 8(λ + Λ)

√
n .

If λ = Λ, we derive the error prediction:
∥∥∥Xβ⋆ − Xβl

∥∥∥
2
≤ 32 σ

√
n log n . (8)

As for (5), the inequality (8) shows that we can estimate Xβ⋆ with nearly the same accuracy
one would get if he knew in advance the support of β⋆.

We provide an upper bound on the error of the Dantzig selector in model selection. Con-
sider a s-sparse target vector β⋆ with support S. We show that, with high probability, for
λ ≥ Λ, ∥∥∥βd

Sc

∥∥∥
1
≤ 32(λ + Λ)n .

In the case λ = Λ, it holds ∥∥∥βd
Sc

∥∥∥
1
≤ 128 σ n

√
log n .

In the ′n ≪ p′ setup, observe that the error vector βd
Sc has a size almost equal to p, whereas

the upper bound is much smaller than p. This last inequality estimates the error of the Dantzig
selector in model selection.

1.3 Organization of the paper

The outline of the paper is as follows. The second section presents unbalanced expander
graphs and recalls the uncertainty principle of Berinde et al.. The third section introduces the
parameter Λ and gives, with high probability, upper bounds on the ℓ∞-norm of the noisy
covariance. The fourth section studies the lasso estimator and gives oracle inequalities in
term of the best sparse approximation, error prediction, and model selection. Finally the fifth
section presents the Dantzig selector and gives upper bounds in error prediction and model
selection.

2 Uncertainty Principle

In this section we introduce unbalanced expander graphs and recall the main results shown
by Berinde et al.. The main property of expander graphs is a property of expansion. In the case
of unbalanced expander graphs, this property controls the neighborhood J of any sufficiently
small subset I of vertices on the left. Let G = (A, B, E) be a bipartite graph with A the set
of left vertices, B the set of right vertices, and E the set of edges between A and B. We recall
that p and n denote respectively the cardinality of A and B. The size n may depend on p and
others parameters of the graph. Suppose that G has regular left degree d. Hence, every subset
I ⊂ A has at most d |I| neighbors. The expansion property states that the neighborhood of I
is ’almost’ d |I| as soon as |I| ≤ s, where s is a parameter of the graph that can be as large as
desired, see Figure 3. The formal definition of unbalanced expander graph is as follows.

Definition 1 ((s, ε)-unbalanced expander) — An (s, ε)-unbalanced expander is a bipartite simple
graph G = (A, B, E) with left degree d such that for any I ⊂ A with |I| ≤ s, the set of neighbors J of
I has size

|J| ≥ (1 − ε) d |I| . (9)
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A B

I J

Figure 3: The expansion property of an unbalanced expander graph: any sufficiently small
subset I on the left has a neighborhood J of size at least (1 − ε) d |I|.

We recall that X is the renormalized adjacency matrix of an unbalanced expander graph. The
reader may find a definition of X in (1). The parameter s can be as large as possible. However
in the n ≪ p setup, we deal with the values for which s ≪ p. Indeed we recall that n is of
the order of s within a logarithmic factor. Subsequently we consider a parameter ε such that
ε ≤ 1/8. Remark that ε is fixed and does not depend on others parameters. In particular, we
do not require that ε goes to zero as p goes to the infinity. We call ε the expansion constant.
Using the expansion property (9), Berinde et al. showed the fundamental theorem:

Theorem 1 (Restricted Isometry Property) — Let X be the renormalized adjacency matrix of an
(s, ε)-unbalanced expander. Then X satisfies the following RIP1 property:

∀γ ∈ R
p, (1 − 2ε) ‖γS‖1 ≤ ‖XγS‖1 ≤ ‖γS‖1 ,

where S is any subset of [1, p] of size less than s, and γS the vector with coefficients equal to the
coefficients of γ in S and zero outside.

In their article [BGI+08] (Lemma 16 and Theorem 17), Berinde et al. derive a useful lemma
which is a consequence of the RIP1 property. In fact, this lemma can seen as an uncertainty
principle and we show in the next sections that it is a sufficient condition for error prediction
and model selection.

Lemma 1 (Uncertainty Principle) — Let X be the renormalized adjacency matrix of an (s, ε)-
unbalanced expander with ε < 1/4. Then X satisfies the following uncertainty principle:

∀γ ∈ R
p , ∀S ⊂ [1, p] s.t. |S| ≤ s , (1 − 4ε) ‖γS‖1 ≤ ‖Xγ‖1 + 2ε ‖γSc‖1 .

In particular for ε ≤ 1/8, it yields

∀γ ∈ R
p , ∀S ⊂ [1, p] s.t. |S| ≤ s , ‖γS‖1 ≤ 2 ‖Xγ‖1 +

1

2
‖γSc‖1 . (10)

As mentioned in the introduction, this uncertainty principle can be seen as a sufficient con-
dition for the lasso and the Dantzig selector that generalizes the condition (3) of the basis
pursuit.

We conclude this section by introducing the work of Guruswami et al. on the explicit
construction of unbalanced expander graphs. They recently proved [GUV09], based on the
Parvaresh-Vardy codes [PV05], the theorem:
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Theorem 2 (Explicit Construction) — For any α > 0 and any p, s, ε > 0, there exists an (s, ε)-
unbalanced expander G = (A, B, E) with |A| = p, left degree

d = O
p→+∞

(
(log p)1+ 1

α

)
,

and number of right side vertices (namely n = |B|),

n = O
p→+∞

(
s1+α(log p)2+ 2

α

)
,

where the O(.) notation does not depend on s but on ε.

The bounds may depend on ε, however our parameter ε is fixed and does not depend on p.
In a probabilistic framework, the following proposition can be shown using Chernoff Bounds
[HX07].

Proposition 1 (Probabilistic Construction) — Consider ε > 0 and p/2 ≥ s. Then, with a positive
probability, there exists an (s, ε)-unbalanced expander G = (A, B, E) with |A| = p, left degree

d = O
p→+∞

(
log

( p

s

))
,

and number of right side vertices (namely n = |B|),

n = O
p→+∞

(
s log

( p

s

))
,

where the O(.) notation does not depend on s but on ε.

In the following discussion, we denote by n the number of measurement (i.e. the size of
B). These theorems show that it is possible to construct explicit unbalanced expander graphs
close, in terms of the bound on n, to the optimum graphs obtained probabilistically.

3 Bound on the Noise

In this section, we present the notation of our linear model and we give an upper bound on
the noise amplification

∥∥XTz
∥∥

∞
. We seek to reconstruct a high dimensional vector β⋆ ∈ R

p

from noisy observation y ∈ R
n. We consider a linear model

y = Xβ⋆ + z , (11)

where X is the renormalized adjacency matrix of an unbalanced expander graph, and z ∈ R
n

a Gaussian white noise with variance σ2. We start with a lemma which shows that the noise is
not amplified by the graph.

Lemma 2 (Non-Amplification) — It holds

∀z ∈ R
n ,

∥∥∥XTz
∥∥∥

∞
≤ ‖z‖∞ .
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Proof — Let γ ∈ R
p such that ‖γ‖1 = 1. Since the graph has left degree d (see (1)),

‖Xγ‖1 ≤ ‖γ‖1 .

Remark that this inequality stands for all vectors, not only sparse vectors. Next we dualize,
〈

XTz, γ
〉
= 〈z, Xγ〉 ≤ ‖z‖∞ ‖Xγ‖1 ≤ ‖z‖∞ ‖γ‖1 ≤ ‖z‖∞ ,

where 〈 , 〉 is the standard Euclidean product. This last inequality ends the proof. 2

In order to upper bound
∥∥XTz

∥∥
∞

it is enough to estimate ‖z‖∞, which allows us to reduce
the dimension of the ambient space from p to n.

Lemma 3 (Bound on the Noise) — Suppose that z is a white centered Gaussian noise with vari-
ance σ (i.e. z = (zi)i=1...n with zi i.i.d. N (

0, σ2
)
-distributed). Then, for

Λ = 2 σ
√

log n ,

P

(∥∥∥XTz
∥∥∥

∞
≤ Λ

)
≥ 1 − 1√

2π n
√

log n
.

Proof —Denote (zi)i=1...n the coefficients of z. The Lemma 2 gives

P

(∥∥∥XTz
∥∥∥

∞
≤ Λ

)
≥ P (‖z‖∞ ≤ Λ) =

n

∏
i=1

P (|zi| ≤ Λ) , (12)

because the zi’s are i.i.d.. Denote Φ and ϕ respectively the cumulative distribution function and
the probability density function of the standard normal. Set δ = 2

√
log n. It holds

n

∏
i=1

P (|zi| ≤ Λ) = P (|z1| ≤ Λ)n ,

= (2Φ(δ)− 1)n ,

>

(
1 − 2

ϕ(δ)

δ

)n

,

where we used an integration by parts to show that

1 − Φ(δ) =

+∞∫

δ

e−t2/2

√
2π

dt <
ϕ(δ)

δ
.

We complete the proof with

P

(∥∥∥XTz
∥∥∥

∞
≤ Λ

)
≥

(
1 − 2

ϕ(δ)

δ

)n

≥ 1 − 2n
ϕ(δ)

δ
= 1 − 1√

2π n
√

log n
.

2

Using Šidák’s inequality in (12), we can dispense with the assumption of independence.
Indeed, even for correlated zi’s, it holds [Šid68]:

P (‖z‖∞ ≤ Λ) ≥ P (‖z̃‖∞ ≤ Λ) =
n

∏
i=1

P (|z̃i| ≤ Λ) ,
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where the z̃i’s are independent and have the same law as the zi’s. The lemma extends to
correlated zi’s as long as they have the same Gaussian law. Hence we can consider any
correlated Gaussian white noise in our linear model (11). This upper bound is valuable to
give oracle inequalities, as we shall see in subsequent sections. For readability sake, denote

ηn =
1√

2π n
√

log n
.

All the probabilities appearing in our theorems are of the form 1 − ηn. Since n denote the
number of observations, ηn is very small (less than 1/1000 for most common problems).
Furthermore, by repeating the same argument as in Lemma 3, we have the next proposition.

Proposition 2 — Suppose that z is a correlated white Gaussian noise with variance σ (i.e. z =
(zi)i=1...n where the zi’s are N

(
0, σ2

)
-distributed). Then, for α ≥ 1 and

Λα = (1 + α) σ
√

log n ,

P

(∥∥∥XTz
∥∥∥

∞
≤ Λα

)
≥ 1 −

√
2

(1 + α)
√

π log n n
(1+α)2

2 −1
. (13)

By replacing Λ by Λα in the statements of our theorems, it is possible to replace all the prob-
abilities of the form 1− ηn by probabilities of the form (13) . Observe that these probabilities
can be as small as desired.

4 Oracle Inequalities for the Lasso

The lasso estimator is

βl = arg min
β∈Rp

{
‖y − Xβ‖2

2 + λ ‖β‖1

}
,

where λ is a tuning parameter. In their article [vdGB09], P. Bühlmann and S. van de Geer
give the weakest condition on X, a so-called compatibility condition, to have oracle inequalities
for the lasso. We do not use this prominent approach here, although the uncertainty principle
(10) makes it possible to verify the compatibility condition. We did not choose this approach
because it provides upper bounds far greater than what we obtain by directly using the
uncertainty principle. We recall that Λ = 2σ

√
log n.

Theorem 3 — Let X be the renormalized adjacency matrix of an (s, ε)-unbalanced expander with
expansion constant ε ≤ 1/8. Let β⋆ be any vector of R

p and S its s largest (in magnitude) coefficients.
Take λ ≥ 6Λ then it holds

∥∥∥Xβ⋆ − Xβl
∥∥∥

2

2
+ (λ − 6Λ)

∥∥∥βl
Sc − β⋆

Sc

∥∥∥
1
≤ 4λ

(
2λn + ‖β⋆

Sc‖1

)
,

with probability at least 1 − ηn.

We show this theorem using the upper bound on the noise given by Lemma 3, and invoking
the uncertainty principle given by Lemma 1.
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Proof — Set γ = β⋆ − βl . On the event
{∥∥XTz

∥∥
∞
≤ Λ

}
, it holds

‖Xγ‖2
2 + λ

∥∥∥βl
∥∥∥

1
=

∥∥∥y − z − Xβl
∥∥∥

2

2
+ λ

∥∥∥βl
∥∥∥

1
,

=
∥∥∥y − Xβl

∥∥∥
2

2
− 2 zT

(
y − Xβl

)
+ ‖z‖2

2 + λ
∥∥∥βl

∥∥∥
1

,

=
∥∥∥y − Xβl

∥∥∥
2

2
− 2

(
XTz

)T
γ − ‖z‖2

2 + λ
∥∥∥βl

∥∥∥
1

,

≤
∥∥∥y − Xβl

∥∥∥
2

2
+ 2Λ ‖γ‖1 − ‖z‖2

2 + λ
∥∥∥βl

∥∥∥
1

, (14)

≤ ‖y − Xβ⋆‖2
2 + 2Λ ‖γ‖1 − ‖z‖2

2 + λ ‖β⋆‖1 , (15)

= 2Λ ‖γ‖1 + λ ‖β⋆‖1 ,

using the definition of the lasso estimator in the inequality (15) and the event
{∥∥XTz

∥∥
∞
≤ Λ

}

in the inequality (14). It follows that

‖Xγ‖2
2 + λ

∥∥∥βl
Sc

∥∥∥
1
− 2Λ ‖γSc‖1 ≤ 2Λ ‖γS‖1 + λ

(
‖β⋆

S‖1 −
∥∥∥βl

S

∥∥∥
1

)
+ λ ‖β⋆

Sc‖1 ,

≤ (λ + 2Λ) ‖γS‖1 + λ ‖β⋆
Sc‖1 .

Hence we get

‖Xγ‖2
2 + (λ − 2Λ) ‖γSc‖1 ≤ (λ + 2Λ) ‖γS‖1 + 2λ ‖β⋆

Sc‖1 .

We recall the uncertainty principle (10) shown by Berinde et al.:

∀γ ∈ R
p, ‖γS‖1 ≤ 2 ‖Xγ‖1 +

1

2
‖γSc‖1 .

Combining the two last inequalities, it holds

‖Xγ‖2
2 +

λ − 6Λ

2
‖γSc‖1 ≤ 2 (λ + 2Λ) ‖Xγ‖1 + 2λ ‖β⋆

Sc‖1 ,

≤ 2 (λ + 2Λ)
√

n ‖Xγ‖2 + 2λ ‖β⋆
Sc‖1 ,

We deduce the inequality:

‖Xγ‖2
2 + (λ − 6Λ) ‖γSc‖1 ≤ 4 (λ + 2Λ)2 n + 4λ ‖β⋆

Sc‖1 ,

Since λ ≥ 6Λ, we get

∥∥∥Xβ⋆ − Xβl
∥∥∥

2

2
+ (λ − 6Λ)

∥∥∥βl
Sc − β⋆

Sc

∥∥∥ ≤ 4λ
(
2λn + ‖β⋆

Sc‖1

)
.

Using Lemma 3, we pretend that the event
{∥∥XTz

∥∥
∞
≤ Λ

}
has probability at least 1 − ηn.

This concludes the proof. 2

If β⋆ is s-sparse (i.e. it has at most s nonzero coefficients), we derive the next result.

Proposition 3 (Sparse Lasso) — Let X be the renormalized adjacency matrix of an (s, ε)-unbalanced
expander with expansion constant ε ≤ 1/8. Let β⋆ be a s-sparse vector (i.e. with only s nonzero
entries) and S its support. Take λ ≥ 6Λ then it holds

∥∥∥Xβ⋆ − Xβl
∥∥∥

2

2
+ (λ − 6Λ)

∥∥∥βl
Sc

∥∥∥
1
≤ 8λ2n ,
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with probability at least 1 − ηn. In the case λ = 6Λ, we derive the error prediction:

∥∥∥Xβ⋆ − Xβl
∥∥∥

2
≤ 24

√
2 σ

√
n log n , (16)

with probability at least 1 − ηn, and σ the variance of the noise.

This proposition is a direct consequence of Theorem 3. Our oracle inequalities give the error

of prediction
∥∥∥Xβ⋆ − Xβl

∥∥∥
2

and selection
∥∥∥βl

Sc

∥∥∥
1

based on the best spare approximation
∥∥β⋆

Sc

∥∥
1
. Moreover, as mentioned in the introduction, the inequality (16) is optimal within the

square root of logarithmic factors.

5 Prediction and Selection via the Dantzig Selector

In their article [CT07a] E. Candès and T. Tao introduced a new estimator, the Dantzig Selector.
It is defined by

βd = arg min
β∈Rp

‖β‖1 s.t.
∥∥∥XT(y − Xβ)

∥∥∥
∞
≤ λ ,

where λ is a tuning parameter. Using the Lemma 3, observe that for λ ≥ Λ the vector β⋆ is
feasible with high probability (i.e. β⋆ satisfies the inequality

∥∥XT(y − Xβ)
∥∥

∞
≤ λ). Using the

uncertainty principle (10) we prove the next theorem.

Theorem 4 — Let X be the renormalized adjacency matrix of an (s, ε)-unbalanced expander with
expansion constant ε ≤ 1/8. Let β⋆ be any vector of R

p and S its s largest (in magnitude) coefficients.
For λ ≥ Λ, it holds

∥∥∥Xβ⋆ − Xβd
∥∥∥

2

2
≤ 4(λ + Λ)

(
16(λ + Λ)n + 3 ‖β⋆

Sc‖1

)
.

with probability at least 1 − ηn.

Proof — Set γ = β⋆ − βd. On the event
{∥∥XTz

∥∥
∞
≤ Λ

}
, it yields

‖Xγ‖2
2 ≤

∥∥∥XTXγ
∥∥∥

∞
‖γ‖1

=
∥∥∥XT

(
y − Xβd

)
+ XT (Xβ⋆ − y)

∥∥∥
∞
‖γ‖1

≤ (λ + Λ) ‖γ‖1 .

Hence we get

‖Xγ‖2
2 − (λ + Λ) ‖γSc‖1 ≤ (λ + Λ) ‖γS‖1 . (17)

Moreover, using the fact that β⋆ is feasible, it holds

∥∥∥βd
∥∥∥

1
≤ ‖β⋆‖1 .

Thus,

∥∥∥βd
Sc

∥∥∥
1

≤
(
‖β⋆

S‖1 −
∥∥∥βd

S

∥∥∥
1

)
+ ‖β⋆

Sc‖1

≤ ‖γS‖1 + ‖β⋆
Sc‖1
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Since ‖γSc‖1 ≤
∥∥∥βd

Sc

∥∥∥
1
+

∥∥β⋆
Sc

∥∥
1
, it yields

‖γSc‖1 ≤ ‖γS‖1 + 2 ‖β⋆
Sc‖1 . (18)

Combining (17) + 3(λ + Λ)(18), we get

‖Xγ‖2
2 + 2(λ + Λ) ‖γSc‖1 ≤ 4(λ + Λ) ‖γS‖1 + 6(λ + Λ) ‖β⋆

Sc‖1 .

We recall the uncertainty principle (10) shown by Berinde et al.:

∀γ ∈ R
p, ‖γS‖1 ≤ 2 ‖Xγ‖1 +

1

2
‖γSc‖1 .

Using the two last inequalities,

‖Xγ‖2
2 ≤ 8(λ + Λ) ‖Xγ‖1 + 6(λ + Λ) ‖β⋆

Sc‖1 ,

≤ 8(λ + Λ)
√

n ‖Xγ‖2 + 6(λ + Λ) ‖β⋆
Sc‖1 .

We deduce the inequality:

‖Xγ‖2
2 ≤ 64(λ + Λ)2n + 12(λ + Λ) ‖β⋆

Sc‖1 .

Finally, it holds
∥∥∥Xβ⋆ − Xβd

∥∥∥
2

2
≤ 4(λ + Λ)

(
16(λ + Λ)n + 3 ‖β⋆

Sc‖1

)
.

Using Lemma 3, we pretend that the event
{∥∥XTz

∥∥
∞
≤ Λ

}
has probability at least 1 − ηn.

This concludes the proof. 2

If β⋆ is s-sparse, we derive the next result.

Proposition 4 — Let X be the renormalized adjacency matrix of an (s, ε)-unbalanced expander with
expansion constant ε ≤ 1/8. Let β⋆ be a s-sparse vector. Then, for λ ≥ Λ,

∥∥∥Xβ⋆ − Xβd
∥∥∥

2
≤ 8(λ + Λ)

√
n , (19)

with probability at least 1 − ηn. In the case λ = Λ, we derive the error prediction:
∥∥∥Xβ⋆ − Xβl

∥∥∥
2
≤ 32 σ

√
n log n ,

with probability at least 1 − ηn, and σ the variance of the noise.

This proposition is a direct consequence of Theorem 4. As mentioned in the introduction,
our result is optimal within the square root of logarithmic factors. In fact, we achieve nearly
the same accuracy that one would get if he knew a head in advance the support of β⋆. By
repeating the proof of the Theorem 4, we derive a result in model selection.

Proposition 5 — Let X be the renormalized adjacency matrix of an (s, ε)-unbalanced expander with
expansion constant ε ≤ 1/8. Let β⋆ be a s-sparse vector and S be its support. Then, for λ ≥ Λ,

∥∥∥βd
Sc

∥∥∥
1
≤ 32(λ + Λ)n ,

with probability at least 1 − ηn. In the case λ = Λ, we derive the model selection:
∥∥∥βd

Sc

∥∥∥
1
≤ 128 σ n

√
log n , (20)

with probability at least 1 − ηn, and σ the variance of the noise.
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Proof — Set γ = β⋆ − βd. On the event
{∥∥XTz

∥∥
∞
≤ Λ

}
, the inequality (18) holds. Since β⋆

is s-sparse, this inequality yields

‖γSc‖1 ≤ ‖γS‖1 .

Using the uncertainty principle (10), we deduce that

‖γSc‖1 ≤ 4 ‖Xγ‖1 ,

≤ 4
√

n ‖Xγ‖2 .

We conclude invoking (19). 2

This result allows us to estimate the performance of our estimator in model selection. Observe
that, in the ′n ≪ p′ setup, the set Sc has a size almost equal to p. Moreover the upper bound
in (20) is much smaller than p. Thus the inequality (20) controls the error vector βd

Sc by an
upper bound much smaller than its size.

Acknowledgments — The author wishes to thank especially Jean-Marc Azaı̈s and Franck
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[Šid68] Zbyněk Šidák. On multivariate normal probabilities of rectangles: Their depen-
dence on correlations. Ann. Math. Statist., 39:1425–1434, 1968.

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans. Inform.
Theory, 42(6, part 1):1710–1722, 1996. Codes and complexity.

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist.
Soc. Ser. B, 58(1):267–288, 1996.
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