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Abstract. We show that shortfall risks of American options in a sequence of
multinomial approximations of the multidimensional Black–Scholes (BS) mar-
ket converge to the corresponding quantities for similar American options in
the multidimensional BS market with path dependent payoffs. In comparison
to previous papers we consider the multi assets case for which we use the weak
convergence approach.

1. Introduction

This paper deals with multinomial approximations of the shortfall risk for Amer-
ican options in the multidimensional BS (complete) model. It is well known that in
a complete market an American contingent claim can be hedged perfectly with an
initial capital which is equal to the optimal stopping value of the discounted payoff
under the unique martingale measure. In real market conditions an investor (seller)
may not be willing for various reasons to tie in a hedging portfolio the full initial
capital required for a perfect hedge. In this case the seller is ready to accept a risk
that his portfolio value at an exercise time may be less than his obligation to pay
and he will need additional funds to fullfil the contract. Thus a portfolio shortfall
comes into the picture.

We deal with a certain type of risk called the shortfall risk which is defined as the
maximal expectation (with respect to the buyer exercise times) of the discounted
shortfall (see [12]). An investor whose initial capital is less than the option price
still want to compute the minimal possible shortfall risk and to find a portfolio
strategy which minimizes or ”almost” minimizes the shortfall risk. In this paper
we allow only admissible self financing portfolios, i.e. a portfolios with nonnegative
wealth process. This corresponds to the situation when the portfolio is handled
without borrowing of the capital.

For discrete time markets such as the multinomial models the above problems
can be solved by dynamical programming algorithm. For continuous time models
such as the BS model these problems are much more complicated.

We prove that for American options, the shortfall risk in the multidimensional
BS model can be approximated by a sequence of shortfall risks in an appropriate
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multinomial models. This type of results has a practical value since the shortfall
risks in the multinomial models can be calculated via dynamical programming
algorithm. Our main tools are the extended weak convergence theory that was
developed in [1] and the tightness theorems that were obtained in [13]. Since we
use the weak convergence approach we could not provide error estimates of the
above approximations. Thus, to open problems remains open. The first one is
to obtain error estimates of the above approximations. The second one is to find
explicit formulas for optimal or ”almost” optimal hedges in the BS model. It seems
that both of the above problems require new tools.

So far, shortfall risk approximations were studied only in the one dimensional
BS model (see [6], [7]). For this case it was proved that the shortfall risk in a BS
market is a limit of the shortfall risks in an appropriate sequence of CRR markets.
Furthermore, the authors obtained error estimates and dynamical programming
algorithm for ”almost” optimal hedges. The main tool that was used in the above
papers is Skorohod embedding tool of i.i.d. random variables into the one dimen-
sional Brownian motion. This tool can not be applied for the multidimensional
Brownian motion.

Main results of this paper are formulated in the next section. In Section 3 we
derive auxiliary lemmas that will be essential in the proof of the main results. In
Section 4 we complete the proof of main results of the paper. In Section 5 we
analyze the multinomial models and provide a dynamical programming algorithm
for the shortfall risk and the corresponding optimal portfolios.

2. Preliminaries and main results

First we introduce the multidimensional BS market. Consider a complete prob-
ability space (ΩW , PW ) together with a standard d–dimensional continuous in
time Brownian motion {W (t) = (W1(t), ...,Wd(t))}∞t=0, and the filtration FW

t =
σ{W (s)|s ≤ t}. We assume that the σ–algebras contain the null sets. A BS fi-
nancial market consists of a savings account B(t) with an interest rate r, assuming
without loss of generality that r = 0, i.e.

(2.1) B(t) = B(0) > 0

and of d risky stocks SW = (SW
1 , ..., SW

d ) given by the following equation

SW
i (t) = Si(0) exp(

d
∑

j=1

σijWj(t) + (bi −
1

2

d
∑

j=1

σ2
ij)t), Si(0) > 0(2.2)

where b ∈ R
d is a constant vector and σ ∈Md(R) is a constant nonsingular matrix.

Let T < ∞ be the maturity date of our American option and let T W
[0,T ] be the

set of all stopping times with respect to FW which take values in [0, T ]. Denote by
(D([0, T ];Rd),S) the space of all right continuous functions with left hand limits,
equipped with the Skorohod topology (see [2]). Let F : [0, T ]× (D([0, T ];Rd),S) →
R+ be a measurable functions such that there exists a constant C > 0 which satisfies

sup
0≤t≤T

F (t, x) ≤ C sup
0≤t≤T

|x(t)|, ∀x ∈ D([0, T ];Rd).(2.3)

Furthermore, we assume that for any t ∈ [0, T ] and x, y ∈ D([0, T ];Rd):
i. F (·, x) is a right continuous function with left hand limits.
ii. F (t, x) = F (t, y) if x(s) = y(s) for any s ≤ t.
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iii. If x is continuous at t then F is continuous at (x, t) (with respect to the product
topology).

Next, consider an American option with the payoff process given by

(2.4) YW (t) = F (t, SW ), 0 ≤ t ≤ T.

From the assumptions above it follows that {YW (t)}Tt=0 is a càdlàg adapted sto-

chastic process and EW [sup0≤t≤T Y
W (t)] <∞. Denote by P̃W the unique martin-

gale measure for the above model. Using standard arguments it follows that the
restriction of the probability measure P̃W to the σ–algebra FW

t satisfies

(2.5) M(t) =
dP̃W

dPW
|FW

t = exp(−1

2
||θ||2t− 〈θ,W (t)〉)

where θ = bσ∗. We denote by || · || and 〈·, ·〉 the standard norm and the scalar
product of Rd, respectively.

A self financing strategy π with a horizon T and an initial capital x (see [15]) is
a d–dimensional progressively measurable process π = {γ(t)}Tt=0 which satisfies

∫ T

0

〈γ(t), SW (t)〉2dt <∞ a.s.(2.6)

For a strategy π the portfolio value process {V π(t)}Tt=0 is given by

(2.7) V π(t) = x+

∫ t

0

〈γ(u), dSW (u)〉.

Recall, (see [11]) that stochastic integrals with respect to the Brownian motion has
a continuous modification and so for any self financing strategy π the corresponding
portfolio value process is a continuous one.

A self financing strategy π is called admissible if V π(t) ≥ 0 for all t ∈ [0, T ] and
the set of such strategies with an initial capital no bigger than x will be denoted
by AW (x). We set AW =

⋃

x>0A
W (x). For an admissible self financing strategy π

the shortfall risk is given by (see [12]),

(2.8) R(π) = sup
τ∈T W

[0,T ]

EW [(Y W (τ)− V π(τ))+],

which is the maximal possible expectation with respect to the probability measure
PW of the (discounted) shortfall. The shortfall risk for an initial capital x is given
by

(2.9) R(x) = inf
π∈AW (x)

R(π).

Next, we introduce the sequence of multinomial markets that we use in or-
der to approximate the shortfall risk in the BS model. The same markets were
used in [8] in order to approximate European option prices in the d– dimen-
sional BS model. Let A ∈ Md+1(R) be an orthogonal matrix such that it last
column equals to ( 1√

d+1
, ..., 1√

d+1
)∗. Let Ωξ = {1, 2, ..., d+ 1}∞ be the space of

finite sequences ω = (ω1, ω2, ...); ωi ∈ {1, 2, ..., d+ 1} with the product probability
P ξ = { 1

d+1 , ...,
1

d+1}
∞
. Define a sequence of i.i.d. random vectors ξ(1), ξ(2), ... by

ξ(i)(ω) =
√
d+ 1(Aωi1, Aωi2..., Aωid), i ∈ N.(2.10)

Let Fξ
m = σ{ξ(k)|k ≤ m}, m ≥ 0 (Fξ

0 = {∅,Ωξ}). Denote by T ξ
m the set of all

stopping times with respect to the filtration {Fξ
k}

∞
k=0 with values from 0 to m.
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For any n consider the n–step multinomial market which consists of a savings
account B(n)(t) given by

(2.11) B(n)(t) = B(0) > 0

and of d risky stocks Sξ,n = (Sξ,n
1 , ..., Sξ,n

d ) given by the formulas Sξ,n
i (t) = Si(0)

for t ∈ [0, T/n) and

Sξ,n
i (t) = Si(0)

k
∏

m=1

(1 +
biT

n
+

√

T

n

d
∑

j=1

σijξ
(m)
j ), kT/n ≤ t < (k + 1)T/n, k = 1, ..., n.

(2.12)

We assume that n is sufficiently large such that the terms in the above product
are positive a.s. The market is active at the times 0, Tn ,

2T
n , ..., T . It is well known

that this market is complete and we denote by P̃ ξ
n the unique martingale measure.

Define the stochastic process {M (n)(t)}Tt=0

M (n)(t) =
dP̃ ξ

n

dP ξ
|Fξ

k , kT/n ≤ t < (k + 1)T/n, k = 0, 1, ..., n.(2.13)

Clearly {M (n)(kTn )}n
k=0

is a martingale with respect to the probability measure

P ξ and the filtration {Fξ
k}

n

k=0. Explicit formulas for M (n)(t) were obtained in [8].
Consider an American option with the adapted payoff process

(2.14) Y ξ,n(k) = F (
kT

n
, Sξ,n), 0 ≤ k ≤ n.

A self financing strategy π with an initial capital x and a horizon n (see [15]) is

a sequence π = (γ(1), ..., γ(n)) where γ(k) are Fξ
k−1-measurable random vectors.

The portfolio value V π(k), k = 0, 1, ..., n is given by

(2.15) V π(k) = x+

k−1
∑

i=0

〈γ(i+ 1), (Sξ,n((i + 1)T/n)− Sξ,n(iT/n))〉.

We call a self financing strategy π admissible if V π(k) ≥ 0 for any k ≤ n. Denote
by Aξ,n(x) the set of all admissible self financing strategies with an initial capital
no bigger than x, let Aξ,n =

⋃

x>0 Aξ,n(x). The definitions for the shortfall risks in
the multinomial markets are similar to the definitions in the BS model. Thus for
the n–step multinomial market the shortfall risks are given by

Rn(π) = max
τ∈T ξ

n

Eξ[(Y ξ,n(τ) − V π(τ))+] and Rn(x) = inf
π∈Aξ,n(x)

Rn(π),(2.16)

where Eξ is the expectation with respect to P ξ.
The following theorem is the main result of the paper and it says that the shortfall

risk R(x) for an initial capital x of an American option in the multidimensional BS
market can be approximated by a sequence of shortfall risks with an initial capital
x of an American options in the multinomial markets defined above. This result
has a practical value since for any n the shortfall risk Rn(x) can be calculated by
dynamical programming algorithm which is given in Section 5.

Theorem 2.1. For any x > 0

(2.17) limn→∞Rn(x) = R(x).
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The proof (which is given in Section 4) consists of two parts. In the first part
we prove the inequality R(x) ≤ lim infn→∞Rn(x) and in the second part we prove
that R(x) ≥ lim supn→∞Rn(x). In the first part we take a sequence of ”almost”
optimal portfolios {πn}∞n=1 for the multinomial markets and consider their limit in
some sense that will be explained explicitly in Section 3. From the limit process
we construct a portfolio π in the BS model such that R(π) ≤ lim infn→∞Rn(πn) =
lim infn→∞Rn(x). The second part is proved by a reversed operations. Namely, we
take an ”almost” optimal portfolio π in the BS model which has some smoothness
properties. The existence of such portfolio will be proved by applying density
arguments. From this portfolio we construct a sequence of portfolios {π′

n}∞n=1 in
the multinomial models which satisfy lim supn→∞Rn(π

′
n) ≤ R(π).

3. Auxiliary lemmas

Let I ⊂ [0, T ] be a dense set in [0, T ] and let TI ⊂ T W
[0,T ] be the set of all stopping

times with a finite number of values which belongs to I.

Lemma 3.1. For any π ∈ AW ,

(3.1) R(π) = sup
τ∈TI

E[(Y W (τ) − V π(τ))+].

Proof. Choose ǫ > 0. There exists τ ∈ T W
[0,T ] such that

(3.2) R(π) < E[(Y W (τ) − V π(τ))+] + ǫ.

For any n there exists a finite set In ⊂ I for which
⋃

z∈In
(z− 1

n , z+
1
n ) ⊇ [0, T ]. Let

an be the maximal element of In. Define τn = min{t ∈ In|t ≥ τ}Iτn≤an
+anIτn>an

,
where ID = 1 if an event D occurs and =0 if not. Clearly, τn ≤ an a.s. and for
t ∈ In \ {an} we have {τn ≤ t} = {τ ≤ t} ∈ FW

t . Thus τn ∈ TI . Furthermore,
|τn − τ | ≤ 2

n and so τn → τ a.s. From (3.2) and the assumptions on F we obtain

R(π) < ǫ+ E[limn→∞(Y W (τn)− V π(τn))
+] = ǫ+(3.3)

limn→∞ E[(Y W (τn)− V π(τn))
+] ≤ ǫ+ supτ∈TI

E[(Y W (τ)− V π(τ))+]

and the result follows by letting ǫ ↓ 0. �

The next lemma provides a general result for the shortfall risk measure.

Lemma 3.2. Let x > 0. For any ǫ > 0 there exists ψ ∈ C((D([0, T ];Rd),S)) such
that the martingale which given by Q(t) = EW (ψ(SW )|FW

t ), t ≤ T is satisfying

Q(0) < x and R(x) > sup
τ∈T W

[0,T ]

EW

((

YW (τ) − Q(τ)

M(τ)

)+)

− ǫ.(3.4)

Proof. Let ǫ > 0. Set K = EW [sup0≤t≤T
1

M(t) ] < ∞ and δ = ǫ
2(K+1) . There

exists π ∈ A(x) such that R(π) < R(x) + δ. The process Φ(t) := V π(t)M(t),
t ≤ T is a supermartingale with respect to PW . Introduce the regular martingale
Γ(t) = E(sup0≤u≤T Y

W (u)M(u)|FW
t ), t ≤ T . The process Ψ(t) := Φ(t) ∧ Γ(t)

is a supermartingale of class D. By Doob’s decomposition theorem there exists a

continuous martingale {U(t)}Tt=0 such that U(0) = Ψ(0) ≤ Φ(0) = x and U(t) ≥
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Ψ(t) a.s. for all t ≤ T . Observe that

supτ∈T W
[0,T ]

EW

((

YW (τ) − U(τ)
M(τ)

)+)

≤ supτ∈T W
[0,T ]

EW

((

YW (τ)−(3.5)

Ψ(τ)
M(τ)

)+)

= supτ∈T W
[0,T ]

EW [(Y W (τ) − V π(τ))+] < R(x) + δ.

Next, choose a sequence 0 ≤ ψn ∈ C((D([0, T ];Rd),S)), n ≥ 1 such that

lim
n→∞

EW |ψn(S
W )− U(T )| = 0 and EWψn(S

W ) < EWU(T ) ≤ x, n ∈ N.(3.6)

SetQ(n)(t) = EW (ψn(S
W )|FW

t ), t ≤ T and introduce the set Cn = {sup0≤t≤T |U(t)

−Q(n)(t)| > δ}. From (3.5) we obtain that for any n,

supτ∈T W
[0,T ]

EW

((

YW (τ)− Q(n)(τ)
M(τ)

)+)

≤ supτ∈T W
[0,T ]

EW

((

YW (τ) −(3.7)

U(τ)
M(τ)

)+)

+ δEW [sup0≤t≤T
1

M(t) ] + EW (ICn
sup0≤t≤T Y

W (t))

< R(x) + ǫ
2 + EW (ICn

sup0≤t≤T Y
W (t)).

By using the Doob inequality for the continuous submartingale {|U(t)−Q(n)(t)|}Tt=0,
it follows from (3.6) that limn→∞ P (Cn) = 0. This together with (3.7) gives that

for sufficiently large n, supτ∈T W
[0,T ]

EW

((

YW (τ) − Q(n)(τ)
M(τ)

)+)

< R(x) + ǫ, as re-

quired. �

Given a probability space (Ω,F , P ) consider a càdlàg stochastic process S =
{St : Ω

→ R
d}Θt=0, (Θ < ∞). Denote by FS = {FS

t }
Θ

t=0 the usual filtration of S i.e. the
smallest right continuous filtration with respect to which S is adapted, and such
that the σ–algebras contain the null sets. Let T S

[0,Θ] be the set of all stopping times

with respect to FS which take values in [0,Θ].
In [13] the authors introduced the Meyer–Zheng (MZ) topology on the space

D([0,Θ]
;R). This topology will denoted by (D([0,Θ];R),MZ). The MZ topology is in fact
the topology of convergence in measure, it is weaker than the Skorohod topology,
but for the MZ topology any sequence of positive uniformly L1–bounded super-
martingales is relatively compact (see [13]). This fact together with the following
lemma will be essential in the proof of Theorem 2.1.

Lemma 3.3. Let (Ω,F , P ) be a probability space and S(n) : Ω → (D[0,Θ]; Rd) be a
sequence of stochastic processes such that S(n) → S a.s. on the space (D([0,Θ];Rd),S).
Assume that for any n, {V (n)(t)}Θt=0 is a (one dimensional) càdlàg positive super-

martingale with respect to the filtration FSn

[0,Θ] and V (n) → V a.s. on the space

(D([0,Θ];R),MZ) with respect to the MZ topology. Set

(3.8) Q(t) = E(V (t)|FS
t ), t ≤ Θ.

Then the process {Q(t)}0≤t<Θ is a càdlàg positive supermartingale with respect to

the filtration FS ..
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Proof. First, let us show that {Q(t)}0≤t<Θ is a supermartingale, i.e. for any s <

t < Θ and D ∈ FS
s

(3.9) EIDV (s) ≥ EIDV (t).

Choose s < s′ < t, c > 0 and 0 < ǫ < min(s′−s,Θ−t). Let φ ∈ C((D([0,Θ];Rd),S))
be a continuous bounded function such that φ(x) depends only on the restriction
of x to the interval [0, s′]. From the definition of the MZ topology we obtain

lim supn→∞E
∫ ǫ

u=0
|φ(S(n))(V (n)(s′ + u) ∧ c)− φ(S)(V (s′ + u) ∧ c)|du

≤ ||φ||∞ lim supn→∞ E
∫ ǫ

u=0(|V (n)(s′ + u)− V (s′ + u)| ∧ c)du+

c lim supn→∞E
∫ ǫ

u=0
|φ(S)− φ(S(n))|du = 0.

Thus,
(3.10)

lim
n→∞

1

ǫ
E

∫ ǫ

u=0

φ(S(n))(V (n)(s′ + u) ∧ c)du =
1

ǫ
E

∫ ǫ

u=0

φ(S)(V (s′ + u) ∧ c)du.

Similarly,

(3.11) lim
n→∞

1

ǫ
E

∫ ǫ

u=0

φ(S(n))(V (n)(t+ u)∧ c)du =
1

ǫ
E

∫ ǫ

u=0

φ(S)(V (t+ u)∧ c)du.

For any n, {V (n)(α) ∧ c}Uα=0 is a supermartingale with respect to FS(n)

[0,Θ], this to-

gether with (3.10) and (3.11) gives

1

ǫ
E

∫ ǫ

u=0

φ(S)(V (t+ u) ∧ c)du ≤ 1

ǫ
E

∫ ǫ

u=0

φ(S)(V (s′ + u) ∧ c)du.

By taking ǫ ↓ 0 we obtain Eφ(S)(V (t) ∧ c) ≤ Eφ(S)(V (s′) ∧ c). From density
arguments and the fact that D ∈ σ{Su|u < s′} it follows that EID(V (s′) ∧ c) ≥
EID(V (t) ∧ c) and by letting s′ ↓ s and c ↑ ∞ we obtain (3.9). Finally, since the
map t → EQ(t) = EV (t) is right continuous we obtain (see [11]) that Q has a
càdlàg modification. �

In [8] it was proved that

(Sξ,n,M (n)) ⇒ (SW ,M) on the space (D([0, T ];Rd),S) × (D([0, T ];R),S).(3.12)

We use the notation S(n) ⇒ S to indicate that the sequence S(n), n ≥ 1 converges
weakly to S (see [2]). We will use the concept ”extended weak convergence” which
was introduced in [1] by Aldous. The original definition was via prediction pro-
cesses. For the case where the stochastic processes are considered with respect to
their usual filtration he proved that extended weak convergence is equivalent to a
more elementary condition which does not require the use of prediction processes
(see [1] Proposition 16.15). We will use the above condition as the definition of
extended weak convergence.

Definition 3.4. A sequence S(n) : Ωn → D([0, T ];Rd), n ≥ 1 extended weak
converges to a stochastic process S : Ω → D([0, T ];Rd) if for any k and continuous
bounded functions ψ1, ..., ψk ∈ C((D([0, T ];Rd),S))
(3.13) (S(n), H(n,1), ..., H(n,k)) ⇒ (S,H(1), ..., H(k)) on (D([0, T ];Rd+k),S)
where for any t ≤ T , 1 ≤ i ≤ k and n ∈ N

(3.14) H
(n,i)
t = En(ψi(S

(n))|FS(n)

t ), n ∈ N, and H(i) = E(ψi(S)|FS
t )
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En denotes the expectation with respect to the probability measure on Ωn and E
denotes the expectation with respect to the probability measure on Ω. We will denote
extended weak convergence by S(n) ⇛ S.

Lemma 3.5. Sξ,n ⇛ SW .

Proof. Define the mapG : (D([0, T ];Rd),S) → (D([0, T ];Rd),S) by (G(x1, ..., xd))(t)
= (exp(x1(t), ..., exp(xd(t)). Observe that G is a continuous map with continuous
inverse (the inverse is defined only on functions (x1, ..., xd) ∈ D([0, T ];Rd) which

satisfy min1≤i≤d inf0≤t≤T xi(t) > 0). Let {X(t) = (lnSW
1 (t), ..., lnSW

d (t))}Tt=0 and

{X(n)(t) = (lnSξ,n
1 (t), ..., lnSξ,n

d (t))}Tt=0, n ∈ N. From (3.12) and the fact that G

has a continuous inverse it follows that X(n) ⇒ X . For any n the process X(n) has
an independent increments and the process X is a continuous process with inde-
pendent increments. From Corollary 2 in [9] we obtain X(n) ⇛ X and so (since G
is continuous) Sξ,n ⇛ SW . �

4. Proof of main results

In this section we complete the proof of Theorem 2.1. Fix x. We start with
the proof of the inequality R(x) ≤ limn→∞Rn(x). Here and in the sequel, for the
sake of simplicity we will assume that indices have been renamed so that the whole
sequence converges. Let πn ∈ Aξ,n(x), n ∈ N be a sequence such that

Rn(πn) < Rn(x) +
1

n
∀n ∈ N.(4.1)

For any n ∈ N define the stochastic process {Z(n)(t)}2Tt=0 by Z(n)(t) = V πn

k M (n)(t)

for kT
n ≤ t < (k+1)T

n and k < n, and Z(n)(t) = V πn(n)M (n)(T ) for t ≥ T . From

(2.13) it follows that {Z(n)(t)}2Tt=0 is a càdlàg martingale with respect to P ξ and

the filtration {FSn,ξ

t }2Tt=0, where we set FSn,ξ

t = FSn,ξ

T for t ≥ T . From [13] it

follows that the sequence Z(n), n ∈ N in tight on the space (D([0, T ];R),MZ). We
can extend all the processes in (3.12) to the interval [0, 2T ] be letting their paths
to be constants on the interval [T, 2T ]. From (3.12) we obtain that the sequence
(Sξ,n,M (n), Z(n)), n ∈ N it tight on the space (D([0, 2T ];Rd),S)×(D([0, 2T ];R),S)×
(D([0, 2T ];R),MZ). Thus there exists a subsequence such that (Sξ,n,M (n), Z(n)) ⇒
(SW ,M,Z), for some stochastic process Z which satisfies Z(0) ≤ x. Next, from the
Skorohod representation theorem (see [4]) it follows that without loss of generality
we can assume that there exists a probability space (Ω,F , P ) on which

(4.2) (Sξ,n,M (n), Z(n)) → (SW ,M,Z) a.s.

on the space (D([0, 2T ];Rd),S) × (D([0, 2T ];R),S) × (D([0, 2T ];R),MZ). From

Lemma 3.3 it follows that the process Q(t) := E(Z(t)|FSW

t ), t ≤ T is a càdlàg

supermartingale. The process V (t) := Q(t)∧Γ(t)
M(t) , t ≤ T is a càdlàg supermartingale

of class D with respect to the martingale measure P̃W (Γ(t) was introduced after
(3.4)). From Doob’s decomposition theorem and the martingale representation
theorem we obtain that there exists a portfolio π ∈ A(x) such that

V π(0) = V (0) ≤ Q(0) = Z(0) ≤ x and V π(t) ≥ V (t) ∀t ≤ T .(4.3)
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From [13] there exists a subsequence Z(n) and a dense set I ⊂ [0, T ], such that for
any t ∈ J

(4.4) lim
n→∞

Z(n)(t) = Z(t) a.s.

Choose ǫ > 0. From Lemma 3.1 we obtain that there exist a stopping time τ which
excepts a finite number of values {t1 < t2 < ... < tm} ⊂ I such that

(4.5) R(π) < ǫ+ E[(Y W (τ) − V π(τ))+].

From Lemma 3.2 in [3] and (4.2) it follows that there exists a sequence σn ∈ FSξ,n

[0,T ],

n ≥ 1 of stopping times with values in the set {t1 < t2 < ... < tm} which satisfy

lim
n→∞

σn = τ a.s.(4.6)

Set τn = max{k|kT/n ≤ σn}, n ≥ 1. Observe that for any k ≤ n, {τn ≤ k} =

{σn < (k + 1)T/n} ∈ T ξ
k thus for any n, τn ∈ T ξ

n . Furthermore,

|τnT
n

− σn| ≤
1

n
and Z(n)(σn) = Z(n)(τnT/n) ∀n.(4.7)

From (2.3) it follows that the random variables Y ξ,n(τn), n ∈ N are uniformly
integrable. Thus, from Jensen’s inequality and (4.1)–(4.7) it follows

R(x) ≤ R(π) ≤ ǫ+ E[(Y W (τ) − V π(τ))+] ≤ ǫ+(4.8)

E

((

Y W (τ) − Q(τ)
M(τ)

)+)

≤ ǫ+ E

(

E

(

Y W (τ) − Z(τ)
M(τ)

)+∣
∣

∣

∣

FSW

τ

))

=

ǫ+ E

((

Y W (τ) − Z(τ)
M(τ)

)+)

= ǫ+ E

(

limn→∞

(

Y ξ,n(τn)− Z(n)( τnT
n

)

M(n)( τnT
n

)

)+)

= ǫ+ limn→∞E[(Y ξ,n(τn)− V πn(τn))
+] ≤ ǫ + limn→∞Rn(x).

Since ǫ > 0 was arbitrary we conclude that R(x) ≤ limn→∞Rn(x).
Next, we show that R(x) ≥ limn→∞Rn(x). Choose ǫ > 0. From Lemma 3.2 it

follows that there exists ψ ∈ C((D([0, T ];Rd),S)) such that the stochastic process

H(t) := EW (ψi(S
W )|FSW

t ), t ≤ T satisfies H(0) < x and

(4.9) R(x) > sup
τ∈T SW

[0,T ]

EW

((

YW (τ)− H(τ)

M(τ)

)+)

− ǫ.

For any n define the stochastic process H(n)(t) = Eξ(ψ(Sn,ξ)|FSn,ξ

t ), t ≤ T . From
Lemma 3.5 we obtain

(Sξ,n, H(n)) ⇒ (SW , H) on the space (D([0, T ];Rd),S) × (D([0, T ];R),S).(4.10)

Since the process H is continuous then limn→∞H(n)(0) = H(0). Thus, we will
assume that n is sufficiently large such that H(n)(0) ≤ x. Observe that the process
H(n)(kT/n)
M(n)(kT/n)

, 0 ≤ k ≤ n is a martingale with respect to P̃ ξ
n and the filtration {Fξ

k}nk=0,

thus (since the multinomial markets are complete) there exists π′
n ∈ Aξ,n(x) such

that V π′

n(k) = H(n)(kT/n)
M(n)(kT/n)

, k ≤ n. We obtain that for any n there exists a stopping
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time σn ∈ T ξ
n which satisfies

Eξ

((

Y ξ,n(σn)− Z(n)(σnT

n
)

M(n)(σnT
n

)

)+)

> supτ∈T ξ
n
Eξ

((

Y ξ,n(τ) − Z(n)( τT
n

)

M(n)( τT
n

)

)+)

(4.11)

− 1
n ≥ Rn(π

′
n)− 1

n ≥ Rn(x)− 1
n .

From (3.12) and (4.10) the sequence (Sξ,n, H(n),M (n), σnT/n) is tight on the space
(D([0, T ];Rd),S) × (D([0, T ];R),S)× (D([0, T ];R),S) × [0, T ]. Thus there exists a
subsequence such that (Sξ,n, H(n), H(n), σnT/n) ⇒ (SW , H,M, ν) for some random
variable ν ≤ T . From the Skorohod representation theorem we can assume that
there exists a probability space (Ω,F , P ) on which

(4.12) (Sξ,n, H(n),M (n), σnT/n) → (SW , Z,M, ν) a.s.

on the space (D([0, T ];Rd),S)× (D([0, T ];R),S)× (D([0, T ];R),S)× [0, T ]. Observe
that the joint distribution of (SW , Z,M) in (4.12) remains as the original one. From

Lemma 3.3 in [3] it follows that for any t ≤ T , {ν ≤ t} and FSW

T are conditionally

independent given FSW

t , and for any uniformly integrable càdlàg stochastic process

{Φ(t)}Tt=0 adapted to the filtration FSW

[0,T ]

(4.13) EΦ(ν) ≤ sup
τ∈T S

[0,T ]

EΦ(τ).

Finally, by using (4.13) for the process Φ(t) := (Y W (t)− H(t)
M(t) )

+, (4.9) and (4.11)–

(4.12) we obtain

limn→∞Rn(x) ≤ limn→∞ Eξ

((

Y ξ,n(σn)− Z(n)(σnT
n

)

M(n)(σnT
n

)

)+)

=

E

(

limn→∞

(

Y ξ,n(σn)− Z(n)(σnT
n

)

M(n)(σnT
n

)

)+)

= EW

((

Y W (ν) − H(ν)
M(ν)

)+)

< R(x) + ǫ

and the proof is completed.

Remark 4.1. An interesting question is whether Theorem 2.1 is valid for game
options which were introduced in [10]. Let F,G : [0, T ] × (D([0, T ];Rd),S) → R+

such that F ≤ G satisfy the assumptions after (2.2). Set

HW (t, s) = G(t, SW )It<s + F (s, SW )Is≤t, t, s ∈ [0, T ] and(4.14)

Hξ,n(k, l) = G(kTn , S
ξ,n)Ik<l + F ( lTn , S

ξ,n)Il≤k, n ∈ N, 0 ≤ k, l ≤ n.

The terms HW (t, s) and Hξ,n(k, l) are the payoff functions for the BS model and
the n–step multinomial model, respectively. For game options the shortfall risk is
defined by (see [5])

R(g)(x) = infπ∈AW (x) infσ∈T W
[0,T ]

supτ∈T W
[0,T ]

EW [(HW (σ, τ) − V π(σ ∧ τ ))+](4.15)

and R
(g)
n (x) = infπ∈Aξ,n(x) minσ∈T ξ

n
maxτ∈T ξ

n
Eξ[(Hξ,n(σ, τ) − V π(σ ∧ τ))+].

The question is whether the equality R(g)(x) = limn→∞R
(g)
n (x) holds true. Fol-

lowing the proof above it can be shown that R(g)(x) ≥ lim supn→∞R
(g)
n (x). The

inequality R(g)(x) ≤ lim infn→∞R
(g)
n (x) is more difficult to prove because of the

additional inf (in formula (4.15)) which destroys the convexity that was used in
(4.8) (by applying Jensen’s inequality). At present it is not clear whether the weak
convergence approach can be applied here.
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5. Analysis of the multinomial models

In this section we provide a dynamical programming algorithm for the shortfall
risks and the corresponding optimal portfolios in the multinomial models. Similar
analysis was done in [5] for game options in multinomial markets with one risky
asset.

Definition 5.1. A function ψ : R+ → R+ is a piecewise linear function vanishing
at ∞ if there exists a natural number n, such that

(5.1) ψ(y) =

n
∑

i=1

I[ai,ai+1)(ciy + di)

where c1, ..., cn, d1, ..., dn ∈ R and a1 < a2 < ... < an+1 <∞.

Let J = {v(1), ..., v(d+1)} ⊂ R
d such that

span{v(1), ..., v(d+1)} = R
d and ∃p1, ..., pd+1 > 0,

d+1
∑

i=1

piv
(i) = 0.(5.2)

Define the set KJ = {u ∈ R
d|〈u, v(i)〉 ≥ −1, i = 1, ..., d+ 1}. Observe that KJ is a

compact convex set.

Lemma 5.2. Let ψ1, ..., ψd+1 : R+ → R+ be continuous, non increasing and piece-
wise linear functions vanishing at ∞. Define ψ : R+ → R+ by

(5.3) ψ(y) = min
u∈KJ

d+1
∑

i=1

ψi(y(1 + 〈u, v(i)〉)).

Then ψ is continuous, non increasing and piecewise linear function vanishing at
∞.

Proof. Clearly ψ is a non increasing function. There exists a natural number n
such that

(5.4) ψi(y) =

n
∑

j=1

I[aj ,aj+1)(c
(i)
j y + d

(i)
j ), i = 1, ..., d+ 1

where c
(i)
j , d

(i)
j ∈ R and 0 = a1 < a2 < ... < an+1 < ∞. Denote Ik = [ak, ak+1),

k = 1, ..., n and In+1 = [an+1,∞). Set λi = 1 + supu∈K〈u, v(i)〉, i ≤ d + 1. Notice
that for any y1, y2 ∈ R+

|ψ(y1)− ψ(y2)| ≤
∑d+1

i=1 supu∈K |ψi(y1(1 + 〈u, v(i)〉))− ψi(y2(1 + 〈u, v(i)〉))|(5.5)

≤ |y1 − y2|
∑d+1

i=1 λi max1≤j≤n |c(i)j |.
Thus ψ is a continuous function. Next, we prove that ψ is a piecewise linear
function. Fix y > 0 and introduce the set Ly = {a1

y − 1, ...., an+1

y − 1}. For any 1 ≤
α ≤ d+1 and β ∈ {1, ..., n+1}d+1 define the sets L

(y)
α = {w ∈ R

d|〈v(i), w〉 ∈ Ly, i ∈
{1, ..., d + 1} \ {α}} and K

(y)
β = {u ∈ R

d|y(1 + 〈v(j), u〉) ∈ Iβj
, ∀j ≤ d+ 1}. Set

L(y) =
⋃d+1

α=1 L
(y)
α . There exists a finite sequence of real numbers c1, ..., cm, e1, ..., em

(which does not depend on y) such that any v ∈ L(y) is of the form v = (ck1 +
er1
y , ..., ckd

+
erd
y ), k1, ..., kd, r1, ..., rd ∈ {1, ...,m}. Notice that for any β, K(y)

β ⊂ KJ

is a compact convex set. Furthermore, the extreme points of K
(y)
β are in L(y). For
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each β ∈ {1, ..., n+ 1}d+1 the function ψ(y) : K
(y)
β → R+ which given by ψ(y)(u) =

∑d+1
i=1 ψi(y(1 + 〈v(i), u〉)), is a convex function. Since

⋃

β∈{1,...,n+1}d+1 K
(y)
β = KJ ,

we obtain

ψ(y) = minβ∈{1,...,n+1}d+1 min
u∈K

(y)
β

ψ(y)(u) =(5.6)

minβ∈{1,...,n+1}d+1 min
u∈K

(y)
β

⋂
L(y) ψ

(y)(u) = minu∈KJ

⋂
L(y) ψ(y)(u).

Thus there exists a finite sequence of real numbers f1, ..., fm̃, g1, ..., gm̃ such that
for any y > 0,

(5.7) ψ(y) = fiy + gi

for some i (which depends on y). This together with the inequality ψ(y) ≤
∑d+1

i=1 ψi(y) and the fact that ψ is a continuous function gives that ψ is a piecewise
linear function vanishing at ∞. �

Next, fix n and consider the n–step multinomial model. For any π ∈ Aξ,n define
a sequence of random variables {Uπ(k)}nk=0 by

Uπ(n) = (Y ξ,n(n)− V π(n))+, and for k < n(5.8)

Uπ(k) = max(Eξ(Uπ(k + 1)|Fξ
k), (Y

ξ,n(k)− V π(k))+).

Applying standard results for optimal stopping (see [14]) for the process (Y ξ,n(k)−
V π(k))+, k = 0, 1, ..., n we obtain

(5.9) Uπ(0) = max
τ∈T ξ

n

Eξ[(Y ξ,n(τ)− V π(τ))+] = Rn(π).

Set,

w(i) =
√
d+ 1(Ai1, ..., Aid), w

n,i = T
n b+

√

T
nw

(i)σ∗, i ≤ d+ 1(5.10)

J = {w(1), ..., w(d+1)} and Jn = {wn,1, ..., wn,d+1}
where the matrix A and the vector b were introduced in Section 2.

Definition 5.3. Let 0 ≤ k < n and X be a nonnegative Fξ
k–measurable random

variable. Define the set

A(n)
k (X) =

{

Y |Y = X

(

1 +

〈

ρ, Tn b+
√

T
n ξ

(k+1)σ∗
〉)

,(5.11)

ρ : Ωξ → KJn
is Fξ

k −measurable

}

.

Notice that if V π(k) = X and V π(k+1) = Y for some π = (γ(1), ..., γ(n)) ∈ Aξ,n

and k < n then from (2.12) and (2.15), Y = X(1 + 〈ρ, Tn b +
√

T
n ξ

(k+1)σ∗〉) where
ρ = IX>0

X (γ1(k + 1)Sξ,n
1 ( (k+1)T

n ), ..., γd(k + 1)Sξ,n
d ( (k+1)T

n )). Clearly, if X = 0 then
(π is admissible) Y = 0. Since we require Y ≥ 0 to be satisfied for all possible values

of ξ(k+1) then in view of independency of ρ and ξ(k+1) we conclude that A(n)
k (X)

is the set of all possible portfolio values at time k + 1 provided the portfolio value
at time k is X .

For any 0 ≤ k ≤ n let φ
(n)
k : Jk → R+ such that

(5.12) φ
(n)
k (ξ(1), ..., ξ(k)) = Y ξ,n(k).
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Define a sequence of functions H
(n)
k : R+×Jk → R+, k = 0, 1, ..., n by the following

backward relations. For any u(1), ..., u(n) ∈ J and y ∈ R+

H
(n)
n (y, u(1), ..., u(n)) = (φ

(n)
n (u(1), ..., u(n))− y)+ and(5.13)

H
(n)
k (y, u(1), ..., u(k)) = max

(

φ
(n)
n (u(1), ..., u(k))− y)+, 1

d+1 infu∈KJn

∑d+1
i=1 H

(n)
k+1(y(1 + 〈u, Tn b+

√

T
nw

(i)σ∗〉), u(1), ..., u(k), w(i))

)

for k < n.

Observe that Jn (for sufficiently large n) satisfies (5.2). Thus from Lemma 5.2
it follows (by backward induction) that for any k ≤ n and u(1), ..., u(k) ∈ J ,

H
(n)
k (·, u(1), ..., u(k)) is continuous, non increasing and piecewise linear function van-

ishing at∞. These facts allow us to define the functions {h(n)k : R+×Jk → KJn
}n−1
k=0

by

h
(n)
k (y, u(1), ..., u(k)) = argminu∈KJn

d+1
∑

i=1

H
(n)
k+1(y(1 + 〈u,(5.14)

T

n
b+

√

T

n
w(i)σ∗〉), u(1), ..., u(k), w(i)).

Namely,

minu∈KJn

∑d+1
i=1 H

(n)
k+1(y(1 + 〈u, Tn b+

√

T
nw

(i)σ∗〉), u(1), ..., u(k), w(i)) =(5.15)

∑d+1
i=1 H

(n)
k+1(y(1 + 〈h(n)k (y, u(1), ..., u(k)), Tn b +

√

T
nw

(i)σ∗〉), u(1), ..., u(k), w(i))

for any y ∈ R+ and u(1), ..., u(k) ∈ J .
Let x > 0 be an initial capital. Define π̃ = π̃(n, x) ∈ Aξ,n(x) by

V π̃(0) = x, and for 0 ≤ k < n(5.16)

V π̃(k + 1) = V π̃(k)(1 + 〈h(n)k (V π̃(k), ξ(1), ..., ξ(k)), Tn b+
√

T
n ξ

(k+1)σ∗〉).

Theorem 5.4. For any n ∈ N and x > 0

(5.17) Rn(x) = Rn(π̃(n, x)) = H
(n)
0 (x).

Proof. Fix n ∈ N and x > 0. Let π ∈ Aξ,n(x) an arbitrary portfolio. Denote
π̃ = π̃(n, x). First we prove by backward induction that for any k ≤ n,

(5.18) H
(n)
k (V π(k), ξ(1), ..., ξ(k)) ≤ Uπ(k) and H

(n)
k (V π̃(k), ξ(1), ..., ξ(k)) = U π̃(k).

For k = n, we obtain from (5.8) and (5.12)–(5.13) that the relations (5.18) hold
with equality. Suppose that (5.18) holds true for k + 1 and prove them for k.

Let ρ : Ωξ → KJn
be a Fξ

k measurable random vector such that V π(k + 1) =

V π(k)(1 + 〈ρ, Tn b+
√

T
n ξ

(k+1)σ∗〉). From the induction assumption we obtain

Eξ(Uπ(k + 1)|Fξ
k) ≥ Eξ(H

(n)
k (V π(k + 1), ξ(1), ..., ξ(k), ξ(k+1))|Fξ

k )(5.19)

= 1
d+1

∑d+1
i=1 H

(n)
k+1(V

π(k)(1 + 〈ρ, Tn b+
√

T
nw

(i)σ∗〉), ξ(1), ..., ξ(k), w(i)) ≥
1

d+1 infu∈KJn

∑d+1
i=1 H

(n)
k+1(V

π(k)(1 + 〈u, Tn b +
√

T
nw

(i)σ∗〉), ξ(1), ..., ξ(k), w(i)).
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Denote ρ̃ = h
(n)
k (V π̃(k), ξ(1), ..., ξ(k)). From (5.15)–(5.16) and the induction as-

sumption it follows

Eξ(U π̃(k + 1)|Fξ
k) = Eξ(H

(n)
k (V π̃(k + 1), ξ(1), ..., ξ(k), ξ(k+1))|Fξ

k )(5.20)

= 1
d+1

∑d+1
i=1 H

(n)
k+1(V

π̃(k)(1 + 〈ρ̃, Tn b+
√

T
nw

(i)σ∗〉), ξ(1), ..., ξ(k), w(i)) =

1
d+1 infu∈KJn

∑d+1
i=1 H

(n)
k+1(V

π̃(k)(1 + 〈u, Tn b +
√

T
nw

(i)σ∗〉), ξ(1), ..., ξ(k), w(i)).

Combining (5.8), (5.12)–(5.13) and (5.19)-(5.20) we obtain that (5.18) holds true.
Next, by using (5.18) for k = 0 and (5.9) it follows that for any π ∈ Aξ,n(x)

Rn(π) = Uπ(0) ≥ H
(n)
0 (V π(0)) ≥ H

(n)
0 (x) = U π̃(0) = Rn(π̃).

Thus Rn(x) = Rn(π̃) = H
(n)
0 (x), as required. �
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