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We construct a semiparametric estimator in case-control studies where the gene and the envi-
ronment are assumed to be independent. A discrete or continuous parametric distribution of the
genes is assumed in the model. A discrete distribution of the genes can be used to model the mu-
tation or presence of certain group of genes. A continuous distribution allows the distribution of
the gene effects to be in a finite-dimensional parametric family and can hence be used to model
the gene expression levels. We leave the distribution of the environment totally unspecified. The
estimator is derived through calculating the efficiency score function in a hypothetical setting
where a close approximation to the samples is random. The resulting estimator is proved to be
efficient in the hypothetical situation. The efficiency of the estimator is further demonstrated to
hold in the case-control setting as well.

Keywords: case-control study; gene-environment interaction; logistic regression; semiparametric
efficiency

1. Introduction

Case-control designs are frequently implemented in clinical studies where, instead of tak-
ing a random sample of a mixed population of both cases and non-cases, a fixed number
of cases and a fixed number of controls are randomly sampled from the respective pop-
ulations of cases and non-cases. Because the resulting samples are no longer random or
independently and identically distributed (i.i.d.), the classical large-sample asymptotic
theories could fail to apply. In the literature, two main approaches are taken in order
to adapt the large-sample theory to the case-control setting. The first approach is high-
lighted in Breslow et al. (2000), where a modified design of the usual case-control study
is proposed. The resulting random sample is then linked to the true case-control sample
through using results from McNeney (1998), where the similarity between random and
non-random sample asymptotic properties is developed by almost establishing the whole
asymptotic theory under non-i.i.d. samples. The second approach is somewhat more di-
rect and is implicitly used by Rabinowitz (2000). Instead of treating the indicator (D)
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of case/control as a random variable, D is assumed to be known and all the calculations

are performed conditionally on D. Although it does result in the conditional random-

ness of the case-control samples, the resulting data is not really identically distributed.

Specifically, two different distributions are involved and the large-sample theory is still

not available. Strictly speaking, the asymptotic theory for non-i.i.d. data rederived in

McNeney (1998) also needs to be applied in order to treat such a combination of two

sample cases.

In addition to the complexity arising from a case-control design, the problem consid-

ered in this article is also a semiparametric model problem, whose efficient estimator has

not yet been explored even in the i.i.d. data situation. Specifically, the problem is as

follows. Suppose that in the general population, the occurrence of a disease (D= 1) fol-

lows a logistic model logit{Pr(D = 1)}=m(G,E), where G represents a person’s genetic

character and E represents the environmental elements. Further, suppose that G and E

are independent of each other and that we are interested in the effect of gene, environ-

ment and their interaction on the disease status. Thus, m(g, e) = βc + β1g + β2e+ β3ge.

The parametric form of the distribution of gene g is assumed to be known as q(g, β4),

where β4 is an unknown finite-dimensional parameter. The distribution of the environ-

ment, η(e), is unspecified. A special version of this problem is considered in Chatterjee

and Carroll (2005), where q(g, β4) is assumed to be a discrete distribution. There, the

authors derived a profile maximum likelihood estimator for β = (βc, β1, β2, β3, β4)
T and

showed that it is root-N consistent, where N is the size of the combined samples. The

estimator is later extended to a more general framework in Spinka et al. (2005). How-

ever, it is not investigated whether the estimator achieves the optimal semiparametric

efficiency.

In this paper, we first establish in Section 2 that the classical semiparametric theory

of Bickel et al. (1993) is applicable in general case-control studies, without having to

rederive the theory in parallel or having to resort to the results from McNeney (1998).

Such first order asymptotic equivalence between case-control sampling and random sam-

pling is a new result. We then proceed to compute the semiparametric efficient score and

construct a semiparametric estimator for β in Section 3. The computation is carried out

in a hypothetical population described in Section 2. This differs from the real population

from which the cases and controls are drawn. Hence, the derivation has its own interest

and novelty. In this section, we also prove that although the estimation of the nuisance

parameter η is bypassed in our estimator, the resulting semiparametric estimator still

achieves the optimal efficiency. The proof and treatment is rather non-standard. Numer-

ical examples are included in Section 4 to demonstrate the performance of the proposed

estimator. The performance of the method in the discrete gene model is close to that of

the method in Chatterjee and Carroll (2005) and we pointed out the possible equivalence

between the two methods in Section 5. Some analytical derivations and technical details

are included in the Appendix.
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2. Case-control data versus i.i.d. data

The samples from a case control study are not random because the disease status is not
random. In general, the design randomly samples N1 individuals from the case population
and N0 from the non-case population. However, let us consider a hypothetical population
of interest with infinite population size, in which the disease to non-disease ratio is fixed
at π =N1/N0. Here, the reason for introducing the notion of hypothetical population is
to be able to use the classical semiparametric theory for i.i.d. data, developed in Bickel
et al. (1993). If the sample of size N = N0 +N1 from a case-control study happens to
be a random sample from the hypothetical population of interest, then we have a size-N
i.i.d. random sample and the usual semiparametric analysis will apply. The asymptotic
results hold when N →∞ and π stays fixed.
Of course, the problem is that a random sample of size N from the hypothetical pop-

ulation of interest does not have to have exactly N0 controls and N1 cases, hence we
cannot immediately equate a case-control sample and a random sample from the hypo-
thetical population. In general, the number of controls/cases of a random sample from
the hypothetical population will have a binomial distribution N r

d ∼Binomial(N,Nd/N),
d = 0,1, which is very close to a normal distribution when N is large, that is,
(N r

d −Nd)/
√

Nπ(1− π)→Normal(0,1) in distribution when N →∞. Here, the super-
script r stands for ‘random.’ Furthermore, the probability of having |N r

d −Nd|> N2/3

goes to zero when N →∞. Thus, we could think of the case-control sample as obtained
by randomly picking a size-N sample from the hypothetical population of interest, then
deleting a random op(N

2/3) cases (controls) and adding a random op(N
2/3) controls

(cases). Or, alternatively, we can think of the case-control sample as a random sam-
ple of size N , but with a randomly chosen op(N

2/3) data contaminated in a particular
way. This “particular” contamination implies the following three properties: (i) the con-
tamination happens only to op(N) of the observations (in the case-control samples, the
contamination in fact only happens to op(N

2/3) observations, but, in general, op(N) is al-
ready sufficient for our further analysis); (ii) the contaminated data is still of order O(1),
that is, |Xc

i −Xi| is bounded in probability for i = 1, . . . ,N ; (iii) the zero expectation
holds for the contaminated observations, that is, if an estimating equation for β of the
form

∑N
i=1 f(Xi;β) = 0 satisfies E{f(Xi;β0)}= 0, then E{f(Xc

i ;β0)}= 0 as well. Here,
Xi, i = 1, . . . ,N , are i.i.d. random samples, the superscript c stands for ‘contaminated’
and the subscript 0 represents the true parameter value.
When the case-control sample is viewed as a contaminated random sample from the

hypothetical population of interest, the first two “particular” properties certainly hold.
For the estimator we will construct, we shall demonstrate that the third property also
holds. Thus, if we can show that the same first order asymptotics apply to both the
i.i.d. sample of size N and its contaminated version as long as the three properties hold,
then we can treat the case-control sample as an i.i.d. sample.
The argument is as follows. Assume that we mistakenly treated the contaminated data

as i.i.d. and obtained an efficient estimator:

N
∑

i=1

Seff(X
c
i ;β) = 0. (2.1)
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Here, Seff is the efficient score function and its derivation is model-dependent. One obvi-
ous aspect of Seff worth emphasizing is that the construction of Seff does not depend on
the observations. Regardless of the method of derivation, the efficient score function Seff

has the property E{Seff(Xi;β0)}= 0. If we had the uncontaminated data, our subsequent

estimator for β would have been
∑N

i=1 Seff(Xi;β) = 0. Working with the contaminated

data, (2.1) is the estimating equation we really have. Suppose that β̂ solves (2.1). We
then have

0 =

N
∑

i=1

Seff(X
c
i ; β̂) =

N
∑

i=1

Seff(X
c
i ;β0) +

N
∑

i=1

∂Seff(X
c
i ;β

∗)

∂βT
(β̂ − β0),

therefore,

−N−1

{

N
∑

i=1

∂Seff(X
c
i ;β

∗)

∂βT

}

√
N(β̂ − β0) =N−1/2

N
∑

i=1

Seff(X
c
i ;β0), (2.2)

where β∗ lies on the line connecting β0 and β̂. Note that in our “particular” contamination
requirement, only op(N) terms yield a different Xi from Xc

i (requirement (i)) and, for
each Xc

i 6=Xi, the difference is Op(1) (requirement (ii)), so we have

N−1

{

N
∑

i=1

∂Seff(X
c
i ;β

∗)

∂βT

}

= N−1

{

N
∑

i=1

∂Seff(Xi;β
∗)

∂βT

}

+ op(1)

(2.3)

= E

{

∂Seff(Xi;β0)

∂βT

}

+ op(1).

From the third “particular” property, we have E{Seff(X
c
i ;β0)} = 0 (we will prove that

this property holds for the case-control data in Section 3). In conjunction with the fact
that only op(N) of the terms Seff(X

c
i ;β0) − Seff(Xi;β0) are non-zero, we can further

obtain

N−1/2
N
∑

i=1

Seff(X
c
i ;β0) =N−1/2

N
∑

i=1

Seff(Xi;β0) + op(1). (2.4)

The detailed argument of (2.4) is the following. Suppose for the first l= op(N) observa-
tions, Xc

i 6=Xi. Then we have

N−1/2
N
∑

i=1

Seff(X
c
i ;β0)

=N−1/2
N
∑

i=1

Seff(Xi;β0) +N−1/2
l

∑

i=1

{Seff(X
c
i ;β0)− Seff(Xi;β0)}
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=N−1/2
N
∑

i=1

Seff(Xi;β0) + (N/l)−1/2l−1/2
l

∑

i=1

{Seff(X
c
i ;β0)− Seff(Xi;β0)}.

Note that Seff(X
c
i ;β0) − Seff(Xi;β0) has mean zero, hence l−1/2

∑l
i=1{Seff(X

c
i ;β0) −

Seff(Xi;β0)}=Op(1). From l= op(N), we obtain the result in (2.4) immediately. Thus,
plugging (2.3) and (2.4) into (2.2), we obtain

−E
{

∂Seff(Xi;β0)

∂βT

}√
N(β̂ − β0) =N−1/2

N
∑

i=1

Seff(Xi;β0) + op(1).

The above display is exactly the first order asymptotic expansion of the estimator for
β if we had performed the estimation procedure on the uncontaminated data. Thus,
we have demonstrated that the estimator obtained from contaminated data performs as
well as the one obtained from uncontaminated data in terms of first order asymptotic
properties. Note that the efficient estimator can be replaced by a consistent estimator,
say, a general S instead of Seff , as long as E(S|D = d) = 0 holds for d = 0,1. This
ensures that E{S(Xc

i )}= 0 as long as E{S(Xi)}= 0 (shown in Section 3), so the above
derivation will still carry through. Hence, the asymptotic property of the estimator using
the contaminated data is indeed the same as if we had the uncontaminated data. Thus,
the case-control data can be treated as i.i.d. data and we can achieve the same efficiency
as when the data was indeed i.i.d. In other words, a semiparametric estimator using
contaminated data is at least as efficient as one using the uncontaminated data.
One question still remains: can we do even better than in the i.i.d. data case? In

fact, since case-control sampling is designed to be an efficient way to collect covariate
information, it seems to contain more information than a random sample. However, we
claim that for asymptotically linear estimators of the form

√
N(β̂ − β0) =

1√
N

N
∑

i=1

ψ(Xc
i ;β0) + op(1),

where E{ψ(Xc
i ;β0)|d}= 0, the efficiency in parameter estimation cannot be further im-

proved by taking into account the special sampling procedure. This is because otherwise,
we could have obtained a better estimator for the i.i.d. sample as well, by replacing
Xc

i with Xi. The detailed derivation is the same as in the above paragraph, where the
condition E{ψ(Xc

i ;β0)|d} = 0 implies E{ψ(Xi;β0)|d} = 0 for case-control data, which
ensures E{ψ(Xc

i ;β0)}=E{ψ(Xi;β0)}= 0. Of course, if the condition E(ψ|d) = 0 is not
satisfied, the argument does not work. However, we now show that if ψ achieves the
optimal variance for the case-control data Xc

i , then it has to satisfy E{ψ(Xc
i ;β0)|d}= 0.

First, E{∂E(ψ|D)/∂β} = ∂E(ψ)/∂β = 0 because the probability density function

(p.d.f.) of D does not contain β. If we let ψ̃(Xc
i ) = ψ(Xc

i ) − E{ψ(Xc
i )|d}, then

E{ψ̃(Xc
i )}= 0 and E{∂ψ̃(Xc

i )/∂β}= E{∂ψ(Xc
i )/∂β}. If E{ψ(Xc

i )|d} 6= 0, then we can
obtain

var{ψ(Xc
i )} = E[var{ψ(Xc

i )|D}] + var[E{ψ(Xc
i )|D}] = var{ψ̃(Xc

i )}+ var[E{ψ(Xc
i )|D}]
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> var{ψ̃(Xc
i )},

which, together with E{∂ψ̃(Xc
i )/∂β}=E{∂ψ(Xc

i )/∂β}, contradicts the fact that ψ(Xc
i )

is optimal.
In summary, we have shown that the case control samples can be treated as if they

were i.i.d. and all the first order asymptotic results for i.i.d. data will be inherited for
case-control data as well. We can see that the above establishment is similar to the devel-
opment in Breslow et al. (2000). However, one prominent difference is that in Breslow et

al. (2000), the case-control sample is viewed as the result of a biased sampling procedure
with fixed subsample size, hence they cannot use the classical semiparametric theory for
i.i.d. data, but have to refer to McNeney (1998) for the theoretical properties, where the
whole semiparametric theory for fixed-size subsamples is established in parallel to the
i.i.d. framework. Here, through introducing the notion of hypothetical population and by
analyzing the first order equivalence between a random sample and a sample with fixed-
size subsamples, we can easily contain the case-control problem in the usual i.i.d. model
framework. The derivation is much simpler and more elegant. Thus, in the remainder of
the paper, we ignore the case-control nature of the data and proceed with our analysis by
pretending the data is i.i.d. from the aforementioned hypothetical population of interest.

3. A semiparametric efficient estimator

3.1. Geometric approach

A random sample from the hypothetical population of interest has p.d.f.

p(g, e, d;β, η) = pD(d)pG,E|D(g, e|d) = pD(d)ptG,E|D(g, e|d)

= pD(d)ptG(g)p
t
E(e)p

t
D|G,E(d|g, e)/ptD(d) (3.1)

=
Nd

N

q(g)η(e)H(d, g, e)

ptD(d)
.

Here, the superscript t stands for the p.d.f. in the true population, whereas expressions
without superscripts, including various p.d.f.’s and expectation E, are quantities in the
hypothetical population of interest; η(e) = ptE(e) is the unknown infinite-dimensional
parameter and

H(d, g, e;β) = exp[d{m(g, e)}]/[1+ exp{m(g, e)}]
= exp{d(βc + β1g + β2e+ β3ge)}/{1+ exp(βc + β1g+ β2e+ β3ge)};

ptD(d;β, η) =

∫

q(g, β4)η(e)H(d, g, e;β) dµ(g) dµ(e).

We recognize that estimating the finite-dimensional parameter β in the presence of an
infinite-dimensional nuisance parameter η, using an i.i.d. sample of size N =N0+N1 from
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a hypothetical population of interest, with the p.d.f. of a random observation given by
(3.1), is a classical semiparametric problem. Therefore, we implement the semiparametric
estimation methods to derive the semiparametric efficient estimator. The approach we
take is geometric, first introduced in Bickel et al. (1993). Because the general approach
and related concepts have been nicely described in several recent papers including Tsiatis
and Ma (2004), Allen et al. (2005), Ma et al. (2005) and Ma and Tsiatis (2006), here,
we only briefly outline the general approach and the definition of the relevant concepts,
referring the reader to these papers for more detailed descriptions.
In general semiparametric problems, one approach to construct estimators for β is to

obtain some influence function φ(Xi;β, η) which is subsequently used to form estimating

equations for β in the form of
∑N

i=1 φ(Xi;β, η) = 0. Here, Xi = (Gi,Ei,Di), i= 1, . . . ,N ,

are i.i.d. observations. The solution of the estimating equation, β̂, is subsequently a
semiparametric estimator and its variance has been established to be equal to the variance
of φ(Xi;β, η). Consequently, the optimal estimator among the class of all such estimators
is the one whose influence function has the smallest variance. This is usually referred to
as the semiparametric efficient estimator.
The geometric approach considers the space in which all influence functions belong.

Specifically, one considers a Hilbert space H which consists of all zero-mean measurable
functions with finite variance and the same dimension as β. The inner product in H is
defined as the covariance. The Hilbert space H is further decomposed into two spaces,
the nuisance tangent space Λ and its orthogonal complement Λ⊥.
To understand the nuisance tangent space Λ, consider first the case where the nui-

sance parameter, denoted γ, is finite-dimensional. Then, the nuisance score function,
Sγ = ∂ logp(Xi;β, γ)/∂γ, spans a linear space, which is denoted Λ. In the case of the
infinite-dimensional nuisance parameter η, the corresponding Λ is defined as the mean
squared closure of the span of all the nuisance score functions Sγ , where p(Xi;β, γ) is any
parametric submodel of p(Xi;β, η). The orthogonal complement of Λ in H is subsequently
defined as Λ⊥.
Any function in Λ⊥ can be properly normalized to obtain a valid influence function.

On the other hand, every influence function is a function in Λ⊥. Among all these func-
tions, the projection of the score function Sβ = ∂ logp(Xi;β, γ)/∂β results in the efficient
influence function. If we denote the projection by Seff , then the corresponding optimal
variance is var(Seff)

−1. The projection Seff is usually called the efficient score function.
Hence, the geometric approach converts the problem of searching for efficient semi-

parametric estimators to the problem of calculating Seff .

3.2. Construction of the estimator

Following the description in Section 3.1, we obtain the efficient score function Seff . View-
ing the sample as random from the hypothetical population, the p.d.f. in (3.1) is no
longer in a simple multiplicative form, in that the nuisance parameter appears both in
the numerator and in the integral in the denominator. Since this implies that the nui-
sance tangent space is not automatically orthogonal to the score functions, the related
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computation for the nuisance tangent space and associated objects is more involved. In
addition, one needs to be aware that the calculation should be carried out with respect to
the hypothetical population, hence quantities such as ptG, p

t
E, p

t
D need to be treated with

extra care and not confused with pG, pE , pD. The main steps of the derivation are as fol-
lows. We first calculate the score function Sβ by taking the derivative of logp(g, e, d;β, η)
with respect to β. This results in Sβ = S −E(S|d), where

S =

{

(m′
βc
m′

β1
m′

β2
m′

β3
)

(

d− 1 +
1

1 + em

)

q′β4
(g, β4)

T

q(g, β4)

}T

.

We then calculate the two spaces Λ,Λ⊥ by replacing η in (3.1) with a finite-dimensional
parameter γ, taking the derivative of logp(g, e, d;β, γ) with respect to γ to obtain Sγ ,
hypothesizing a space of all such Sγ and proving that Λ is equivalent to this space. The
results are

Λ = [h(e)−E{h(e)|d}: ∀h(e) such that Et(h) = 0] = [h(e)−E{h(e)|d}: ∀h(e)],
Λ⊥ = [h(g, e, d): E(h|e) =E{E(h|d)|e}].

We finally project the score vector Sβ onto Λ⊥ to obtain Seff = Sβ − f(e) + E(f |d) =
S−E(S|d)− f(e)+E(f |d), where f(e)−E(f |d) represents the projection of Sβ onto Λ.
The details of the derivation can be found in the Appendix. Note that this form of Seff

implies that E{Seff(X)|d}= 0. When X is replaced by Xc, the non-random case-control
sample, we still have E{Seff(X

c)|d} = 0 because the design itself guarantees that the
only non-random component is d, which is held constant. Thus, viewing Xc as a special
contaminated version of X , we still have E{Seff(X

c)}= 0, which is required in Section 2.
From the Appendix, we can further write

Seff = S −E(S|e) + (−1)d{a(0)− a(1)}w(e,1− d), (3.2)

where a(0)− a(1) =E(f |D= 0)−E(S|D = 0)−E(f |D = 1)+E(S|D = 1).
In terms of the calculation of Seff , note that S, E(S|e) and w, as given in (A.1), are all

functions with parameters β and ptD(d) only. Hence, as long as we can calculate ptD(d),
we will have the ability to evaluate S, E(S|e) and w. The computation of a(0)− a(1)
requires further arguments.
In the following, we first obtain an approximation of ptD(d), then pursue the estimation

of a(0)− a(1). To estimate ptD(d), using pE(e) to denote the probability density function
of e in the hypothetical population, we observe that

Nd =NpD(d) =

∫

NpD,E(d, e) dµ(e) =

∫

NpE(e)pD,G|E(d, g|e) dµ(g) dµ(e)

=

∫

NpE(e)

∫

Ndq(g, β4)H(d, g, e) dµ(g)/ptD(d)
∑

d

∫

Ndq(g, β4)H(d, g, e) dµ(g)/ptD(d)
dµ(e)

= Ee

{

N
∫

Ndq(g, β4)H(d, g, e) dµ(g)/ptD(d)
∑

d

∫

Ndq(g, β4)H(d, g, e) dµ(g)/ptD(d)

}

.
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Replacing the moment Ee with its sample moment through averaging across different

observed ei’s, we obtain

Nd ≈
N
∑

i=1

∫

Ndq(g, β4)H(d, g, ei) dµ(g)/p
t
D(d)

∑

d

∫

Ndq(g, β4)H(d, g, ei) dµ(g)/ptD(d)
for d= 0,1. (3.3)

Note that the above two equations are not independent – one determines the other. But,
in combination with ptD(0) + ptD(1) = 1, we can estimate ptD(d) completely. Because the
only approximation involved in estimating ptD(d) is replacing the mean with a sample

mean, the calculation will produce a root-N -consistent estimator for ptD(0) and ptD(1).
We denote the estimators by p̂tD(0) and p̂tD(1). In calculating Nd, we write p(g, e, d) as

pE(e)pD,G|E(d, g|e), instead of directly using the form in (3.1). Since pE(e) is the p.d.f. of
the environment variable in the hypothetical population, this enables us to replace the

expectation Ee with the average of the samples.
The estimation of a(0) − a(1) is much more tedious, and involves an almost brute

force calculation of E(S|d) and E(f |d). If we let b0 =E(S|D = 0), b1 =E(S|D= 1), c0 =
E(f |D= 0) and c1 =E(f |D = 1), then a(0)− a(1) = b1− b0 + c0 − c1. The calculation of

b0 and b1 follows from

bd =

∫

SpD,G,E(d, g, e) dµ(g) dµ(e)
∫

pD,G,E(d, g, e) dµ(g) dµ(e)
=

∫

SpE(e)pD,G|E(d, g|e) dµ(g) dµ(e)
∫

pE(e)pD,G|E(d, g|e) dµ(g) dµ(e)

=

∫

pE(e)

∫

SNdq(g)H(d, g, e) dµ(g)/ptD(d)
∑

d

∫

Ndq(g)H(d, g, e) dµ(g)/ptD(d)
dµ(e)

/

∫

pE(e)

∫

Ndq(g)H(d, g, e) dµ(g)/ptD(d)
∑

d

∫

Ndq(g)H(d, g, e) dµ(g)/ptD(d)
dµ(e).

Since S can be calculated directly, we simply obtain the approximation of bd, d= 0,1, by

replacing the mean with sample mean and plugging in the estimated ptD(d):

b̂0 =
N
∑

i=1

∫

S(0, g, ei)q(g)H(0, g, ei) dµ(g)
∑

d

∫

Ndq(g)H(d, g, ei) dµ(g)/p̂tD(d)
(3.4)

/

N
∑

i=1

∫

q(g)H(0, g, ei) dµ(g)
∑

d

∫

Ndq(g)H(d, g, ei) dµ(g)/p̂tD(d)
,

b̂1 =

N
∑

i=1

∫

S(1, g, ei)q(g)H(1, g, ei) dµ(g)
∑

d

∫

Ndq(g)H(d, g, e) dµ(g)/p̂tD(d)
(3.5)

/

N
∑

i=1

∫

q(g)H(1, g, ei) dµ(g)
∑

d

∫

Ndq(g)H(d, g, e) dµ(g)/p̂tD(d)
.
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The calculations of c0 and c1 are a bit more tricky. Since

f =E(S|e) + (c0 − b0)w(e,0) + (c1 − b1){1−w(e,0)},

taking expectation conditional on, say D= 0, we have

c0 = E{E(S|e)|D= 0}+ (c0 − b0)E{w(e,0)|D= 0}
+ (c1 − b1)[1−E{w(e,0)|D= 0}]

or, equivalently, we obtain

c0 − c1 =
E{E(S|e)|D= 0}− b0E{w(e,0)|D= 0}− b1[1−E{w(e,0)|D= 0}]

1−E{w(e,0)|D= 0} .

Hence, replacing mean by sample mean and using p̂tD(d), c0 − c1 is estimated by

ĉ0 − ĉ1 =
Ê{E(S|e)|D= 0}− b̂0Ê{w(e,0)|D= 0}− b̂1[1− Ê{w(e,0)|D= 0}]

1− Ê{w(e,0)|D= 0}
, (3.6)

where

Ê{w(e,0)|D= 0} =
N
∑

i=1

w(ei,0)
∫

q(g)H(0, g, ei) dµ(g)
∑

d

∫

Ndq(g)H(d, g, ei) dµ(g)/p̂tD(d)
(3.7)

/

N
∑

i=1

∫

q(g)H(0, g, ei) dµ(g)
∑

d

∫

Ndq(g)H(d, g, ei) dµ(g)/p̂tD(d)

and

Ê{E(S|e)|D= 0} =
N
∑

i=1

E(S|ei)
∫

q(g)H(0, g, ei) dµ(g)
∑

d

∫

Ndq(g)H(d, g, ei) dµ(g)/p̂tD(d)
(3.8)

/

N
∑

i=1

∫

q(g)H(0, g, ei) dµ(g)
∑

d

∫

Ndq(g)H(d, g, ei) dµ(g)/p̂tD(d)
.

Similarly to the estimation of ptD(d), the only approximation involved in obtaining
b(0), b(1) and c(0)− c(1) is replacing mean by sample mean, so a(0)− a(1) is estimated

using â(0)− â(1) = b̂1 − b̂0 + ĉ0 − ĉ1 at the root-N rate.
We would like to emphasize that in all of the above calculations, when we replace the

expectation with the sample average, we use the result that the case-control sample can
be treated as a random sample from the hypothetical population. Hence, for any function

u(e), the approximation N−1
∑N

i=1 u(ei) can only be used to replace
∫

u(e)pE(e) dµ(e),
not

∫

u(e)η(e) dµ(e).
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We omitted the parameter β in all of the above expressions, in fact, ptD(0), ptD(1), a(0)−
a(1) are all functions of β. However, if we replace β with β̃, an initial estimator of
β, we will still obtain p̂tD(d; β̃), â(0; β̃) − â(1; β̃) that are root-N -consistent, as long as

β̃ − β =Op(N
−1/2). The final estimating equation of β has the form

N
∑

i=1

Ŝeff(xi;β) =
N
∑

i=1

Seff{xi;β, p̂tD(d; β̃), â(0; p̂tD, β̃)− â(1; p̂tD, β̃)}= 0, (3.9)

where xi denotes the ith observation (di, gi, ei).
To summarize the description of the estimator, we outline the algorithm here:

Step 1. Pick a starting value β̃ that is root-N consistent.
Step 2. Solve for p̂tD(0) and p̂tD(1) = 1− p̂tD(0) from (3.3).

Step 3. Obtain b̂0 and b̂1 from (3.4) and (3.5).
Step 4. Obtain ĉ0 − ĉ1 from (3.6) and (3.7), (3.8).

Step 5. Calculate Seff using (3.2) and obtain β̂ from solving (3.9).

It is worth pointing out that in order to carry out Step 1, we have used a vital assump-
tion that a root-N starting value β̃ exists. Fortunately, the existence of β̃ is equivalent to
the identifiability of β and is already well established in Chatterjee and Carroll (2005).
The starting value used there, or in Spinka et al. (2005), can be used to obtain the initial
estimator β̃. Our algorithm here does not require an iteration of Steps 2–5 upon each
update of β. However, in practice, a more accurate β̃ can improve the final estimation β̂
significantly, hence iterations are almost always implemented.

3.3. Semiparametric efficiency

If we could use the exact ptD(d;β) and a(0;β) − a(1;β) in (3.9), then, according to
Section 3.1, the resulting estimator for β would be an efficient estimator, with es-
timation variance V = E(SeffS

T
eff)

−1. To first order, V can be approximated using

N{
∑N

i=1 Ŝeff(xi; β̂)Ŝ
T
eff(xi; β̂)}−1, where β̂ solves (3.9).

We claim that using the estimated Ŝeff as in (3.9), we obtain an estimating equation
that yields the same estimator for β as using Seff , in terms of its first order asymptotic
properties.

Theorem 1. The algorithm in Section 3.2 yields a semiparametric efficient estimator

for β. That is,

√
N(β̂ − β0)→Normal{0,var(Seff)

−1}

in distribution when N →∞ and N1/N0 is fixed.

The proof of the theorem contains two main steps. In the first step, we show the
semiparametric efficiency of the estimator if the observations had been i.i.d. In the second
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Table 1. Simulation results for the two experiments, each with two different sets of parame-
ter values, representing uncommon (upper-left) and common (upper-right) gene mutation, and
homogeneous (lower-left) and diversified (lower-right) gene expression levels. ‘true’ is the true

value of β, ‘est’ is the average of the estimated β, ‘sd’ is the sample standard deviation and ‘ŝd’
is the average of the estimated standard deviation

βc β1 β2 β3 β4 βc β1 β2 β3 β4

Experiment 1
true −3.2000 0.2600 0.1000 0.3000 0.0650 −3.4500 0.2600 0.1000 0.3000 0.2600
est −3.8925 0.2498 0.0995 0.3101 0.0649 −3.9263 0.2618 0.0994 0.2998 0.2610
sd 1.6390 0.3110 0.0359 0.1226 0.0111 1.3958 0.2196 0.0445 0.0783 0.0229

ŝd 1.6285 0.3236 0.0364 0.1192 0.0116 1.2534 0.1956 0.0422 0.0723 0.0207

Experiment 2
true −3.2000 0.2600 0.1000 0.3000 0.3000 −3.7300 0.2600 0.1000 0.3000 1.0000
est −3.3128 0.2553 0.0993 0.3126 0.2999 −3.7442 0.2589 0.0995 0.3053 0.9986
sd 0.7815 0.1624 0.0352 0.0750 0.0101 0.2906 0.0685 0.0442 0.0405 0.0378

ŝd 0.7969 0.1663 0.0358 0.0789 0.0101 0.2859 0.0676 0.0439 0.0402 0.0373

step, we proceed to show the efficiency in the case-control study using results in Section 2.
Rather complex algebra needs to be employed in the first step. The proof also involves
a split of the data in the final estimation of β, and in estimating ptD(d) and a(0)− a(1),
mainly for technical convenience. The details of the proof appear in the Appendix.

4. Numerical examples

We conducted a small simulation study to demonstrate the performance of the estima-
tor. In the first experiment, we generated 500 cases and 500 controls, where the true
environment element E is min(10,X) and X is generated from a log-normal distribution
with mean 0 and variance 1. A dichotomous model of the gene is used, where G= 1 with
probability β4 and G = 0 with probability 1 − β4. This kind of model for q(g, β4) can
represent the presence/absence of a certain gene mutation. We used two different sets of
values for β: the first set is β = (−3.45,0.26,0.1,0.3,0.26)T, where β4 = 0.26 represents
a relatively common mutation; the second set is β = (−3.2,0.26,0.1,0.3,0.065)T, where
β4 = 0.065 represents a very rare mutation. In both sets, the true parameters are chosen
so that the model results in a population disease rate ptD(1)≈ 5%. The simulation results
are presented in the upper half of Table 1.
The second experiment differs from the first one in its assumption on q(g, β4). Here, we

model q(g, β4) with a Laplace distribution with variance β4. This kind of model is typi-
cally used to model the gene expression level. To maintain an approximate 5% disease rate
in the population, we used β = (−3.2,0.26,0.1,0.3,0.3)T and β = (−3.73,0.26,0.1,0.3,1)T

as the true parameter values. Again, in the first set, β4 = 0.3 represents a small variation
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in the population distribution for the gene expression levels, resulting in a more homo-
geneous population in terms of this gene. In the second set, β4 = 1 represents a larger
variation, so the population is more diversified. The simulation results are presented in
the lower half of Table 1. In both experiments, 1000 simulations are implemented.
From Table 1, it is clear that the estimator for β is consistent in all four situations

and the estimated standard deviation approximates the true one rather well. It is worth
noting that the first experiment is a repetition of the same setting as in Chatterjee and
Carroll (2005) and we observe very similar results. Specifically, for β1, β2, β3, β4 in the
upper-left table, their results for “sd” are 0.322, 0.037, 0.128, 0.0122, respectively, and
those in the upper-right table are 0.198, 0.043, 0.075 and 0.0273, respectively. Although
some numerical improvement can be observed in certain parameters (for example β4),
it can be a result of finite-sample performance and numerical issues. We conjecture that
the estimator in Chatterjee and Carroll (2005) is equivalent to the method proposed
here, hence is also efficient, although a rigorous proof is beyond the scope of this paper.
It is also worth noting that the estimation of βc is more difficult than the remaining
components of β, in that the estimation has large variability. This is especially prominent
in the discrete model setting for q(g). Indeed, the estimation result for βc has not been
reported elsewhere and, without the gene-environment independence, βc is known to be
unidentifiable (Prentice and Pyke (1979)). This provides an intuitive explanation for the

performance of β̂c we observe. The set of estimating equations is solved using a standard
Newton–Raphson algorithm.

5. Conclusion

Semiparametric modeling and estimation to study the occurrence of a disease in rela-
tion to gene and environment has attracted much interest recently. However, despite
the various estimators proposed in the literature, very little is understood in terms of
the efficiency of the estimators. This is partly due to the fact that most estimators are
constructed in rather ingenious ways, instead of following the standard lines of semi-
parametric theory. The other reason is that most such problems are set in a case-control
design, which violates the i.i.d. assumption for standard semiparametric theory.
Instead of rederiving the whole semiparametric theory under non-i.i.d. samples, we

argue that case-control data can be treated as if they were i.i.d. data and the stan-
dard semiparametric efficiency theory will still apply. The equivalence of the first order
asymptotic theory shown in this article is a new contribution. The argument is based on
rather elementary statistics without involving advanced knowledge or highly specialized
techniques.
The establishment of the equivalence of the semiparametric efficiency between

i.i.d. data and case-control data allows us to carry out the estimation using standard,
well-established semiparametric theory. However, these standard analyses are performed
under a hypothetical population of interest, hence the detailed derivation often requires
special treatment, something which has not previously appeared in the literature. Under
the gene-environment independence assumption, we are able to explicitly construct a
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novel semiparametric estimator and show its efficiency. A special feature of this estima-
tor is that we never attempted to estimate the infinite-dimensional nuisance parameter η
itself, neither did we posit a model, true or false, for it. Rather, we avoided its estimation
and instead approximated quantities that rely on it. On the one hand, this enables us
to carry out the estimation rather easily; on the other hand, some asymptotic properties
have to be rederived because any result that relies on the convergence properties of the
nuisance parameter itself can no longer be used.
Finally, our simulation results support the theory we developed, in both discrete and

continuous gene distribution cases. Our simulation results in the discrete gene model are
very similar to those of Chatterjee and Carroll (2005), which leads us to believe that
their estimator is also efficient. A demonstration of this aspect would be an interesting
direction for future work. The programming of the method in Chatterjee and Carroll
may seem easier. However, if the two methods are indeed equivalent, then the projection
step in the current method should be equivalent to the profiling step in Chatterjee and
Carroll, hence the computational effort and intensity should be equivalent. Although we
did not further expand our estimator to stratified case-control data, the method is clearly
applicable there as well.

Appendix

The derivation of Seff

We will use Seff to construct our estimating equation. We calculate Seff by projecting
the score functions with respect to the parameters of interest βc, β1, β2, β3, β4 onto the
orthogonal complement of the nuisance tangent space. We first derive the score functions
Sβ ≡ ∂ logp(g, e, d;β, η)/∂β. Straightforward calculation shows that the score function
Sβ = (ST

1 , S
T
2 )

T, where

ST
1 = (m′

βc
m′

β1
m′

β2
m′

β3
)

(

d− 1 +
1

1+ em

)

−E

{

(m′
βc
m′

β1
m′

β2
m′

β3
)

(

d− 1 +
1

1 + em

)

∣

∣

∣
d

}

,

S2 =
q′β4

(g, β4)

q(g, β4)
−E

{

q′β4
(g, β4)

q(g, β4)

∣

∣

∣
d

}

.

Here, m′
∗ and q′∗ represent partial derivatives with respect to ∗. Note that, in general, Sβ

can be written as Sβ = S −E(S|d).
We next derive the nuisance tangent space Λ and its orthogonal complement Λ⊥.

Inserting the form of ptD(d;β, η) into (3.1), replacing η(e) by an arbitrary submodel
ptE(e;γ) and taking the derivative of logp(g, e, d;β, γ) with respect to γ, we ob-
tain ∂ logp(g, e, d;β, γ)/∂γ = ∂ logptE(e;γ)/∂γ − E{∂ logptE(e;γ)/∂γ|d}. Now, recogniz-
ing that ∂ logptE(e;γ)/∂γ for an arbitrary submodel can yield an arbitrary function of e
with mean zero calculated under the true η(e), we obtain the nuisance tangent space:

Λ = [h(e)−E{h(e)|d}: ∀h(e) such that Et(h) = 0] = [h(e)−E{h(e)|d}: ∀h(e)],
Λ⊥ = [h(g, e, d): E(h|e) =E{E(h|d)|e}].
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Here, Et stands for an expectation calculated with respect to the true population distri-
bution. The second expression for Λ is more convenient because it allows h(e) to be an
arbitrary function of e, hence this is the form of Λ that we will use.
Having obtained Sβ and the spaces Λ and Λ⊥, we can proceed to derive the efficient

score function Seff ≡ Π(Sβ |Λ⊥). If we let Π(Sβ |Λ) = f(e) − E(f |d), then Seff = Sβ −
f(e) +E(f |d) = S −E(S|d)− f(e) +E(f |d).
We now modify the expression of Seff to facilitate its actual computation. Letting

a(d) =E(f |d)−E(S|d), we can thus write Seff = S − f + a(d). Note that S does not de-
pend on η and a(d) is either a(1) or a(0). In addition, we have E(Seff |e) =E{E(Seff |d)|e}.
This is equivalent to

E(Sβ |e)− f(e) +E{E(f |d)|e}=E[E{S −E(S|d)|d} −E{f −E(f |d)|d}|e] = 0,

which, in turn, is equivalent to

E(S|e) = f +E{E(S|d)|e} −E{E(f |d)|e}= f −E{a(d)|e}

= f −
∑

d

∫

a(d)Ndq(g, β4)H(d, g, e) dµ(g)/ptD(d)
∑

d

∫

Ndq(g, β4)H(d, g, e) dµ(g)/ptD(d)
.

Let

v(e, d) =Nd

∫

q(g, β4)H(d, g, e) dµ(g)/ptD(d) = pE,D(e, d)Nη−1(e)

and

w(e, d) = v(e, d)/{v(e,0)+ v(e,1)}. (A.1)

We have

E(S|e) = f − a(0)v(e,0)/{v(e,0)+ v(e,1)}− a(1)v(e,1)/{v(e,0)+ v(e,1)}
= f − a(0)w(e,0)− a(1)w(e,1)

or f =E(S|e) + a(0)w(e,0) + a(1)w(e,1). Consequently,

Seff = S −E(S|e)− a(0)w(e,0)− a(1)w(e,1) + a(d)

= S −E(S|e) + (−1)d{a(0)− a(1)}w(e,1− d).

Proof of Theorem 1

To simplify notation, we denote α= ptD(0)/ptD(1), α̂= p̂tD(0)/p̂tD(1), δ(α) = a{0;ptD(d)}−
a{1;ptD(d)}, δ(α̂) = a{0; p̂tD(d)} − a{1; p̂tD(d)} and δ̂(α̂) = â{0; p̂tD(d)} − â{1; p̂tD(d)}.
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Suppose we randomly partition the data into two groups: group 1 has m observations
and group 2 has n observations. Here, m=N0.9, n=N −m. We use the first group to

obtain α̂, and δ̂(α̂), then use the second group to form the following estimating equation
to estimate β:

n
∑

i=1

Seff{xi; β̂, α̂, δ̂(α̂)}= 0.

We will first show that the resulting estimator satisfies n1/2(β̂−β0)→N(0, V ) in distri-
bution when N →∞.
The proof splits into several steps: First, obviously, α̂ − α = Op(m

−1/2) and δ̂(α̂) −
δ(α̂) = Op(m

−1/2), as long as a root-N -consistent β̃ is inserted in the calculation of these
quantities. A standard expansion yields

0 =
n
∑

i=1

Seff{xi; β̂, α̂, δ̂(α̂)}

=

n
∑

i=1

Seff{xi;β0, α̂, δ̂(α̂)}+
n
∑

i=1

∂

∂βT
Seff{xi;β∗, α̂, δ̂(α̂)}(β̂ − β0)

=
n
∑

i=1

Seff{xi;β0, α̂, δ̂(α̂)}+ n

{

E

(

∂Seff

∂βT

)

+ op(1)

}

(β̂ − β0),

which can be rewritten as
{

E

(

∂Seff

∂βT

)

+ op(1)

}

n1/2(β̂ − β0)

=−n−1/2
n
∑

i=1

Seff{xi;β0, α̂, δ̂(α̂)}

=−n−1/2
n
∑

i=1

[Seff{xi;β0, α̂, δ(α̂)}+ (−1)di{δ̂(α̂)− δ(α̂)}w(ei,1− di, α̂)].

The last equality uses the form of Seff in (3.2) and the fact that S, E(S|e) and w do not

depend on α. Because δ̂(α̂)− δ(α̂) = Op(m
−1/2) = op(1) and

E{(−1)diw(ei,1− di, α̂)}=
∫

∑

d=0,1

(−1)dpE,D(e,1− d; α̂)η−1(e)

v(e,0; α̂) + v(e,1; α̂)
pE,D(e, d; α̂) dµ(e) = 0,

we actually have

{

E

(

∂Seff

∂βT

)

+ op(1)

}

n1/2(β̂ − β0)
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=−n−1/2
n
∑

i=1

Seff{xi;β0, α̂, δ(α̂)}+ op(1)

=−n−1/2
n
∑

i=1

{

Seff(xi) +
∂Seff(xi;β0, α)

∂α
(α̂− α) +

∂2Seff(xi;β0, α
∗)

∂α2
(α̂−α)2

}

+op(1).

In addition, (α̂−α)2 =Op(m
−1) = op(n

−1/2), so

{

E

(

∂Seff

∂βT

)

+op(1)

}

n1/2(β̂ − β0) =−n−1/2
n
∑

i=1

{

Seff(xi) +
∂Seff(xi)

∂α
(α̂− α)

}

+ op(1).

We now proceed to examine ∂Seff (xi)
∂α by examining each term in (3.2). S is free of α.

As a function of α, we already have

b5(e;α) ≡ E(S|e;α) =
∑

d

∫

SNdq(g, β4)H(d, g, e) dµ(g)/ptD(d)
∑

d

∫

Ndq(g, β4)H(d, g, e) dµ(g)/ptD(d)

=

∫

SN0qH0 dµ(g) + α
∫

SN1qH1 dµ(g)
∫

N0qH0 dµ(g) + α
∫

N1qH1 dµ(g)
=
u2(e,0) +αu2(e,1)

u1(e,0) +αu1(e,1)
,

where we define u1(e, d) =
∫

Ndq(g, β4)H(d, g, e) dµ(g) and u2(e, d) =
∫

SNdq(g, β4)H(d,
g, e) dµ(g). Using this notation,

∂b5
∂α

=
u2(e,1)u1(e,0)− u2(e,0)u1(e,1)

{u1(e,0) +αu1(e,1)}2
,

w(e,0) =
u1(e,0)

u1(e,0) +αu1(e,1)
,

w(e,1) =
αu1(e,1)

u1(e,0) +αu1(e,1)
.

Similarly to the calculation of b0, b1, we also have that for any function u,

E(u|d;α) =
∫

pE(e)
∫

uNdq(g)H(d, g, e) dµ(g)/ptD(d)
∑

d

∫

Ndq(g)H(d, g, e) dµ(g)/ptD(d)
dµ(e)

/

∫

pE(e)
∫

Ndq(g)H(d, g, e) dµ(g)/ptD(d)
∑

d

∫

Ndq(g)H(d, g, e) dµ(g)/ptD(d)
dµ(e)

=

∫

pE(e)
∫

uNdq(g)H(d, g, e) dµ(g)/ptD(d)
∑

d u1(e, d)/p
t
D(d)

dµ(e)

/

∫

pE(e)u1(e, d)/p
t
D(d)

∑

d u1(e, d)/p
t
D(d)

dµ(e),
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thus

E(u|0;α) =
∫

pE(e)
∫

uN0q(g)H(0, g, e) dµ(g)

u1(e,0) + u1(e,1)α
dµ(e)

/

∫

pE(e)u1(e,0)

u1(e,0)+ u1(e,1)α
dµ(e),

E(u|1;α) =
∫

pE(e)
∫

uN1q(g)H(1, g, e) dµ(g)

u1(e,0)+ u1(e,1)α
dµ(e)

/

∫

pE(e)u1(e,1)

u1(e,0) + u1(e,1)α
dµ(e).

These relations lead to

b0 =

∫

pE(e)u2(e,0)

u1(e,0)+ u1(e,1)α
dµ(e)

/

∫

pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dµ(e),

b1 =

∫

pE(e)u2(e,1)

u1(e,0)+ u1(e,1)α
dµ(e)

/

∫

pE(e)u1(e,1)

u1(e,0) + u1(e,1)α
dµ(e),

b2 ≡ E{E(S|e)|0;α}

=

∫

pE(e)
∫

E(S|e)N0q(g)H(0, g, e) dµ(g)

u1(e,0) + u1(e,1)α
dµ(e)

/

∫

pE(e)u1(e,0)

u1(e,0)+ u1(e,1)α
dµ(e)

=

∫

pE(e)E(S|e)u1(e,0)
u1(e,0) + u1(e,1)α

dµ(e)
/

∫

pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dµ(e)

=

∫

pE(e)u1(e,0){u2(e,0) + u2(e,1)α}
{u1(e,0) + u1(e,1)α}2

dµ(e)
/

∫

pE(e)u1(e,0)

u1(e,0)+ u1(e,1)α
dµ(e),

b3 ≡ E{w(e,0)|D= 0}

=

∫

pE(e)
∫

w(e,0)N0q(g)H(0, g, e) dµ(g)

u1(e,0)+ u1(e,1)α
dµ(e)

/

∫

pE(e)u1(e,0)

u1(e,0)+ u1(e,1)α
dµ(e)

=

∫

pE(e)u
2
1(e,0)

{u1(e,0) + u1(e,1)α}2
dµ(e)

/

∫

pE(e)u1(e,0)

u1(e,0)+ u1(e,1)α
dµ(e).

Consequently, we obtain

Seff(0) = S − b5(e) +

{

b1 − b0 +
b2 − b0b3 − b1(1− b3)

1− b3

}

αu1(e,1)

u1(e,0)+ αu1(e,1)

= S − b5(e) +

(

b2 − b0
1− b3

)

αu1(e,1)

u1(e,0) + αu1(e,1)
,

Seff(1) = S − b5(e)−
(

b2 − b0
1− b3

)

u1(e,0)

u1(e,0) + αu1(e,1)
,

∂Seff(0)

∂α
= −b5(e)′ +

(

b2 − b0
1− b3

)′
αu1(e,1)

u1(e,0) +αu1(e,1)
+

(

b2 − b0
1− b3

)

u1(e,0)u1(e,1)

{u1(e,0)+ αu1(e,1)}2
,

∂Seff(1)

∂α
= −b5(e)′ −

(

b2 − b0
1− b3

)′
u1(e,0)

u1(e,0) +αu1(e,1)
+

(

b2 − b0
1− b3

)

u1(e,0)u1(e,1)

{u1(e,0)+ αu1(e,1)}2
.
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Since S does not contain α, ∂Seff

∂α is a function of (e, d) only. Because pE,D(e, d) =
η(e)u1(e, d)/{NptD(d)}, we have pE,D(e,0) = (1+α)η(e)u1(e,0)/(Nα), pE,D(e,1) = (1+
α)η(e)u1(e,1)/N and pE(e) = (1 + α)η(e){u1(e,0) + αu1(e,1)}/(Nα). Combining these
results, we have

E

(

∂Seff

∂α

)

= E

[

−b′5(e) +
(

b2 − b0
1− b3

)

u1(e,0)u1(e,1)

{u1(e,0)+ αu1(e,1)}2
]

= E

[−u2(e,1)u1(e,0)+ u2(e,0)u1(e,1)

{u1(e,0) +αu1(e,1)}2
]

+

(

b2 − b0
1− b3

)

E

[

u1(e,0)u1(e,1)

{u1(e,0) +αu1(e,1)}2
]

.

Plugging in the expressions for b0, b2, b3, we obtain

b2 − b0
1− b3

=

[
∫

pE(e)u1(e,0){u2(e,0)+ u2(e,1)α}
{u1(e,0)+ u1(e,1)α}2

dµ(e)−
∫

pE(e)u2(e,0)

u1(e,0)+ u1(e,1)α
dµ(e)

]

/

[
∫

pE(e)u1(e,0)

u1(e,0) + u1(e,1)α
dµ(e)−

∫

pE(e)u
2
1(e,0)

{u1(e,0)+ u1(e,1)α}2
dµ(e)

]

=

∫

αpE(e){u1(e,0)u2(e,1)− u1(e,1)u2(e,0)}
{u1(e,0)+ u1(e,1)α}2

dµ(e)

/

[

∫

αpE(e)u1(e,0)u1(e,1)

{u1(e,0)+ u1(e,1)α}2
dµ(e)

]

= E

[{u1(e,0)u2(e,1)− u1(e,1)u2(e,0)}
{u1(e,0)+ u1(e,1)α}2

]

/

E

[

u1(e,0)u1(e,1)

{u1(e,0) + u1(e,1)α}2
]

,

thus, we have E(∂Seff/∂α) = 0.
The fact that E(∂Seff/∂α) = 0, in combination with α̂−α= op(1), yields

{

E

(

∂Seff

∂βT

)

+ op(1)

}

n1/2(β̂ − β0) =−n−1/2
n
∑

i=1

Seff(xi) + op(1).

Thus, we indeed have n1/2(β̂ − β0)∼N(0, V ) asymptotically.

In fact, the classical N1/2(β̂ − β0)∼N(0, V ) also holds. This is because

N1/2(β̂ − β0)− n1/2(β̂ − β0) =
m

N1/2 + n1/2
(β̂ − β0)→

N0.9

N
n1/2(β̂ − β0)→ 0

when N →∞. Thus, our estimator is semiparametric efficient. Because of the equivalence
result developed in Section 2, the estimator is also semiparametric efficient for case-
control data. We split the data set into two groups with sizes m and n for simplicity of
the asymptotic analysis. In reality, one can certainly use the whole data set in each stage
of the estimation.
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