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We consider the problem of estimating the predictive density of future observations from a
non-parametric regression model. The density estimators are evaluated under Kullback–Leibler
divergence and our focus is on establishing the exact asymptotics of minimax risk in the case of
Gaussian errors. We derive the convergence rate and constant for minimax risk among Bayesian
predictive densities under Gaussian priors and we show that this minimax risk is asymptotically
equivalent to that among all density estimators.
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1. Introduction

Consider the canonical non-parametric regression setup

Y (ti) = f(ti) + σεi, i= 1, . . . , n, (1.1)

where f is an unknown function in L2[0,1], ti = i/n and the εi’s are i.i.d. standard
Gaussian random variables. We assume the noise level σ is known and, without loss of
generality, set σ = 1 throughout.
Based on observing Y = (Y (t1), . . . , Y (tn)), estimating f or various functionals of f

has been the central problem in non-parametric function estimation. The asymptotic op-
timality of estimators is usually associated with the optimal rate of convergence in terms
of minimax risk. A huge body of literature has been devoted to the evaluation of minimax
risks under L2 loss over certain function spaces; see, for example, Pinsker [21], Ibragimov
and Has’minskii [16], Golubev and Nussbaum [14], Efroimovich [8], Belitser and Levit
[3, 4] and Goldenshluger and Tsybakov [13]. An excellent survey of the literature in this
area can be found in Efromovich [9].
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Sometimes, instead of estimating f itself, one is interested in making statistical infer-
ence about future observations from the same process that generated Y (t). A predictive
distribution function assigns probabilities to all possible outcomes of a random variable.
It thus provides a complete description of the uncertainty associated with a prediction.
The minimaxity of predictive density estimators has been studied for finite-dimensional
parametric models; see, for example, Liang and Barron [18], George, Liang and Xu [11],
Aslan [2] and George and Xu [12]. However, so far, few results have been obtained on
predictive density estimation for non-parametric models. The major thrust of this pa-
per is to establish the asymptotic minimax risk for predictive density estimation under
Kullback–Leibler loss in the context of non-parametric regression. Our result closely par-
allels the well-known work by Pinsker [21] for non-parametric function estimation under
L2 loss and provides a benchmark for studying the optimality of density estimates for
non-parametric regression.
Let Ỹ = (Ỹ (u1), . . . , Ỹ (um))t denote a vector of future observations from model (1.1)

at locations {uj}mi=1. To evaluate the performance of density prediction across the whole
curve, we assume that the uj ’s are equally spaced dense (that is, m≥ n) grids in [0,1].
Given f , the conditional density p(ỹ|f) is a product ofN(ỹj ;f(uj)), whereN(·;µ) denotes
a univariate Gaussian density function with mean µ and unit variance. Based on observing
Y = y, we estimate p(ỹ|f) by a predictive density p̂(ỹ|y), a non-negative function of ỹ
that integrates to 1 with respect to ỹ.
Common approaches to constructing p̂(ỹ|y) includes the “plug-in” rule that simply

substitutes an estimate f̂ for f in p(ỹ|f),

p(ỹ|f̂) =
n
∏

j=1

N(ỹj ; f̂(uj)), (1.2)

and the Bayes rule that integrates f with respect to a prior π to obtain

∫

p(ỹ|f)π(f |y) df =

∫

p(y|f)p(ỹ|f)π(f) df
∫

p(y|f)π(f) df . (1.3)

We measure the discrepancy between p(ỹ|f) and p̂(ỹ|y) by the average Kullback–Leibler
(KL) divergence

R(f, p̂) =
1

m
EY,Ỹ |f log

p(Ỹ |f)
p̂(Ỹ |Y )

. (1.4)

Assuming that f belongs to a function space F , such as a Sobolev space, we are interested
in the minimax risk

R(F) =min
p̂

max
f∈F

R(f, p̂). (1.5)

It is worth observing that in this framework, the densities of future observations
(Ỹ1, . . . , Ỹm) are estimated simultaneously by p̂(ỹ|y). An alternative approach is to esti-
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mate the densities individually by {p̂(ỹj |y)}mj=1 with risk

1

m

m
∑

j=1

EY,Ỹ |f log
p(Ỹj |f(uj))

p̂(Ỹj |Y )
. (1.6)

When the uj ’s are equally spaced and m goes to infinity, the risk above converges to

∫ 1

0

EY,Ỹ |f log
p(Ỹ |f(u))
p̂(Ỹ |Y )

du,

which can be interpreted as the integrated KL risk of prediction at a random location u
in [0,1]. This individual prediction problem can be studied in our simultaneous prediction
framework with p̂(ỹ|y) restricted to a product form, that is, p̂(ỹ|y) =∏m

j=1 p̂(ỹj |y). For
example, the plug-in estimator (1.2) has such a product form and it is easy to check
that its individual estimation risk (1.6) is the same as its simultaneous estimation risk
(1.4). In general, simultaneous prediction considers a broader class of p̂ than the one
considered by individual prediction. Therefore, simultaneous prediction is more efficient
since the corresponding minimax risk (1.5) is less than or equal to the one with individual
prediction. This is distinct from estimating f itself under L2 loss where, due to the
additivity of L2 loss, simultaneous estimation and individual estimation are equivalent.
This paper is organized as follows. In Section 2, we show that the problem of predictive

density estimation for a non-parametric regression model can be converted to the one
for a Gaussian sequence model with a constrained parameter space. Direct evaluation of
the minimax risk is difficult because of the constraint on the parameter space. Therefore,
in Section 3, we first derive the minimax risk over a special class of p̂ that consists of
predictive densities under Gaussian priors on the unconstrained parameter space R

n.
Then, in Section 4, we show that this minimax risk is asymptotically equivalent to the
overall minimax risk. Finally, in Section 5, we provide two explicit examples of minimax
risks over L2 balls and Sobolev spaces.

2. Connection to Gaussian sequence models

Let {φi}∞i=1 be the orthonormal trigonometric basis of L2[0,1], that is,

φ0(t)≡ 1,

{

φ2k−1 =
√
2 sin(2πkx),

φ2k =
√
2cos(2πkx),

k = 1,2, . . . .

Then, f =
∑∞

i=1 θiφi, where θi =
∫ 1

0 f(t)φi(t) dt is the coefficient with respect to the ith
basis element φi. A function space F corresponds to a constraint on the parameter space
of θ. In this paper, we consider function spaces whose parameter spaces Θ have ellipsoid
constraints, that is,

Θ(C) =

{

θ :

∞
∑

i=1

a2i θ
2
i ≤C

}

, (2.1)
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where a1 ≤ a2 ≤ · · · and an →∞.
We approximate f by a finite summation fn =

∑n
i=1 θiφi. The bias incurred by esti-

mating p(ỹ|fn) instead of p(ỹ|f) can be expressed as

Bias(f, fn) =
1

m
EỸ |f log

p(Ỹ |f)
p(Ỹ |fn)

=
1

2m

m
∑

j=1

[f(uj)− fn(uj)]
2 =

1

2m

∞
∑

i=n+1

θ2i .

This bias is often negligible compared to the prediction risk (1.4); for example, it is of
order O(n−2α) for Sobolov ellipsoids Θ(C,α), as defined in (5.3). Therefore, from now
on, we set f = fn.
Let θ = (θ1, θ2, . . . , θn)

t, ΦA be a n× n matrix whose (i, j)th entry equals φj(ti) and

ΦB be a m× n matrix whose (i, j)th entry equals φj(ui). Then, Y |θ and Ỹ |θ are two

independent Gaussian vectors with Y |θ ∼N(ΦAθ, In) and Ỹ |θ ∼N(ΦBθ, Im), where In

denotes the n× n identity matrix. Note that since the ti’s and uj ’s are equally spaced,
we have Φt

AΦA = nIn and Φt
BΦB =mIn. Defining

X =
1

n
Φt

AY and X̃ =
1

m
Φt

BỸ , (2.2)

it is then easy to check that X and X̃ are independent and that

X |θ∼N(θ, vnIn) and X̃ |θ∼N(θ, vmIn), (2.3)

where vn = 1/n and vm = 1/m. We refer to the model above as a Gaussian sequence
model since its number of parameters is increasing at the same rate as the number of
data points.
Consider the problem of predictive density estimation for the Gaussian sequence model

(2.3). Let p̂(x̃|x) denote a predictive density function of x̃ given X = x. The incurred KL
risk is defined to be

R(θ, p̂) =
1

m
EX,X̃|θ log

p(X̃|θ)
p̂(X̃|X)

and the corresponding minimax risk is given by

R(Θ) = inf
p̂

sup
θ∈Θ(C)

R(θ, p̂). (2.4)

The following theorem states that the two minimax risks, the one associated with (Y, Ỹ )
from a non-parametric regression model and the one associated with (X,X̃) from a
normal sequence model, are equivalent.

Theorem 2.1. R(F) =R(Θ), where R(F) is defined in (1.5) and R(Θ) in (2.4).

Proof. See the Appendix. �
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Remark. The idea of reducing a non-parametric regression model to a Gaussian se-

quence model via an orthonormal function basis has been widely used for non-parametric
function estimation. Early references include Ibraginov and Has’minskii [15], Efromovich
and Pinsker [10] and references therein. For recent developments, see Brown and Low [6],

Nussbaum [19, 20] and Johnstone [17]. Our proof of Theorem 2.1, given in the Appendix,
implies that simultaneous estimation of predictive densities in these two models are
equivalent. However, this equivalence does not hold for the individual estimation ap-

proach described in Section 1 because the product form of the density estimators, that
is, p̂(ỹ|y) =∏j p̂(ỹj |y), is not retained under the transformation.

3. Linear minimax risk

Direct evaluation of the minimax risk (2.4) is difficult because the parameter space Θ(C)
is constrained. In this section, we first consider a subclass of density estimators that have

simple forms and investigate the minimax risk over this subclass. In next section, we then
show that the minimax risk over this subclass is asymptotically equivalent to the overall
minimax risk R. Such an approach was first used in Pinsker [21] to establish a minimax

risk bound for the function estimation problem. It inspired a series of developments,
including Belitser and Levit [3, 4], Tsybakov [22] and Goldenshluger and Tsybakov [13].
Recall that in the problem of estimating the mean of a Gaussian sequence model under

L2 loss, diagonal linear estimators of the form θ̂i = cixi play an important role. Indeed,
Pinsker [21] showed that when the parameter space (2.1) is an ellipsoid, the minimax
risk among diagonal linear estimators is asymptotically minimax among all estimators.

Moreover, the results in Diaconis and Ylvisaker [7] imply that if such a diagonal linear
estimator is Bayes, then the prior π must be a Gaussian prior with a diagonal covariance
matrix. Similarly, in investigating the minimax risk of predictive density estimation, we

first restrict our attention to a special class of p̂ that are Bayes rules under Gaussian
priors over the unconstrained parameter space R

n. Due to the above connection, we call
these predictive densities linear predictive densities and call the minimax risk over this

class the linear minimax risk, even though ‘linear’ does not have any literal meaning in
our setting.
Under a Gaussian prior πS(θ) = N(0, S), where S = diag(s1, . . . , sn) and si ≥ 0 for

i= 1, . . . , n, the linear predictive density p̂S is given by

p̂S(x̃|x) =
∫

Rn

p(x̃|θ)πS(θ|x) dθ =
∫

Rn
p(x|θ)p(x̃|θ)πS(θ) dθ
∫

Rn
p(x|θ)πS(θ) dθ

. (3.1)

Note that p̂S is not a Bayes estimator for the problem described in Section 2 because

the prior distribution N(0, S) is supported on R
n instead of on the ellipsoidal space Θ.

Nonetheless, p̂S is a valid predictive density function.
The following lemma provides an explicit form of the average KL risk of p̂S .
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Lemma 3.1. The average Kullback–Leibler risk (1.4) of p̂S is given by

R(θ, p̂S) =
n

2m
log

vn
vn+m

+
1

2m

n
∑

i=1

[

log
vn+m + si
vn + si

+
vn+m + θ2i
vn+m + si

− vn + θ2i
vn + si

]

, (3.2)

where vn+m = 1/(n+m).

Proof. Let p̂U denote the posterior predictive density under the uniform prior πU ≡ 1,
namely,

p̂U (x̃|x) =
(

1

2πvn+m

)n/2

exp

(

−‖x̃− x‖2
2vn+m

)

.

Then, by [11], Lemma 2, the average KL risk of p̂S is given by

R(θ, p̂S) =R(θ, p̂U )−
1

m
E logmS(W ;vn+m) +

1

m
E logmS(X ;vn), (3.3)

where

W =
vmX + vnX̃

vn+m
∼N(θ, vn+mI)

and mS(x;σ
2) denotes the marginal distribution of X |θ ∼Nn(θ, σ

2I) under the normal
prior πS . It is easy to check that

R(θ, p̂U ) =
1

m
E log

p(x̃|θ)
p̂U (x̃|x)

=
n

2m
log

vn
vn+m

(3.4)

and

E logmS(W ;vn+m) = − n

2m

n
∑

i=1

log[2π(vn+m + si)]−
1

2m

n
∑

i=1

vn+m + θ2i
vn+m + si

, (3.5)

E logmS(X ;vn) = − n

2m

n
∑

i=1

log[2π(vn + si)]−
1

2m

n
∑

i=1

vn + θ2i
vn + si

. (3.6)

The lemma then follows immediately by combining equations (3.3)–(3.6). �

We denote the linear minimax risk over all p̂S by RL(Θ), that is,

RL(Θ) = inf
S

sup
θ∈Θ(C)

R(θ, p̂S). (3.7)

This linear minimax risk is not directly tractable because the inside maximization is over
a constrained space Θ(C). In the following theorem, we first show that we can switch
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the order of inf and sup in equation (3.7) and then evaluate RL using the Lagrange
multiplier method.
The following notation will be useful throughout. Let λ̃(C,vn, vn+m) denote a solution

of the equation

n
∑

i=1

a2i

[

(vn − vn+m)

√

1 +
4λ̃/a2i

vn − vn+m
− (vn + vn+m)

]

+

= 2C, (3.8)

where [x]+ = sup(x,0), and let θ̃2i be

θ̃2i =
1

2

[

(vn − vn+m)

√

1 +
4λ̃/a2i

vn − vn+m
− (vn + vn+m)

]

+

(3.9)

for i= 1,2, . . . , n.

Theorem 3.2. Suppose that the parameter space Θ(C) is an ellipsoid, as defined in
(2.1). The linear minimax risk is then given by

RL(Θ) = inf
S

sup
θ∈Θ(C)

R(θ, p̂S) = sup
θ∈Θ(C)

inf
S

R(θ, p̂S) (3.10)

=
n

2m
log

vn
vn+m

+
1

2m

n
∑

i=1

log
vn+m + θ̃2i
vn + θ̃2i

, (3.11)

where θ̃2i is defined as in (3.9). The linear minimax estimator p̂Ṽ is the Bayes predictive
density under a Gaussian prior

πṼ (θ) =N(0, Ṽ ), where Ṽ = diag(θ̃21 , θ̃
2
2, . . . , θ̃

2
n), (3.12)

namely,

p̂Ṽ (x̃|x) =N(θṼ ,ΣṼ ),

with

θṼ =

(

θ̃21
θ̃21 + vn

x1, . . . ,
θ̃2n

θ̃2n + vn
xn

)′

,

ΣṼ = diag

(

θ̃21vn

θ̃21 + vn
+ vm, . . . ,

θ̃2nvn

θ̃2n + vn
+ vm

)

.

Proof. We first prove equality (3.11). It is easy to check that for any fixed θ, R(θ, p̂S)
achieves its minimum at S = diag(θ21 , . . . , θ

2
n), and

inf
S

R(θ, p̂S) =
n

2m
log

vn+m

vn
+

1

2m

n
∑

i=1

log
vn+m + θ2i
vn + θ2i

.
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To calculate the maximum of the above quantity over θ ∈Θ(C), one needs to solve

sup

{

n
∑

i=1

log
vn+m + θ2i
vn + θ2i

:

n
∑

i=1

a2i θ
2
i ≤C

}

.

With the Lagrangian

L=
n
∑

i=1

log
vn+m + θ2i
vn + θ2i

− 1

λ

(

n
∑

i=1

a2i θ
2
i −C

)

,

simple calculation reveals that the maximum is attained at θ̃i given by (3.9).
Next, we prove equality (3.10), that is, that the order of inf and sup can be exchanged.

Note that for any diagonal matrix S̃, we have

sup
θ∈Θ(C)

R(p̂S̃ , θ)≥ inf
S

sup
θ∈Θ(C)

R(p̂S , θ)≥ sup
θ∈Θ(C)

inf
S

R(p̂S , θ). (3.13)

Therefore, if there exists an S̃ such that

sup
θ∈Θ(C)

R(p̂S̃ , θ)− sup
θ∈Θ(C)

inf
S

R(p̂S , θ)≤ 0,

then all of the inequalities in (3.13) become equalities.
If we let S̃ = diag(θ̃21 , . . . , θ̃

2
n), then

R(p̂S̃ , θ)− sup
θ∈Θ(C)

inf
S

R(p̂S , θ) =
1

2m

n
∑

i=1

(vn − vn+m)(θ2i − θ̃2i )

(vn + θ̃2i )(vn+m + θ̃2i )

=
1

2m

∑n
i=1 a

2
i θ

2
i −C

λ̃
,

where the second equality holds because
∑n

i=1 a
2
i θ̃

2
i =C and θ̃2i is a solution to

∂L
∂θ2i

=
vn − vn+m

(vn + θ2i )(vn+m + θ2i )
− a2i

λ̃
= 0.

Since θ ∈Θ(C) implies that
∑n

i=1 a
2
i θ

2
i ≤C, we have

sup
θ∈Θ(C)

R(p̂S̃ , θ)− sup
θ∈Θ(C)

inf
S

R(p̂S , θ)≤
1

2m

C −C

λ̃
= 0,

which completes the proof. �

Remark. Note that a1 ≤ a2 ≤ · · ·, so we have θ̃2i = 0 for i > N , where

N = sup

{

i :a2i ≤ λ̃

(

1

vm+n
− 1

vn

)

=mλ̃

}

. (3.14)
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This implies that the prior distribution corresponding to the linear minimax estimator,
that is, πṼ (θ) =

∏n
i=1N(0, θ̃2i ), puts a point mass at zero for θi for all i > N .

4. Asymptotic minimax risk

In this section, we turn to establishing the asymptotic behavior of the minimax risk
R(Θ) over all predictive density estimators. By definition, R(Θ) ≤ RL(Θ). We extend
the approach in [3] to show that the difference between R(Θ) and RL(Θ) vanishes as
the number of observations n goes to infinity. Therefore, the overall minimax risk is
asymptotically equivalent to the linear minimax risk. This also implies that the Gaussian
prior πṼ defined in (3.12) is asymptotically least favorable.
The following lemma provides a lower bound for the overall minimax risk R(Θ) under

some conditions.

Lemma 4.1. Let {s2i }ni=1 be a sequence such that for some α > 0,

n
∑

i=1

a2i s
2
i +

[

−8α

(

n
∑

i=1

a4i s
4
i

)

log vn

]1/2

≤C. (4.1)

Then, as n→∞, the minimax risk R(Θ) has the following lower bound:

R(Θ)≥ n

2m
log

vn
vn+m

+
1

2m

n
∑

i=1

log
vn+m + s2i
vn + s2i

+O(vαn ).

Proof. See the Appendix. �

Note that, as shown in the proof, for a posterior density with a Gaussian prior πS =
N(0, S), where S = diag(s1, . . . , sn), condition (4.1) guarantees πS to have most of its
mass inside Θ, in the sense that πS(Θ

c)≤ v2αn for some α > 0.
With the lower bound in the above lemma, we are ready to prove the main result in

this paper, which shows that the overall minimax risk R(Θ) is asymptotically equivalent
to the linear minimax risk RL(Θ).

Theorem 4.2. Suppose that Θ is the ellipsoid defined in (2.1) and θ̃2 is defined in (3.9).
If m=O(n) and

log(1/vn)

n
∑

i=1

a4i θ̃
4
i = o(1), as vn → 0, (4.2)

then

lim
vn→0

R(Θ)

RL(Θ)
= 1. (4.3)
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Proof. By definition, R(Θ)≤RL(Θ). So, to prove this theorem, it suffices to show that
as vn → 0,

R(Θ)≥RL(Θ)(1− o(1)).

For a fixed constant α > 1, let γ = 1
C [8α log(1/vn)

∑n
i=1 a

4
i θ̃

4
i ]

1/2 and let b2i = θ̃2i (1 +
γ)−1 for i= 1, . . . , n. It is easy to check that the sequence {bi}ni=1 satisfies the condition
(4.1). Therefore, by Theorem 4.1,

R(Θ) ≥ n

2m
log

vn
vn+m

+
1

2m

n
∑

i=1

log
vn+m + b2i
vn + b2i

+O(vαn)

(4.4)

= RL(Θ)− 1

2m

n
∑

i=1

log
(vn + b2i )(vn+m + θ̃2i )

(vn+m + b2i )(vn + θ̃2i )
+O(vαn) as vn → 0.

Next, we will derive the convergence rate of RL(Θ) and show that the other terms are
of smaller order.
Using the fact that θ̃2i = 0 for i > N (see (3.14)), we can rewrite RL(Θ) as

RL(Θ) =
n

2m
log

vn
vn+m

+
1

2m

N
∑

i=1

log
vn+m + θ̃2i
vn + θ̃2i

+
1

2m

n
∑

i=N

log
vn+m

vn

=
1

2m

N
∑

i=1

log
(vn+m + θ̃2i )vn

(vn + θ̃2i )vn+m

=
1

2m

N
∑

i=1

log

(

1 +
(vn − vn+m)θ̃2i
(vn + θ̃2i )vn+m

)

.

When m = O(n), we have vn − vn+m = O(vn) and vn + vn+m = O(vn). Therefore, by
means of a Taylor expansion,

RL =O

(

1

2m

N
∑

i=1

(vn − vn+m)θ̃2i
(vn + θ̃2i )vn+m

)

≥O

(

1

m

)

. (4.5)

Similarly, since bi = θ̃2i = 0 for i > N , the second term in (4.4) can be written as

1

2m

n
∑

i=1

log
(vn + b2i )(vn+m + θ̃2i )

(vn+m + b2i )(vn + θ̃2i )
=

1

2m

N
∑

i=1

log
(vn + b2i )(vn+m + θ̃2i )

(vn+m + b2i )(vn + θ̃2i )
.

For every 1≤ i≤N , we have

log
(vn + b2i )(vn+m + θ̃2i )

(vn+m + b2i )(vn + θ̃2i )
= log

(

[(1 + γ)vn + θ̃2i ](vn+m + θ̃2i )

[(1 + γ)vn+m + θ̃2i ](vn + θ̃2i )

)
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= log

(

1+ γ
(vn − vn+m)θ̃2i

(vn + θ̃2i )(vn+m + θ̃2i ) + γvn(vn+m + θ̃2i )

)

≤ log

(

1+ γ
(vn − vn+m)θ̃2i
(vn + θ̃2i )vn+m

)

.

Again using a Taylor expansion, as well as the condition that γ = o(1), we obtain

1

2m

n
∑

i=1

log

(

1 + γ
(vn − vn+m)θ̃2i
(vn + θ̃2i )vn+m

)

= O

(

γ

2m

n
∑

i=1

(vn − vn+m)θ̃2i
(vn + θ̃2i )vn+m

)

= o(RL). (4.6)

Finally, since m=O(n), by choosing α> 1, the last term in (4.4) satisfies

vαn = o(1). (4.7)

Combining (4.4)–(4.7), the theorem then follows. �

5. Examples

In this section, we apply Theorems 3.2 and 4.2 to establish asymptotic behaviors of
minimax risks over some constrained parameter spaces. In particular, we consider the
asymptotics over L2 balls and Sobolev ellipsoids.

Example 1. Suppose that m= n and θ is restricted in an L2 ball,

Θ(C) =

{

θ :

n
∑

i=1

θ2i ≤C

}

. (5.1)

The L2 ball can be considered as a variant of the ellipsoid (2.1) with a1 = a2 = · · ·= an = 1
and an+1 = an+2 = · · ·=∞. Although the values of the ai’s here depend on n, the proofs
of the above theorems are still valid. It is easy to see that N defined in (3.14) is equal to
n and that θ̃21 = θ̃22 = · · ·= θ̃2n =C/n. Therefore,

(logn)

n
∑

i=1

a4i θ̃
4
i = (logn) · C

2

n
= o(1).

By Theorem 4.2, the minimax risk among all predictive density estimators is asymptot-
ically equivalent to the minimax risk among linear density estimators. Furthermore, by
Theorem 3.2,

lim
n→∞

R(Θ(C)) = lim
n→∞

RL(Θ(C)) =
1

2
log 2 +

1

2
log

1/(2n) +C/n

1/n+C/n
=

1

2
log

1 + 2C

1 +C
.
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Note that this minimax risk is strictly smaller than the minimax risk over the class of
plug-in estimators since, for any plug-in density p̂(x̃|θ̂),

R(θ, p̂) =
1

n
E log

p(x̃|θ)
p(x̃|θ̂)

=
1

n
E

[

−‖x− θ‖2 −‖x− θ̂‖2
2/n

]

=
1

2
E‖θ̂− θ‖2 (5.2)

and by Pinsker’s theorem, the minimax risk of estimating θ under squared error loss is
C/(1 +C), which is larger than log 1+2C

1+C , by the fact that x > log(1 + x) for any x> 0.

Example 2. Suppose that m= n and θ is restricted in a Sobolev ellipsoid

Θ(C,α) =

{

θ :

∞
∑

i=1

a2i θ
2
i ≤C

}

, (5.3)

where a2i = a2i−1 = (2i)α(α > 0) for i = 1,2, . . . . Then, by (3.14), we have a2N/λ̃n ∼
N2α/λ̃n→ 1 as n→∞. Substituting this relation into equation (3.8) yields

2C ∼
N
∑

i=1

i2α
(

1

2n

√

1 + 8λ̃ni−2α − 3

2n

)

=
1

2n

N
∑

i=1

i2α(
√

1 + 8N2αi−2α − 3)(1 + o(1)).

Using the Taylor expression

√

1 + 8N2αi−2α =

∞
∑

k=0

2
√
2(−1)k(2k)!

(1− 2k)k!232k

(

i

N

)(2k−1)α

and the asymptotic relation

N
∑

i=1

ir =
N r+1

r+ 1
(1 + o(1)) as N →∞, r >−1,

we obtain

N =Mn1/(2α+1)(1 + o(1)) and λ̃=Mn−2α/(2α+1)(1 + o(1)),

where

M =

[

4C
/

(

∞
∑

k=0

2
√
2(−1)k(2k)!

(1− 2k)k!232k
· 1

(2k+1)α+ 1
− 3

2α+ 1

)]1/(2α+1)

.
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Note that, by (3.9),

θ̃2i =
1

2

[

1

2n

√

1 + 8

(

N

i

)2α

− 3

2n

]

+

(1 + o(1)).

Therefore,

(logn)

N
∑

i=1

a4i θ̃
4
i =O

(

(logn) · N
4α+1

n2

)

=O((logn) · n−1/(2α+1)) = o(1).

By Theorem 4.2, the minimax risk among all predictive density estimators is asymptot-
ically equivalent to the minimax risk among the linear density estimators. Furthermore,
by Theorem 3.2,

RL(Θ(C,α)) =
1

2
log 2 +

1

2n

N
∑

i=1

log
1/(2n) + θ̃2i
1/n+ θ̃2i

+
n−N

2n
log

1

2

=
1

2n

N
∑

i=1

log
1/n+ 2θ̃2i
1/n+ θ̃2i

=
1

2n

N
∑

i=1

log

(

1 +
θ̃2i

1/n+ θ̃2i

)

.

It is difficult to calculate an explicit form of the optimal constant for the minimax risk
due to the log function, but we can get an accurate bound for it. By Taylor expansion,
there exists x∗

i ∈ (0,1), i= 1,2, . . . ,N , such that

RL(Θ(C,α)) =
1

2n

N
∑

i=1

(

1

1 + x∗
i

θ̃2i
1/n+ θ̃2i

)

∈
(

1

4n

N
∑

i=1

θ̃2i
1/n+ θ̃2i

,
1

2n

N
∑

i=1

θ̃2i
1/n+ θ̃2i

)

.

Moreover,

N
∑

i=1

θ̃2i
1/n+ θ̃2i

=

N
∑

i=1

1/(4n)
√

1 + 8(N/i)2α − 3/(4n)

1/n+1/(4n)
√

1 + 8(N/i)2α − 3/(4n)
=K ·N,

where

K = 1+
1

2(2α+ 1)
− 1

2

∞
∑

k=0

2
√
2(−1)k(2k)!

(1− 2k)k!232k
· 1

(2k+1)α+1
.

Therefore,

lim
n→∞

n2α/(2α+1)R(Θ(C,α)) = lim
n→∞

n2α/(2α+1)RL(Θ(C,α)) ∈ (14KM, 12KM), (5.4)
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Figure 1. Convergence constants of the overall minimax risk (the lower red line) and the
minimax risk over the class of plug-in estimators (the upper red line). Here, the sample size
n= 10000000 and C = 1.

that is, the convergence rate is n−2α/(2α+1) and the convergence constant is between
1
4KM and 1

2KM .

As in Example 1, we compare the asymptotics of this minimax risk with the one over
the class of plug-in estimators, where the latter can be easily computed by (5.2) and the
results in [21]. Direct comparison reveals that the convergence rates of both minimax
risks are n2α/(2α+1) and the convergence constants can both be written in the form
C1/(2α+1)f(α), where f(α) is a function depending only on α. Although it is hard to
obtain an explicit representation for the convergence constant for the overall minimax
risk, our simulation result in Figure 1 shows that it is strictly smaller than that over the
class of plug-in estimators.

Appendix: Proofs

In this appendix, we provide the proofs of Theorem 2.1 and Lemma 4.1.
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Proof of Theorem 2.1. Let Ψ be an m×m matrix whose (i, j)th entry equals φj(ui).
Since the φj ’s form an orthogonal basis for L2 and the ui’s are equally spaced, we have

ΨtΨ= Im. Consider the transformation 1
mΨtỸ . Since the first n columns of Ψ are ΦB ,

the first n elements of the transformed vector are just X̃ , defined in (2.2), and we denote
the remaining (m − n) elements by Z̃. It is easy to check that X̃|θ ∼ Nn(θ,

1
mIn) and

Z̃ ∼Nm−n(0,
1
mIm−n) are independent multivariate Gaussian variables, and the target

density function p(ỹ|f) satisfies

p(ỹ|f) = p(x̃, z̃|θ)Jx̃,z̃(ỹ), (A.1)

where Jx̃,z̃(ỹ) is the Jacobian for this transformation. Similarly, any predictor density
estimator p̂(ỹ|y) can be rewritten as

p̂(ỹ|y) = p̂(x̃, z̃|x)Jx̃,z̃(ỹ), (A.2)

where X is a transformation of Y defined in (2.2). Note that the two predictive density
functions on the left and right sides of the above equation may have different functional
forms; however, to simplify the notation, we use the same symbol p̂ to represent them
when the context is clear.
Now, the average KL risk can be represented as

R(f, p̂) = EY,Ỹ |f log
p(Ỹ |f)
p̂(Ỹ |Y )

(A.3)

= EX,X̃,Z̃|θ log
p(X̃, Z̃|θ)
p̂(X̃, Z̃|X)

,

where the second equality follows from (A.1) and (A.2). Since X̃ and Z̃ are independent,
we can split p(x̃, z̃|θ) as

p(x̃, z̃|θ) = p(x̃|θ)p(z̃), (A.4)

where p(z̃) has a known distribution Nm−n(0, Im−n) Moreover, to evaluate the minimax
risk, it suffices to consider predictive density estimators in the form

p̂(x̃, z̃|x) = p̂(x̃|x)p(z̃) (A.5)

because any predictive density p̂(x̃, z̃|x) can be written as p̂(x̃, z̃|x) = p̂(x̃|x)p̂(z̃|x, x̃), and
if p̂(z̃|x, x̃) is equal to p(z̃), then this density estimator is dominated by p̂(x̃|x)p(z̃), due
to the non-negativity of KL divergence.
Combining (A.3)–(A.5), we have

R(f, p̂) =EX,X̃|θ log
p(X̃|θ)
p̂(X̃;X)

=R(θ, p̂).

Consequently, the minimax risk in the non-parametric regression model is equal to the
minimax risk in the Gaussian sequence model. �
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Proof of Lemma 4.1. Let Q be the collection of all (generalized) Bayes predictive
densities. Then, by [5], Theorem 5, Q is a complete class for the problem of predictive
density estimation under KL loss. Therefore, the minimax risk among all possible den-
sity estimators is equivalent to the minimax risk among (generalized) Bayes estimators,
namely,

R(Θ) = inf
p̂
sup
θ∈Θ

R(θ, p̂) = inf
p̂∈Q

sup
θ∈Θ

R(θ, p̂).

Consider a Gaussian distribution πS =N(0, S), where S = diag(s21, . . . , s
2
n) and the si’s

satisfy condition (4.1). Then,

R(Θ) = inf
p̂∈Q

sup
θ∈Θ

R(θ, p̂) (A.6)

≥ inf
p̂∈Q

∫

Θ

R(θ, p̂)πS(θ) dθ

≥ inf
p̂∈Q

∫

Rn

R(θ, p̂)πS(θ) dθ− sup
p̂∈Q

∫

Θc

R(θ, p̂)πS(θ) dθ

≥ inf
p̂∈Q

∫

Rn

R(θ, p̂)πS(θ) dθ− sup
p̂∈Q

∫

Θc

R(θ, p̂)πS(θ) dθ. (A.7)

The first term of (A.7) is the Bayes risk under πS over the unconstrained parameter
space R

n. It is achieved by the linear predictive density p̂S ; see [1]. Therefore,

inf
p̂∈Q

∫

Rn

R(θ, p̂)πS(θ) dθ =

∫

Rn

R(θ, p̂S)πS(θ) dθ

(A.8)

=
n

2m
log

vn
vn+m

+
1

2m

n
∑

i=1

log
vn+m + s2i
vn + s2i

.

To bound the second term of (A.7), note that for any Bayes predictive density p̂π ∈Q,

R(θ, p̂π) =
1

m
EX,X̃|θ log

p(X̃|θ)
∫

Θ p(X̃|θ′)π(θ′|X) dθ′

≤ 1

m
EX,X̃|θ

∫

Θ

log
p(X̃ |θ)
p(X̃|θ′)

π(θ′|X) dθ′ (A.9)

=
1

m
EX|θ

∫

Θ

‖θ− θ′‖2
2vm

π(θ′|X) dθ′

≤ 1

mvm
EX|θ

∫

Θ

(‖θ‖2 + ‖θ′‖2)π(θ′|X) dθ′ (A.10)

≤ 1

mvm

(

‖θ‖2 + C

a21

)

, (A.11)
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where (A.9) is due to Jensen’s inequality, (A.10) is due to ‖θ− θ′‖2 ≤ 2‖θ‖2+2‖θ′‖2 and

(A.11) is due to

∫

Θ

‖θ′‖2π(θ′|x) dθ′ ≤ sup
θ′∈Θ

‖θ′‖2

≤ 1

a21
sup
θ∈Θ

n
∑

i=1

a2i θ
′2
i =

C

a21
.

Therefore,

sup
p̂∈Q

∫

Θc

R(θ, p̂)πS(θ) dθ ≤
1

mvm

[
∫

Θc

‖θ‖2πS(θ) dθ+
C

a21
πS(Θ

c)

]

, (A.12)

where πS(Θ
c) =

∫

Θc
πS(θ) dθ. Using the Cauchy–Schwarz inequality, we can further

bound the right-hand side of (A.12) as follows:

1

mvm

[
∫

Θc

‖θ‖2πS(θ) dθ+
C

a21
πS(Θ

c)

]

≤ 1

mvm

[

n
∑

i=1

(
∫

Θc

θ4i πS(θ) dθ

)1/2
√

πS(Θc) +
C

a21
πS(Θ

c)

]

=
1

mvm

[

√
3
√

πS(Θc)

n
∑

i=1

s2i +
C

a21
πS(Θ

c)

]

≤ 1

mvm

[√
3
C

a1

√

πS(Θc) +
C

a1
πS(Θ

c)

]

.

Then, by [3], Proposition 2, which states that if ǫ1, . . . , ǫm are independent Gaussian

random variables with Eǫk = 0 and Eǫ2k = σ2
k , then

P

(

m
∑

k=1

ǫ2k >Q

)

≤ exp

{

− (Q−∑m
k=1 σ

2
k)

2

4
∑m

k=1 σ
4
k

}

,

we have

√

πS(Θc) =

[

P

(

n
∑

i=1

a2i θ
2
i >C

)]1/2

≤ vαn , (A.13)

due to condition (4.1).

Combining (A.7), (A.8), (A.12) and (A.13), the theorem then follows immediately. �



560 X. Xu and F. Liang

Acknowledgements

The authors would like to thank Edward I. George for helpful discussions and the Asso-
ciate Editor for generous insights and suggestions. This work was supported in part by the
National Science Foundation under award numbers DMS-07-32276 and DMS-09-07070.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

References

[1] Aitchison, J. (1975). Goodness of prediction fit. Biometrika 62 547–554.
[2] Aslan, M. (2006). Asymptotically minimax Bayes predictive densities. Ann. Statist. 34

2921–2938.
[3] Belitser, E.N. and Levit, B.Y. (1995). On minimax filtering over ellipsoids. Math. Methods

Statist. 3 259–273.
[4] Belitser, E.N. and Levit, B.Y. (1996). Asymptotically minimax nonparametric regression

in L2. Statistics 28 105–122. MR1405604
[5] Brown, L.D., George, E.I. and Xu, X. (2008). Admissible predictive density estimation.

Ann. Statist. 36 1156–1170. MR2418653
[6] Brown, L.D. and Low, M.G. (1996). Asymptotic equivalence of nonparametric regression

and white noise. Ann. Statist. 24 2384–2398. MR1425958
[7] Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential families. Ann.

Statist. 7 269–281. MR0520238
[8] Efromovich, S.Y. (1994). On adaptive estimation of nonlinear functionals. Statist. Probab.

Lett. 19 57–63. MR1253313
[9] Efromovich, S.Y. (1999). Nonparametric Curve Estimation: Methods, Theory and Applica-

tions. New York: Springer. MR1705298
[10] Efromovich, S.Y. and Pinsker, M.S. (1982). Estimation of square-integrable probability

density of a random variable. Probl. Inf. Transm. 18 175–189. MR0711898
[11] George, E.I., Liang, F. and Xu, X. (2006). Improved minimax prediction under Kullback–

Leibler loss. Ann. Statist. 34 78–91. MR2275235
[12] George, E.I. and Xu, X. (2008). Predictive density estimation for multiple regression. Econo-

metric Theory 24 1–17. MR2391619
[13] Goldenshluger, A. and Tsybakov, A.B. (2003). Optimal prediction for linear regression with

infinitely many parameters. J. Multivariate Anal. 84 40–60. MR1965822
[14] Golubev, G.K. and Nussbaum, M. (1990). A risk bound in Sobolev class regression. Ann.

Statist. 18 758–778. MR1056335
[15] Ibragimov, I.A. and Has’minskii, R.Z. (1977). On the estimation of an infinite-dimensional

parameter in Gaussian white noise. Soviet Math. Dokl. 236 1053–1055. MR0483232
[16] Ibragimov, I.A. and Has’minskii, R.Z. (1984). On nonparametric estimation of values of

a linear functional in a Gaussian white noise. Teor. Veroyatn. Primen. 29 19–32.
MR0739497

[17] Johnstone, I.M. (2003). Function estimation and Gaussian sequence models. Draft of a
Monograph.

http://www.ams.org/mathscinet-getitem?mr=1405604
http://www.ams.org/mathscinet-getitem?mr=2418653
http://www.ams.org/mathscinet-getitem?mr=1425958
http://www.ams.org/mathscinet-getitem?mr=0520238
http://www.ams.org/mathscinet-getitem?mr=1253313
http://www.ams.org/mathscinet-getitem?mr=1705298
http://www.ams.org/mathscinet-getitem?mr=0711898
http://www.ams.org/mathscinet-getitem?mr=2275235
http://www.ams.org/mathscinet-getitem?mr=2391619
http://www.ams.org/mathscinet-getitem?mr=1965822
http://www.ams.org/mathscinet-getitem?mr=1056335
http://www.ams.org/mathscinet-getitem?mr=0483232
http://www.ams.org/mathscinet-getitem?mr=0739497


Asymptotic minimax density prediction 561

[18] Liang, F. and Barron, A. (2004). Exact minimax strategies for predictive density estimation,
data compression and model selection. IEEE Trans. Inform. Theory 50 2708–2726.
MR2096988

[19] Nussbaum, M. (1996). Asymptotic equivalence of density estimation and Gaussian white
noise. Ann. Statist. 24 2399–2430. MR1425959

[20] Nussbaum, M. (1999). Minimax risk: Pinsker bound. In Encyclopedia of Statistical Sciences

(S. Kotz, ed.) 451–460. New York: Wiley.
[21] Pinsker, M.S. (1980). Optimal filtering of square integrable signals in Gaussian white noise.

Probl. Inf. Transm. 2 120–133.
[22] Tsybakov, A.B. (1997). On nonparametric estimation of density level sets. Ann. Statist. 25

948–969. MR1447735

Received July 2008 and revised March 2009

http://www.ams.org/mathscinet-getitem?mr=2096988
http://www.ams.org/mathscinet-getitem?mr=1425959
http://www.ams.org/mathscinet-getitem?mr=1447735

	1 Introduction
	2 Connection to Gaussian sequence models
	3 Linear minimax risk
	4 Asymptotic minimax risk
	5 Examples
	Appendix: Proofs
	Acknowledgements
	References

