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A large amount of data is typically collected during a periodontal
exam. Analyzing these data poses several challenges. Several types of
measurements are taken at many locations throughout the mouth.
These spatially-referenced data are a mix of binary and continuous
responses, making joint modeling difficult. Also, most patients have
missing teeth. Periodontal disease is a leading cause of tooth loss,
so it is likely that the number and location of missing teeth informs
about the patient’s periodontal health. In this paper we develop a
multivariate spatial framework for these data which jointly models
the binary and continuous responses as a function of a single latent
spatial process representing general periodontal health. We also use
the latent spatial process to model the location of missing teeth. We
show using simulated and real data that exploiting spatial associ-
ations and jointly modeling the responses and locations of missing
teeth mitigates the problems presented by these data.

1. Introduction. Periodontal disease or periodontitis is an inflammatory
disease affecting periodontium, the tissues that support and maintain teeth.
Periodontitis causes progressive bone loss around the tooth which can lead to
tooth loosening and eventually tooth loss. It has been estimated that about
50% of US adults over the age of 35 experience early stages of periodontal
disease [Oliver, Brown and Loe (1998)], making periodontitis the primary
cause of adult tooth loss. To measure periodontal status, dental hygienists
often use a periodontal probe to measure several disease markers throughout
the mouth. Three of the most popular markers are (a) clinical attachment
loss (CAL), (b) periodontal pocket depth (PPD) and (c) bleeding on probing
(BOP). PPD and CAL are continuous variables, usually rounded to the
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Fig. 1. Observed CAL for a typical patient. The shaded boxes represent teeth, the cir-
cles represent measurement sites, and the gray lines represent neighbor pairs connecting
adjacent sites on the same tooth and sites that share a gap between teeth. “Maxillary” and
“Mandibular” refer to upper and lower jaws respectively. The small numbers beside each
tooth are the “tooth numbers.” The maxilla’s second tooth on the left is missing; third
molars (“wisdom teeth”) are excluded.

nearest millimeter. CAL is the distance down a tooth’s root that is no longer
attached to the surrounding bone by the periodontal ligament, and PPD is
the distance from the gingival margin to the base of the pocket. BOP is
a binary response and is indicative of whether a particular site bled with
the application of a dental probe. During a full periodontal exam, all three
markers are usually measured at six pre-specified sites [Darby and Walsh
(1995)] for each tooth (excluding the third molars, i.e., the wisdom teeth).
So for a patient with no missing teeth, there are S = 168 measurements for
each marker (Figure 1).

The motivating example is a clinical study conducted at the Medical
University of South Carolina (MUSC) to determine the periodontal disease
status for Type-2 diabetic Gullah-speaking African-Americans, originally
presented in Fernandez et al. (2009). The objective of this analysis is to
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quantify the disease status of this population, and to study the associations
between disease status and patient-level covariates such as age, BMI, gender,
HbA1C and smoking status.

Quantifying a patient’s disease status from the extensive data collected
during a periodontal exam is difficult. For example, it is common to sum-
marize disease status using the whole-mouth average CAL or the number of
teeth with CAL above a certain threshold. Using the whole-mouth average
CAL as the response in a regression with patient-level covariates is reason-
able when the patients’ residual distributions are identical. However, this
assumption is often violated in practice, as different patients have different
error variances, spatial covariances and missing data patterns. In this paper
we present a multivariate spatial model to jointly analyze periodontal data
from multiple markers and multiple measurement locations to improve es-
timation of disease status, and hence develop a more powerful method for
studying the association between patient-level covariates and periodontal
disease.

We use spatial factor analysis [Wang andWall (2003), Hogan and Tchernis
(2004), Lopes, Salazar and Gamerman (2008)] to model these multivariate
spatial data. We postulate that the three markers are all related to a single
latent spatial process (factor) measuring periodontal health. The latent peri-
odontal health factor varies from site to site and is smoothed spatially using a
conditionally autoregressive prior [Besag, York and Mollié (1991), Banerjee,
Carlin and Gelfand (2004)]. The data collected for this study provide inter-
esting challenges that require extensions of the spatial factor model. First,
the data are a mix of continuous and binary responses. To jointly model
these data types, we develop a spatial probit model for binary responses,
which has the advantage of being fully-conjugate and leads to rapid MCMC
sampling and convergence. Also, we have data from multiple patients, and
exploratory analysis suggests that the covariance of the latent spatial factor
varies by patient. Therefore, we develop a hierarchial model which allows the
covariance to vary between patients, but pools information across patients to
estimate the covariance parameters. We show in a simple case that in terms
of estimating the effect of patient-level covariates, this model is equivalent
to a weighted multiple regression, where the patient’s scalar response is a
linear combination of all data across location and marker, and the patient’s
weight decreases with the spatial correlation and variability.

Another challenging aspect of analyzing periodontal data is the consider-
able number of missing teeth (around 20% for these data). The assumption
that teeth are missing completely at random is not valid because periodontal
disease is the leading cause of adult tooth loss, so patients with several miss-
ing teeth likely have poor periodontal health. For nonspatial data a common
method to handle so-called “informative cluster size” is to include the num-
ber of observations as a covariate, or in the weights of a weighted regression
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[Hoffman, Sen and Weinberg (2001), Williamson, Datta and Satten (2003),
Follman, Proschan and Leifer (2003), Lu (2005), Benhin, Rao and Scott
(2005), Panageas et al. (2007), Cong, Yin and Shen (2007), Williamson et
al. (2008)]. Dunson, Chen and Harry (2003) take a different approach. They
propose a joint model for clustered mixed (continuous and binary) data and
the number of responses in each cluster, using a continuation ratio pro-
bit model for cluster size. Another approach is the shared parameter model
[e.g., Wu and Carroll (1988), Follman and Wu (1995)]. The shared parameter
model accounts for informative missingness by introducing random effects
that are shared between the missing data process and the measurement pro-
cess. Conditioned on the random effects, the missing data and measurement
processes are assumed to be independent.

We propose a shared variable model to jointly model missing teeth with
the other markers of periodontal disease. However, in our spatial setting both
the number and location of missing teeth are informative. For example, a
missing tooth in the front of the mouth surrounded by teeth with low CAL
may not be informative; in contrast, a missing tooth in the back of the mouth
(where periodontal disease is often the most advanced) surrounded by teeth
with high CAL is indicative of poor periodontal health in that region of the
mouth. Therefore, we model the number and spatial distribution of missing
teeth using our latent spatial factor model. In this model, CAL, PPD, BOP
and the location of missing teeth are all modeled simultaneously in terms of a
latent periodontal health factor; this approach uses all available information
to estimate periodontal disease status.

The paper proceeds as follows. Section 2 presents our unified approach
to modeling multivariate spatially-referenced periodontal data, as well as
our model for informatively missing teeth. Section 3 offers some influence
diagnostics to determine which patients and response types are the most
informative about the patient-level covariates. Computing details are given
in Section 4. Section 5’s simulation study shows that accounting for spatial
association and informative observation location can lead to a substantial
improvement in estimating the patient-level covariate effects. We analyze
the periodontal data in Section 6. Section 7 concludes.

2. Latent spatial factor model for periodontal data. In this section we
describe our approach for spatially-referenced mixed periodontal data with
informative missingness. We begin in Section 2.1 by specifying a latent spa-
tial factor model assuming no missing teeth. Section 2.2 introduces the spa-
tial probit model for missing teeth and Section 2.3 specifies priors and dis-
cusses identifiability of the latent variable model.

2.1. Complete data model. We assume our multivariate spatial data has
J types of responses (for the periodontal data the J = 3 responses are CAL,
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PPD and BOP) at each spatial location for each patient. If the jth type of
response is continuous (CAL and PPD), let yij(s) be the response at spatial
location s for patient i, s = 1, . . . , S and i = 1, . . . ,N . Our data also has
binary responses (BOP). If the jth type of response is binary, let y∗ij(s) be
the response at spatial location s for patient i. We model binary responses
using probit regression, that is, y∗ij(s) = I(yij(s)> 0), where I(·) is the binary

indicator function and yij(s) is a Gaussian latent variable.
All J responses are modeled as functions of the latent spatial disease

status, µi(s), which represents the overall periodontal health of patient i at
location s. Let

yij(s) = aj + bjµi(s) + εij(s),(1)

where aj is the intercept for response j, bj relates the latent factor to re-
sponse type j, and εij(s) ∼ N(0, σ2

ij) is error. As is customary for probit

regression, we assume σ2
ij = 1 for binary responses for identification. Since

all J responses depend on the common latent factor, they are correlated
with

Cor(yij(s), yil(s)) =
bjblVar[µi(s)]

√

b2j Var[µi(s)] + σ2
ij

√

b2l Var[µi(s)] + σ2
il

.(2)

The slopes bj and bl determine the sign and magnitude of the correlation; if
either bj or bl is zero, then yij(s) and yil(s) are uncorrelated, and if bj and
bl share (do not share) the same sign, then yij(s) and yil(s) are positively
(negatively) correlated.

The latent vector µi = (µi(1), . . . , µi(S))
′ has a multivariate normal prior

with conditionally autoregressive covariance [“CAR,” Besag, York and Mollié
(1991)]. The mean of µi is

E(µi) =Wα+Ωiβ,

where W is an S × q matrix of spatial covariates (e.g., tooth number) that
do not vary across patient, Xi is the p-vector of patient-level covariates (e.g.,
age) that do not vary across space within patient, Ωi =X ′

i ⊗ 1S , 1S is the
S-vector of ones, and α and β are the corresponding regression parameters.
The covariance of µi is τ2i Q(ρi)

−1, where Q(ρi) =M − ρiD, Dss′ is one if
locations s and s′ are adjacent and zero otherwise, M is diagonal with diag-
onal elements Mss =

∑

s′ Dss′ . In this spatial model, ρi ∈ [0,1] controls the
degree of spatial association and τ2i > 0 controls the magnitude of variation.
Let ri(s) = µi(s)−E(µi(s)). A convenient interpretation of the CAR prior is
that the conditional distribution of ri(s) given ri(s

′) for all s′ 6= s is normal
with mean ρir̄i(s) and variance τ2i /m(s), where r̄i(s) is the average of ri(s)
at location s’s m(s) neighbors.
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The degree of spatial variation is allowed to differ between patients by
means of σ2

ij , τ
2
i and ρi. To pool information across patients, we use models

σ−2
ij |cj , dj ∼Gamma(cj , dj),

τ−2
i |e, f ∼Gamma(e, f),(3)

ρi|g,h∼ Beta(g,h),

where {cj}, {dj}, e, f , g and h are hyperparameters.

2.2. Model for the location of missing teeth. For our data described in
Section 1, roughly 20% of the teeth are missing. The locations of the missing
teeth are not random, but rather related to the periodontal health in that
region of the mouth. Therefore, we propose a model for the location of
missing teeth as a function of the underlying latent factor µi(s).

For our data either the six observations on a tooth for all J responses are
all observed or all unobserved. That is, if a tooth is missing, we have no data
for the tooth, and if a tooth is not missing, we have complete data. Let y∗i0(t)
be an indicator of whether tooth t= 1, . . . , T is missing for patient i. As with
the binary data in Section 2, we model y∗i0(t) using probit regression. Let
y∗i0(t) = I(yi0(t)> 0), where yi0(t) is a latent continuous variable. Then

yi0(t) = a0 + b0Z
′

tµi + εi0(t),(4)

where Zt is such that Z ′

tµi is the mean of µi at the six observations on

tooth t and εi0(t)
i.i.d.
∼ N(0,1). a0 and b0 relate the latent process to the

missing tooth indicator. Note that since µi(s) is included in both the model
for presence of and value of the responses, both presence and value of the
data contribute to the posterior of µi(s), and thus the posterior of β. Also
note that bi0 = 0 corresponds to independence between the latent factor and
the location of missing teeth, in which case the location of missing teeth
does not contribute to estimating β.

2.3. Identifiability and prior choice. Identifiability is a key issue in latent
variable modeling. To see this, we inspect the first two moments of the
multivariate response at location s for patient i after integrating over the
latent factor µi,

E(yij(s)) = aj + bj[W (s)α+X′

iβ],
(5)

Cov(yij(s), yil(s)) = bjblτ
2
i q(s) + I(j = l)σ2

ij ,

where W (s) is the row of W corresponding to location s and q(s) is the (s, s)
diagonal element of Q(ρi)

−1. Identifiability concerns arise in both moment
expressions, as multiplying all of the slopes bj by scalar c and dividing α,
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β and τ2i by c gives identical moments. Although there are other ways to
address this issue, we fix b1 ≡ 1. This identifies both the regression coeffi-
cients α and β via the mean of the first response and the CAR variance τ2i
via the variance of the first response. In our analysis of periodontal data of
Section 6 we take the first response with fixed slope to be clinical attachment
loss, the most commonly used measure of periodontal disease. We also com-
pare these results with other baseline assignments and discuss sensitivity to
this assumption.

The regression coefficients {aj}, {bj} (j 6= 1), α and β have independent
N(0,w2) priors. The hyperparameters {cj}, {dj}, e, f , g and h have inde-
pendent Gamma(u, v) priors. In the simulation study (Section 5) and data
analysis (Section 6) we take u= v = 0.1 and w = 10 to give vague yet proper
priors. We conduct a sensitivity analysis in Section 6 which shows that the
results are not sensitive to these priors for this large periodontal data set.

3. Influence diagnostics. Our primary interest is in the patient-level pa-
rameters β. In this complicated hierarchical Bayesian model, we would like
to identify the sources of data that are most informative about β. In this
section we develop diagnostics to determine which patients, spatial locations
and response types are the most influential. We assume no missing teeth,
that all responses are Gaussian, and that no covariates depend on space (W
is null). In this case the regression coefficients only affect the overall average
response for each patient, and a tempting simplification is to collapse data
over space and use each patient’s overall average as a scalar response. We
show that even in this case different areas of the mouth are more than less
informative, and that patients are weighted differently depending on their
spatial covariance parameters. This motivates the hierarchical spatial model
even in this simple case.

Integrating over latent effect µi, but conditioning on σ2
ij , τ

2
i , ρi, aj and

bj , the posterior for β is Gaussian with

COV(β) =

(

N
∑

i=1

wixix
′

i

)

−1

,

(6)

E(β) =

(

N
∑

i=1

wixix
′

i

)

−1 N
∑

i=1

wix
′

izi,

where

wi = τ−2
i 1′[Q(ρi)−Q(ρi)(δiIS +Q(ρi))

−1Q(ρi)]1,(7)

δi = τ2i
∑J

j=1 b
2
j/σ

2
ij , and

zi =
1

wi

1′Q(ρi)(δiIs +Q(ρi))
−1

J
∑

j=1

bjσ
−2
ij (yij − aj).
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Fig. 2. Panel (a) plots the spatial weights k(s) for various δ and ρ. “Maxillary” and
“Mandibular” refer to upper and lower jaws respectively, while “buccal” and “lingual” refer
to the cheek and the tongue sides of the teeth, respectively. The thin lines have ρ= 0.1, the
wide lines have ρ= 0.99; the solid lines have δ = 0.2, the dashed lines have δ = 5. Panel
(b) plots the patient weights wi for various δi, τi and ρi.

The posterior in (6) is equivalent to a weighted linear regression where each
patient contributes the scalar response zi and is weighted according to wi.
Analyzing zi and wi shows which sites, patients and outcomes contribute
the most to β’s posterior.

First we consider zi:

zi =
1

wi

1′[Q(ρi)(δiIs +Q(ρi))
−1]

J
∑

j=1

bj
σ2
ij

(yij − aj)

(8)

=
J
∑

j=1

bj
σ2
ij

[

S
∑

s=1

ki(s)(yij(s)− aj)

]

,

where the vector ki = 1′[Q(ρi)(δiIs +Q(ρi))
−1]/wi. Therefore, zi is a linear

combination of all the observations for patient i, with k(s) controlling the
relative weight of observations at location s and bj/σ

2
ij controlling the rela-

tive weight of response type j. Figure 2(a) plots k(s) (scaled to sum to S)
for four combinations of ρi and δi. Observations in the gaps between teeth
have the highest weight; these sites have the most neighbors and thus the
smallest prior variance. Observations in the back of the mouth and on the
sides of teeth get less weight.
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The patient weights wi are plotted as a function of ρi, δi and τi in Fig-
ure 2(b). The weight decreases with ρi and τ2i , and increases with δi (in-
versely related to error variances σ2

ij). That is, patients with little spatial

association and small variances τ2i and σ2
ij (and thus large δi) have the

most influence on β’s posterior. To search for overly-influential patients, we
compute the weights by evaluating (7) using posterior means ρ̂i, τ̂

2
i and

σ̂2
i1. However, the marginal posterior for β is not available in closed-form for

Section 6’s data with informative missing teeth and binary responses. There-
fore, we use only the CAL error variance σ̂2

i1, that is, δi = τ̂2i /σ̂
2
i1 (b1 = 1,

Section 2.3), as an approximation. This approximation is not meant to be
definitive, but rather a useful heuristic device.

4. MCMC sampling algorithm. MCMC sampling is carried out using the
free software R (http://www.r-project.org/), although it would also be
straightforward to implement the model using WinBUGS
(http://www.mrc-bsu.cam.ac.uk/bugs/). Sample code to analyze a sin-
gle continuous response is available in the supplemental article [Reich and
Bandyopadhyay (2009)]. We draw 20,000 MCMC samples and discard the
first 5000 as burn-in. Convergence is monitored using trace plots of the de-
viance as well as several representative parameters.

The patient-specific parameters are conditionally-conjugate except for the
CAR spatial association parameters ρi, which are updated using Metropolis–
Hastings sampling with a Beta(50ρ∗i ,50(1−ρ∗i )) candidate distribution, where
ρ∗i is the value at the previous iteration. The remaining parameters are
updated using Gibbs sampling with full conditionals given below. The la-
tent continuous variables corresponding to the probit model for binary re-
sponses, yij(s), are updated from their truncated full conditionals yij(s)∼
N(aj + bjµi(s),1), restricted to (−∞,0) if y∗ij(s) = 0 and (0,∞) if y∗ij(s) = 1.
The vector of latent effects for patient i, µi, is multivariate normal with

V (µi| rest)
−1 = Z′Zb20 +Q(ρi)/τ

2
i +

(

J
∑

j=1

b2j/σ
2
ij

)

In,

E(µi| rest) = V (µi| rest)

(

b0Z
′(y0i − a0)

+Q(ρi)(Wα+Ωiβ)/τ
2
i +

J
∑

j=1

bj(yij − aj)/σ
2
ij

)

,

where Z = (Z1, . . . ,ZT ), yij = (yij(1), . . . , yij(S)) and yi0 = (yi0(1), . . . ,
yi0(T )). The measurement error variances for the continuous responses have

http://www.r-project.org/
http://www.mrc-bsu.cam.ac.uk/bugs/
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full conditional

σ2
ij | rest∼ InvGamma

(

S/2 + cj ,

S
∑

s=1

(yij(s)− aj − bjµi(s))
2/2 + dj

)

,

(9)
τ2j | rest∼ InvGamma(S/2 + e,r′iQ(ρi)ri/2 + f),

where ri = µi −Wα−Ωiβ.
The intercept/slope pairs (aj , bj) have bivariate normal full conditionals

with mean

V ((aj , bj)
′| rest)−1 = w−2I2 +

N
∑

i=1

∆′

i∆i/σ
2
ij ,

E((aj , bj)
′| rest) = V ((aj , bj)

′| rest)

(

N
∑

i=1

∆′

iyij/σ
2
ij

)

,

where ∆i = (1,µi). The regression coefficients α and β have multivariate
normal full conditionals with

V (α| rest)−1 =w−2Ips +
N
∑

i=1

W ′Q(ρi)W/τ2i ,

E(α| rest) = V (βs| rest)X
′

s

N
∑

i=1

Q(ρi)(µi −Ω′

iβ)/τ
2
i

and

V (β| rest)−1 = w−2Ip +

N
∑

i=1

Ω′

iQ(ρi)Ωi/τ
2
i ,

E(β| rest) = V (β| rest)

N
∑

i=1

Ω′

iQ(ρi)(µi −Wα)/τ2i .

The remaining parameters {cj}, {dj}, e, f and g are updated using Metropo-
lis sampling with Gaussian candidate distributions tuned to give acceptance
ratios near 0.40.

5. Simulation study. In this section we conduct a simulation study to
demonstrate the effects of spatial correlation and informative missingness
on the analysis of patient-level fixed effects. For computational purposes we
assume only one quadrant (i.e., half jaw) for each patient leaving S = 42,
that there are no spatial covariates W , and the same CAR spatial association
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parameter for each patient, that is, ρi = ρ. We also assume there is only a
single continuous response. Data are generated from the model

P (yi(s) = observed) = 1−Φ(a0 + b0µi(s)),
(10)

yi(s)|yi(s) observed ∼N(a1 + b1µi(s), σ
2
i ),

where µi ∼ N([x′iβ]1S , τ
2
i Q

−1(ρ)). Each simulated data set contains data
generated from this model for N = 50 patients. The p = 6 patient-level
covariates xi are generated independently from the standard normal dis-
tribution and the regression coefficients are β = (0,0,0,1,2,3)/20. Finally,
a1 = b1 = 1 and a0 =−1.

M = 100 data sets are generated from each of six designs specified by
varying the true value of the covariance parameters σ2

i , τ
2
i and ρ and the

missing data mechanism b0:

• Design 1 : ρ= 0.0, b0 = 0 and σ2
i = τ2i = 1,

• Design 2 : ρ= 0.9, b0 = 0 and σ2
i = τ2i = 1,

• Design 3 : ρ= 0.9, b0 = 0 and σ2
i = τ2i = 1.5*I(i is odd)+ 0.5,

• Design 4 : ρ= 0.9, b0 = 1 and σ2
i = τ2i = 1,

• Design 5 : ρ= 0.9, b0 = 1 and σ2
i = τ2i = 1.5*I(i is odd)+ 0.5,

• Design 6 : ρ= 0.5, b0 = 1 and σ2
i = τ2i = 1.5*I(i is odd)+ 0.5.

Observations within patients are independent under the first design and
spatially correlated under all other designs. The variances are the same for
all patients under Design 2 and vary across patients for Design 3. Designs 4
and 5 are similar to Designs 2 and 3, except that the locations of missing
observations are informative with b0 = 1. Design 6 is the same as Design 5,
except with moderate spatial association ρ= 0.5.

We analyze each simulated data set using five models:

• Model 1 : Linear regression, ȳi =
∑

s∈Si
yi(s)/|Si| ∼N(x′iβ,σ

2),
• Model 2 : Section 2’s spatial model without informative missingness or

patient-specific variances, that is, b0 = 0, σ2
i = σ2 and τ2i = τ2,

• Model 3 : Section 2’s spatial model with patient-specific variances but
without informative missingness, that is, b0 = 0,

• Model 4 : Section 2’s spatial model with informative missingness but with-
out patient-specific variances, that is, σ2

i = σ2 and τ2i = τ2,
• Model 5 : Section 2’s full spatial model,

where Si in Model 1 is the set of locations of observed data for patient
i. Model 1 ignores spatial associations and missing teeth, and simply uses
each patient’s average observed response in a multiple regression. Models 2–5
explicitly model all observations individually and account for spatial associ-
ations between nearby observations.
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Table 1

Simulation study results. Column labels “b0”–“β6” give the proportion of 95% intervals
that exclude zero. The Monte Carlo standard errors (not shown) are between 0.007 and

0.045 for 100*MSE and between 0.003 and 0.006 for the bias

Design Model b0 β1 β2 β3 β4 β5 β6 100
∗

MSE RelBias6

1 1 – 0.06 0.05 0.03 0.29 0.85 1.00 0.103 0.022
2 – 0.05 0.07 0.04 0.34 0.86 1.00 0.103 0.021
3 – 0.05 0.06 0.04 0.35 0.86 1.00 0.104 0.022
4 0.10 0.05 0.05 0.03 0.35 0.85 1.00 0.104 −0.001
5 0.12 0.06 0.05 0.04 0.35 0.83 1.00 0.106 0.006

2 1 – 0.03 0.04 0.01 0.13 0.52 0.80 0.289 0.042
2 – 0.03 0.05 0.02 0.15 0.56 0.80 0.287 0.034
3 – 0.03 0.03 0.03 0.17 0.48 0.79 0.298 0.045
4 0.06 0.03 0.06 0.01 0.16 0.52 0.83 0.285 0.037
5 0.06 0.03 0.05 0.01 0.16 0.46 0.81 0.297 0.043

3 1 – 0.03 0.07 0.04 0.12 0.31 0.51 0.657 0.077
2 – 0.04 0.08 0.08 0.13 0.31 0.52 0.655 0.072
3 – 0.09 0.09 0.07 0.36 0.69 0.95 0.181 0.027
4 0.08 0.03 0.08 0.09 0.12 0.31 0.56 0.653 0.077
5 0.08 0.09 0.12 0.08 0.39 0.68 0.96 0.178 0.034

4 1 – 0.04 0.08 0.05 0.14 0.43 0.70 0.266 −0.150
2 – 0.06 0.05 0.07 0.16 0.43 0.76 0.267 −0.146
3 – 0.04 0.06 0.06 0.18 0.42 0.72 0.265 −0.141
4 1.00 0.04 0.10 0.04 0.18 0.58 0.89 0.278 0.048
5 1.00 0.02 0.06 0.05 0.19 0.58 0.86 0.267 0.026

5 1 – 0.05 0.04 0.08 0.07 0.19 0.26 0.780 −0.229
2 – 0.11 0.07 0.12 0.15 0.26 0.34 0.725 −0.217
3 – 0.12 0.11 0.18 0.31 0.67 0.89 0.221 −0.075
4 1.00 0.06 0.10 0.09 0.16 0.46 0.71 0.693 0.187
5 1.00 0.06 0.09 0.08 0.29 0.66 0.94 0.193 0.023

6 1 – 0.06 0.04 0.07 0.10 0.28 0.47 0.409 −0.200
2 – 0.16 0.11 0.12 0.18 0.43 0.66 0.383 −0.191
3 – 0.07 0.09 0.11 0.45 0.89 1.00 0.086 −0.062
4 1.00 0.09 0.07 0.11 0.30 0.76 0.97 0.279 0.130
5 1.00 0.06 0.07 0.08 0.61 0.96 1.00 0.070 0.024

The results are presented in Table 1. For each model and each design,

we calculate the proportion of the 95% posterior intervals for b0 and the

regression coefficients that exclude zero. We also compute the mean squared

error and relative bias, MSE= 1
pM

∑M
m=1

∑p
j=1(β̂

(m)
j − βj)

2 and RelBiasj =

1
M

∑M
m=1(β̂

(m)
j −βj)/βj , where β̂

(m)
j is the posterior mean of βj for the mth

simulated data set and βj is the true value. Relative bias is only presented

for the largest coefficient, β6.
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Data for the first design are generated without spatial association or infor-
mative missingness. In this case all five models give nearly identical results,
demonstrating that the spatial models are able to approximate the simple
regression model if appropriate. The five models are also nearly identical for
Design 2 where the data are generated with spatial correlation and the same
variances for each patient. In this case the patient means ȳi are Gaussian
with mean a1 + x′iβ and the same variances, satisfying the usual regression
assumptions.

The linear regression model does not perform well for Design 3’s spatial
model with patient-dependent variances. In this case the patient means ȳi
have different variances, violating the usual regression assumptions. The spa-
tial models that allow for patient-dependent variances (Models 3 and 5) give
dramatic improvements in both power and mean squared error compared to
the homoskedastic models.

The locations of missing observations are informative for Designs 4, 5
and 6. For these two designs the models (Models 1–3) that do not account
for informative missingness are biased for β6. The models that allow for
informative location consistently identify b0 as nonzero (power 1.0 in all three
designs), which alleviates the bias for the nonnull predictors and improves
power. Design 5 has both informative missingness and patient-dependent
variances, common traits of periodontal data. In this case our full model is
more than three times more powerful for β6 (0.26 to 0.94) and has roughly
one fourth the mean squared error (0.193 to 0.780) of the usual nonspatial
regression approach.

6. Analysis of periodontal data. The motivating data were collected
from a clinical study [Fernandes et al. (2009)] conducted by the Center
for Oral Health Research (COHR) at the Medical University of South Car-
olina (MUSC). The relationship between periodontal disease and diabetes
level has been previously studied in the dental literature [Faria-Almeida,
Navarro and Bascones (2006), Taylor and Borgnakke (2008)]. The objective
of this study was to explore the relationship between periodontal disease
and diabetes level (determined by the popular marker HbA1c, or “glycosy-
lated hemoglobin”) in the Type-2 diabetic adult (13 years or older) Gullah-
speaking African-American population residing in the coastal sea-islands of
South Carolina. Since this is part of an ongoing study, we selected 199 pa-
tients with complete covariate information and with at least 50% responses
available.

For each patient CAL, PPD and BOP are measured at six locations on
each nonmissing tooth, as shown in Figure 1. Additionally, several patient-
level covariates were obtained, including age (in years), gender (1 = Female,
0 = Male), body mass index or BMI (in kg/m2), smoking status (1 = a
smoker, 0 = never) and HbA1c (1 = High, 0 = controlled). We also include
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spatial covariates for the site in the gap between teeth (1 = in the gap,
0 = on the side of a tooth), jaw (1 = maxilla, 0 = mandible) and six tooth
number indictors with the first tooth (front of the mouth, Figure 1) serving
as the reference tooth. All covariates are standardized to have mean zero
and variance one. The spatial adjacency structure is shown in Figure 1; we
consider neighboring sites on the same tooth as well as neighboring sites on
the consecutive teeth to be adjacent.

We begin by fitting several models with the same variances for all pa-
tients, that is, σ2

ij = σ2
j , τ

2
i = τ2 and ρ2i = ρ2. We fit four models by assuming

spatial association (ρ∼Unif[0,1]) and independence (ρ= 0), and assuming
missing teeth are informative (b0 6= 0) and not informative (b0 = 0). Table 2
gives posterior 95% intervals for several parameters. The slopes bj for pocket
depth and bleeding on probing (as described in Section 2.3, slope for attach-

Table 2

Posterior 95% intervals for models assuming variances σ2
ij and τ 2

i are constant across
patients. “Spatial” models take ρ 6= 0 and models with informative missing teeth (“Info

missing”) have b0 6= 0

Spatial No No Yes Yes
Info missing No Yes No Yes

Age (−0.002, 0.022) (0.009, 0.033) (0.000, 0.079) (0.036, 0.115)
Female (−0.129, −0.104) (−0.128, −0.103) (−0.181, −0.103) (−0.173, −0.096)
BMI (−0.016, 0.007) (−0.014, 0.011) (−0.048, 0.030) (−0.033, 0.046)
Smoker (0.028, 0.051) (0.028, 0.051) (0.014, 0.091) (0.010, 0.088)
Hba1c (0.114, 0.139) (0.118, 0.143) (0.123, 0.199) (0.128, 0.207)

a0: missing – (−1.390, −1.239) – (−1.349, −1.172)
a1: CAL (1.008, 1.052) (1.021, 1.087) (0.993, 1.112) (1.002, 1.139)
a2: PPD (1.015, 1.055) (1.034, 1.101) (1.092, 1.214) (1.104, 1.139)
a3: BOP (−0.369, −0.323) (−0.359, −0.312) (−0.399, −0.327) (−0.394, −0.309)
b0: missing – (0.432, 0.513) – (0.434, 0.544)
b2: PPD (1.144, 1.178) (1.131, 1.160) (1.021, 1.047) (1.014, 1.043)
b3: BOP (0.473, 0.510) (0.475, 0.510) (0.510, 0.547) (0.434, 0.544)

ρ – – (0.972, 0.978) (0.972, 0.978)
τ (1.454, 1.499) (1.464, 1.508) (0.832, 0.870) (0.838, 0.874)
σ1: CAL (0.942, 0.961) (0.972, 0.978) (0.881, 0.900) (0.935, 0.953)
σ2: PPD (0.106, 0.182) (0.177, 0.219) (0.454, 0.486) (0.464, 0.493)

Tooth 2 (−0.027, 0.038) (−0.038, 0.034) (−0.063, 0.027) (−0.072, 0.022)
Tooth 3 (0.037, 0.101) (0.022, 0.091) (−0.007, 0.106) (−0.025, 0.100)
Tooth 4 (0.174, 0.241) (0.179, 0.253) (0.106, 0.242) (0.138, 0.275)
Tooth 5 (0.237, 0.306) (0.263, 0.339) (0.214, 0.369) (0.296, 0.451)
Tooth 6 (0.751, 0.825) (0.849, 0.932) (0.597, 0.773) (0.853, 1.037)
Tooth 7 (0.866, 0.954) (0.955, 1.048) (0.597, 0.773) (0.986, 1.151)
Gap (0.953, 1.001) (0.938, 0.994) (0.992, 1.030) (0.986, 1.022)
Maxilla (−0.289, −0.246) (−0.293, −0.247) (−0.376, −0.235) (−0.363, −0.211)
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ment loss is fixed at one) are significantly positive for all models, suggesting
strong positive associations between the three responses. Several covariates
are significant for all models, including patient effects gender, smoking sta-
tus and HbA1c status, indicators of a site in the gap between teeth and a
site on the upper jaw, and several tooth number indictors with sites in the
back of the mouth having higher mean responses.

The slope relating the latent spatial process with the probability of a miss-
ing tooth, b0, is also significantly positive. This matches the intuition that
patients with poor periodontal health generally have more missing teeth.
Figure 3 plots the data and fitted values for a typical patient to illustrate the
effects of accounting for informative missing teeth. This plot compares the
spatial models with b0 set to zero (solid lines) and b0 not set to zero (dashed
lines). The posterior means [Figure 3(a)–(c)] and credible sets [3(d)] are
nearly identical for observations on nonmissing teeth. However, for missing
teeth the fitted values for all three responses are larger (worse periodontal
health) when accounting for informative observation location.

Accounting for informative observation location also affects the patient
effect for age. The 95% interval ignoring spatial association and informative
observations location is (−0.002, 0.022), compared to (0.036, 0.115) for the
full model. The measures of periodontal disease are cumulative, so it seems
reasonable that age should be an important predictor. Our data show a
relationship between age and the number of missing teeth; patients that
are younger than 54 (the mean age) have an average of 135.8 (sd = 20.1)
observations and patients that are older than 54 have an average of 124.7
(sd = 22.2) observations. By accounting for this relationship, we identify age
as a significant predictor of periodontal health.

Section 5’s simulation study shows that the fixed effects can also be af-
fected if patients have different spatial covariances. To explore this possibility
for our periodontal data, we apply Section 2’s model with variances σ2

ij and

τ2i varying across patients. Figure 4(a) and (b) summarize the posteriors of
the variance parameters. Here we see considerable variation across patients;
Figure 4(b) shows that the posterior 95% intervals for τi are nonoverlapping
for patients with small and large τi.

Section 3’s wi diagnostic in (7) indicates which patients are the most
influential on the regression coefficients. The wi (computed using only the
CAL error variance) have median 28.0 and vary greatly across patients with
95% interval (5.8, 61.7). Figure 4(c) and (d) plot CAL for the patients with
the smallest and largest wi. The responses for the patient with smallest wi

vary considerably from site-to-site within the mouth, with attachment loss
ranging from 0 to 11 mm. Information about the patient-level covariates
accumulate via the mean of the latent parameters µi; due to spatial vari-
ability, the mean is quite uncertain for this patient and, thus, this patient
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Fig. 3. Panels (a)–(c) plot the data (dots) and posterior mean of the expected response
(lines) for a typical patient. Panel (d) plots the posterior mean (bold) and 95% interval
(thin) for the latent spatial process µ(s). All plots include results for both the model with
(dashed line) and without (solid line) informative observation location. “Maxillary” and
“Mandibular” refer to upper and lower jaws respectively, while “buccal” and “lingual” refer
to the cheek and the tongue sides of the teeth, respectively.

provides little information about β. In contrast, the patient with largest wi

is stable from site-to-site, providing reliable information the mean of µi and

thus about β.
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Fig. 4. Panel (a) gives the posterior medians of the patient-specific standard deviations
(τi, σij) for attachment loss, and panel (b) plots the posterior of the CAR standard devi-
ations τi (the horizontal lines in the ith column are the posterior 0.025, 0.25, 0.5, 0.75
and 0.975 quantiles for τi). Panels (c) and (d) plot the attachment loss for the patients
with smallest and largest weights wi, respectively. “Maxillary” and “Mandibular” refer to
upper and lower jaws, respectively, while “buccal” and “lingual” refer to the cheek and the
tongue sides of the teeth, respectively.

Table 3 gives the 95% posterior intervals for several parameters from

the model with patient-dependent variances. Comparing the spatial models

with informative missingess, the results for the patient-level covariates are

fairly similar for the models with and without patient-dependent variances

(i.e., the final columns of Tables 2 and 3). However, we note that the width
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Table 3

Posterior 95% intervals for models assuming variances σ2
ij and τ 2

i vary across patients.
“Spatial” models take ρ 6= 0 and models with informative missing teeth (“Info missing”)

have b0 6= 0

Spatial No No Yes Yes
Info missing No Yes No Yes

Age (−0.019, 0.007) (−0.013, 0.013) (−0.002, 0.057) (0.023, 0.086)
Female (−0.114, −0.086) (−0.115, −0.087) (−0.159, −0.096) (−0.168, −0.104)
BMI (−0.008, 0.019) (−0.006, 0.020) (−0.015, 0.040) (−0.009, 0.050)
Smoker (0.038, 0.062) (0.037, 0.061) (0.021, 0.078) (0.019, 0.075)
Hba1c (0.089, 0.114) (0.090, 0.118) (0.095, 0.155) (0.106, 0.171)

a0: missing – (−1.154, −1.004) – (−1.201, −1.040)
a1: CAL (0.859, 0.921) (0.851, 0.930) (0.855, 0.942) (0.892, 0.989)
a2: PPD (0.899, 0.960) (0.889, 0.966) (0.920, 1.012) (0.958, 1.058)
a3: BOP (−0.425, −0.373) (−0.424, −0.370) (−0.482, −0.414) (−0.464, −0.394)
b0: missing – (0.265, 0.378) – (0.294, 0.410)
b2: PPD (1.002, 1.014) (1.001, 1.014) (1.017, 1.036) (1.013, 1.031)
b3: BOP (0.462, 0.499) (0.463, 0.498) (0.518, 0.559) (0.521, 0.560)

ρ – – (0.954, 0.962) (0.958, 0.965)
Tooth 2 (−0.051, 0.010) (−0.050, 0.019) (−0.054, 0.023) (−0.063, 0.016)
Tooth 3 (0.022, 0.081) (0.021, 0.086) (0.007, 0.105) (−0.009, 0.095)
Tooth 4 (0.183, 0.246) (0.190, 0.258) (0.138, 0.251) (0.141, 0.254)
Tooth 5 (0.307, 0.374) (0.318, 0.391) (0.267, 0.385) (0.291, 0.412)
Tooth 6 (0.776, 0.850) (0.825, 0.909) (0.634, 0.763) (0.753, 0.899)
Tooth 7 (0.854, 0.940) (0.902, 0.991) (0.630, 0.769) (0.782, 0.938)
Gap (0.887, 0.929) (0.886, 0.932) (0.894, 0.926) (0.890, 0.922)
Maxilla (−0.280, −0.241) (−0.278, −0.238) (−0.305, −0.208) (−0.301, −0.201)

of the credible intervals are smaller for the model with patient-dependent
variances.

Finally, we conducted a sensitivity analysis to determine the effect of mod-
eling assumptions for the full spatial model with patient-dependent variances
and informative observation location. We modified the analysis by changing
the reference group with slope bj fixed to one from CAL to PPD and BOP,
changing the hyperparameters u= v = 0.1 to u= v = 0.0001, and changing
the hyperparameter w = 10 to w = 1000. The posterior 95% intervals are
given in Table 4 for the patient effects, scaled by b1 for comparison across
reference group. The modification with the largest effect is changing the
reference group from CAL to BOP. The patient level effects are generally
closer to zero using BOP as the reference group. Despite this change in scale,
the signs of the coefficients and the subset of coefficients with intervals that
exclude zero remains the same as the original analysis.

Also, we consider modifying the adjacency structure shown by the gray
lines in Figure 1 (“spatial grid 1”) in two ways: first by not considering sites
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Table 4

Posterior 95% intervals for the patient effects for various modeling/prior choices for the
full model with spatial correlation, patient dependent variance and informative

observation location. “Ref group” refers to the response that has slope bj fixed to one,
“u, v” and “w” are the hyperparameters for the covariance parameters and regression
coefficients, respectively, as described in Section 2.3. To facilitate comparison across

reference groups, the intervals for β/b1 are presented

Ref group CAL PPD BOP CAL
u, v 0.1 0.1 0.1 0.001

w 10 10 10 10

Spatial grid 1 1 1 1

Age (0.023, 0.086) (0.025, 0.088) (0.007, 0.079) (0.039, 0.110)
Female (−0.168, −0.104) (−0.175, −0.108) (−0.052, −0.031) (−0.169, −0.097)
BMI (−0.009, 0.050) (−0.012, 0.052) (−0.003, 0.015) (−0.015, 0.054)
Smoker (0.019, 0.075) (0.020, 0.077) (0.005, 0.023) (0.009, 0.075)
Hba1c (0.106, 0.171) (0.110, 0.174) (0.033, 0.054) (0.122, 0.190)

Ref group CAL CAL CAL
u, v 0.1 0.1 0.1

w 1000 10 10

Spatial grid 1 2 3

Age (0.039, 0.109) (0.023, 0.068) (0.038, 0.105)
Female (−0.174, −0.096) (−0.150, −0.103) (−0.167, −0.097)
BMI (−0.017, 0.050) (−0.009, 0.035) (−0.011, 0.054)
Smoker (0.009, 0.076) (0.024, 0.067) (0.010, 0.074)
Hba1c (0.119, 0.191) (0.117, 0.164) (0.111, 0.176)

on the opposite side of a tooth to be neighbors (“spatial grid 2”) to give
independent AR(1) models to the sites on the buccal and lingual sides of
each jaw, and second by considering all pairs of observations on the same
tooth to be neighbors (“spatial grid 3”). To determine how well each of
these spatial grids fit our data, we use the deviance information criteria
(DIC) of Spiegelhalter et al. (2002). To compare spatial structures using
DIC, we analyze only a single continuous response, CAL, and do not consider
informative missing teeth. DIC prefers grid 1 (DIC = 66,128) over grids 2
(DIC = 68,168) and 3 (DIC = 68,562). Table 4 gives the posterior of the
subject-level effects for the full data analysis using the three spatial grids;
the results are not sensitive to the choice of spatial structure.

7. Discussion. In this paper we develop a latent factor model for mul-
tivariate spatial periodontal data with a mix of binary and continuous re-
sponses. Our model allows for a different spatial covariance for each patient
and for informative missing teeth. We show using simulated and real data
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that accounting for these factors leads to a substantial improvement for

estimating covariate effects compared to standard regression techniques.

We have assumed throughout that the patient’s periodontal health can be

captured by a single latent factor. It would be straightforward, conceptually

if not computationally, to include more latent factors. However, this leads

to the problem of selecting the appropriate number of latent factors, inter-

preting the roles of the different latent factors, and understanding the effects

of the covariates on the different latent factors. For these data with three

strongly-correlated responses we prefer the single factor model for compu-

tational simplicity and interpretability. If multiple factors are allowed, the

number of factors could be chosen using the deviance information criteria.

Another approach would be to allow the number of factors to be unknown.

Lopes, Salazar and Gamerman (2008) and Salazar, Gamerman and Lopes

(2009) use reversible jump MCMC to account for uncertainty in the number

of latent factors. Extending this approach to our setting may be complicated

by the large number of subjects, since the proposal density would have to

propose spatial models that simultaneously fit well for all 199 subjects. An-

other possibility would be to extend the parameter expansion method of

Ghosh and Dunson (2008) to the spatial setting.

We have also assumed that the latent spatial process is Gaussian. For

nonspatial data several authors have proposed methods that avoid assuming

the shared random effects are Gaussian [Lin et al. (2000), Song, Davidian

and Tsiatis (2002), Beunckens et al. (2008), Tsonaka, Verbeke and Lesaffre

(2009)]. These approaches could be extended to the periodontal setting by

replacing the Gaussian spatial model with a non-Gaussian spatial model

[e.g., Gelfand, Kottas and MacEachern (2005), Griffin and Steel (2006),

Reich and Fuentes (2007)].

An area of future work is to apply this method to longitudinal periodontal

data. Periodontal data is often collected repeatedly for a single patient over

time to monitor disease progression. Reich and Hodges (2008) propose a

spatiotemporal model for attachment loss. It should be possible to extend

this model to accommodate mixed multivariate responses and informative

missing teeth.
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SUPPLEMENTARY MATERIAL

Computer code (spatial factor.R) (DOI: 10.1214/09-AOAS278SUPP; .R).
In the supplemental file, we include R code to analyze a single continuous
response with informative missingness. Use of the code is described in the
file and is illustrated with an analysis of a simulated data set.
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