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Abstract

We consider heteroscedastic nonparametric regression models, when

both the mean function and variance function are unknown and to

be estimated with nonparametric approaches. We derive convergence

rates of posterior distributions for this model with different priors, in-

cluding splines and Gaussian process priors. The results are based on

the general ones on the rates of convergence of posterior distributions

for independent, non-identically distributed observations, and are es-

tablished for both of the cases with random covariates, and determin-

istic covariates. We also illustrate that the results can be achieved for

all levels of regularity, which means they are adaptive.

1 Introduction

The posterior distribution is said to be consistent if the posterior probability
of any small neighborhood of the true parameter value converges to one. In
recent years, many results, giving condition, under which the posterior dis-
tribution is consistent have appeared, especially under the situation that the
parameter spaces are in finite-dimensional. For example, Barron et al [1] gave
necessary and sufficient conditions for the posterior consistency , and results
were then specialized to weak and L1 neighborhoods from Kullback-Leibler
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neighborhoods. For details, we refer the reader to [1]; [2]; The consistency
of posterior distributions in nonparametric Bayesian inference has received
quite a lot of attention ever since 1986, when Diaconis and Freedman gave
counterexample to argue that Bayesian methods sometimes can not work.
On the positive side, consistency has been demonstrated on many models
[3, 4, 5, 6, 7, 8, 9, 10, 11]

In nonparametric Bayesian analysis, we have an independent sample
Y1, · · · , Yn from a distribution P0 with density p0 with respect to some mea-
sure on the sample space (Y ,B). The model space is denoted by P which is
known to contain the true distribution P0. Given some prior distribution Π
on P, the posterior is a random measure given by

Πn(A|Y1, · · · , Yn) =

∫

A
Πn

i=1p(Yi)dΠ(P )
∫

Πn
i=1p(Yi)dΠ(P )

.

For ease of notation, we will omit the explicit conditioning and write Π(A)
for the posterior distribution. We say that the posterior is consistent if

Πn(P : d(P, P0) > ǫ) → 0 in P n
0 probability,

for any ǫ > 0, where d is some suitable distance function between probability
measures.

Furthermore, issues of rates of convergence are of interests on. We say
the rate is at least ǫn if for a sufficiently large constant M

Πn(P : d(P, P0) > Mǫn) → 0 in P n
0 probability,

where ǫn is a positive sequence decreasing to zero. Ghosal and van der Vaart
[12]; presented general results on the rates of convergence of the posterior
measure , and [13] then generalized the results to case even the observations
are not i.i.d, which is useful for the model considered in this article.

For Bayesian nonparametric regression models, one of the common ap-
proaches is through the splines basis expansion for regression functions,
Ghosal and van der Vaart [12] gave the posterior consistency rate for regres-
sion model with unknown mean function and normal distributed error vari-
able with zero means and known variances σ2, using this approach. T.Choi
and M. Schervish[14] provided sufficient conditions for posterior consistency
in nonparametric regression problems with homogenous Gaussian errors with
unknown level by constructing tests that separate from the outside of the
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suitable neighborhoods of the parameter. Amewou-Atisso, Ghosal, Ghosh
and Ramamoorthi [15] presented a posterior consistency analysis for linear
regression problems with an unknown error distribution which is symmetric
about zero. Besides, both papers did not consider the rates of convergence.

In this paper, we give the convergence rates for heteroscedastic nonpara-
metric regression models, when we use nonparametric methods to estimate
the unknown variance function and the unknown mean function simultane-
ously. Besides, as in [2], we also deal with two types of covariates either
randomly sampled from a probability distribution or fixed in advance. When
the covariate values in one-dimensional, we use the approach of splines ba-
sis expansion for regression functions and give the convergence rate. For
high dimensional cases, we use rescaled smooth Gaussian fields as priors for
multidimensional functions to get the result.

Using Gaussian process in the context of density estimation is another
common approach in Bayesian nonparametric analysis. It is first used by
Leonard[16] and Lenk [17]. Recently, many results on posterior consistency
are induced by the Gaussian process prior, such as in [16], and [18]. Van
der Vaart and van Zanten [19] derived the rates of contraction of posterior
distributions on nonparametric or semiparametric models based on Gaus-
sian processes and showed that the rates depend on the position of the true
parameter associated with the reproducing kernel Hilbert space of the Gaus-
sian process and the small ball probabilities of the Gaussian process. With
rescaled smooth Gaussian fields as priors, they[20] extended the results to be
fully adaptive to the smoothness.

The rest of the paper is organized as follows. In Section 2, we describe the
regression model. In Section 3, we give the main results of the posterior con-
vergence rates with splines basis expansion approach and Gaussian process
approach. Section 4 contains proofs with some lemma left to the Appendix.
We discuss about the results and some directions on future work in section
5.

2 The model

We consider the heteoscedastic nonparametric regression model, where a ran-
dom response y corresponding to a covariate vector x taking values in a
compact set T ⊂ Rd, without loss of generality, we assume that T = [0, 1]d.
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To be specific, the regression model we consider here, is the following:

yi = η(xi) + V 1/2(xi)ǫi,

ǫi ∼ N(0, 1),

η(.) ∼ Π1,

f(.) = log V (.) ∼ Π2,

(1)

when η(.) is the mean function, and V (.) is the variance function. Let Θ(g)

be the abstract measure space where the function g(x) (g(x) indicates η(x),
or f(x)) belongs to, with respect to a common σ-finite measure. With the
assumption Θ(η) and Θ(f) are independent, we define the jointly parameter
space Θ the product space of Θ(η) and Θ(f). Since the parameter space is
infinite-dimensional, we consider a sieve Θn growing eventually to the space
of Θ,with Θ1 ⊆ · · · ,⊆ Θn ⊆ Θ and ∪Θn = Θ. We model the unknown
function η(.) and f(.) with suitable prior distributions Π

(η)
n and Π

(f)
n on their

parameter sieve spaces, respectively.

3 The main results

In this section, we give the rates of convergence of the nonparametric re-
gression model described in Section 1, The parameter is θ = (η, V ) with
θ0 = (η0, V0) being the true functions.

Let Pη,V be the distribution of y. To be specific, for our model

Pη,V (y|x) =
1

√

2πV (x)
exp(−(y − η(x))2

2V (x)
). (2)

We use d2n to denote the squares of the Hellinger distances. It means, for
random covariates and fixed covariates

d2n(Pη1,V1,Pη2,V2) =

∫ ∫

(P
1
2
η1,V1

−P
1
2
η2,V2

)2 dy dQ(x). (3)

For random covariates, Q(x) denotes the distribution function of x, and for
fixed covariates, it is the empirical probability measure of the design points,
which is defined byP x

n = n−1
∑n

i=1 δxi
.
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The Kullback-Leibler divergence and variance divergence of Pη1,V1 and
Pη2,V2 for fixed x are defined in the following way:

Kx(Pη1,V1 ,Pη2,V2) =

∫

Pη1,V1 log(
Pη1,V1

Pη2,V2

) dy;

V arx(Pη1,V1,Pη2,V2) =

∫

Pη1,V1 (log(
Pη1,V1

Pη2,V2

)−Kx(Pη1,V1 ,Pη2,V2))
2 dy.

(4)

For the specific model in section 2:

Kx(Pη1,V1,Pη2,V2) =
1

2
log

V2(x)

V1(x)
− 1

2
(1− V1(x)

V2(x)
) +

1

2

[η1(x)− η2(x)]
2

V2(x)
;

V arx(Pη1,V1 ,Pη2,V2) = 2[−1

2
+

1

2

V1(x)

V2(x)
]2 + [

V1(x)

V2(x))
[η1(x)− η2(x)]]

2.

(5)

Correspondently, the average Kullback-Leibler divergence and variance di-
vergence are in the forms of

K(Pη1,V1 ,Pη2,V2) =

∫

Kx(Pη1,V1,Pη2,V2) dQ(x);

V ar(Pη1,V1,Pη2,V2) =

∫

V arx(Pη1,V1,Pη2,V2) dQ(x).

(6)

In the remainder of the article, let ||.||n stand for the norm on L2(Q), ||.||∞
denotes the supreme norm .

3.1 Splines

In this section we give the convergence rates to prior distributions on spline
models for regression functions. We restrict ourselves to the one-dimensional
case here, though for higher dimensions case, tensor splines can be used.

The basic assumption for the true densities of the mean function and vari-
ance function is that they belong to the Hölder spaces Cα[0, 1] and Cγ[0, 1],
respectively, where α, γ > 0 could be fractional. The Hölder space Cα[0, 1]
is constructed by all functions that have α0 derivatives, with α0 being the
greatest integer less than α and α0th derivative being Lipschitz of order
α− α0.

Throughout this article, we fix an order q, which is a natural number
satisfied q ≥ max{α, γ}. A B-spline basis function of order q consists of q
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polynomial pieces of degree q−1, which are q−2 times continuously differen-
tiable throughout [0,1]. To approximate a function on [0,1], we partition the
interval [0,1] into Kn subintervals ((k − 1)/Kn, k/Kn] for k = 1, 2, · · · , Kn,
with {Kn} being a sequence of natural numbers increasing to infinity as n
goes to infinity. Each subinterval ((k − 1)/Kn, k/Kn] is approximated by a
polynomials of degree strictly less than q. The number of basis functions
needed is Jn = (q+Kn− 1). The basis functions can be denoted as Bj , with
j = 1, 2, · · ·Jn. Thus, the space of splines of order q is a Jn-dimensional linear
space, consisted by all functions from [0, 1] to R in form of g =

∑Jn

j=1 βjBj .

As in [13], the B-splines satisfy (i) Bj ≥ 0, j = 1, 2, · · ·Jn, (ii)
∑Jn

j=1Bj = 1,
(iii) Bj is supported inside an interval of length q/Kn and (iv) at most q of
B1, B2, · · · , BJn are nonzero at any given x.

We denote g= f or η, and put prior on g by a prior on β = (β1, · · · , βJn)
T ,

the spline coefficients, where g is represented as gβ(x) = βTB(x). Let Π
(g)
n be

priors induced by a multivariate normal distribution NJn(0, I) on the spline
coefficients.

We also assume the regressors are sufficiently regularly distributed, by
satisfying the condition expressed in the following term

J−1
n ||β||2 . βTΣβ . J−1

n ||β||2, (7)

where Σ = (
∫

BiBj d Q), ||.|| is the Euclidean norm on R
Jn .

Theorem 1. Assume that η0 ∈ Cα[0, 1], V0 ∈ Cγ[0, 1] for some α, γ ≥ 1
2
, V0

is away from 0, and (7) holds. Let Π
(η)
n and Π

(f)
n be priors of η and f both

induced by NJn(0, I) on the spline coefficients. If

Jn ∼ min{(n/ logn)1/(1+2α), n1/(2+2γ)},

then the posterior converges at the rate

ǫn ∼ max{(n/ logn)−α/(1+2α), n−γ/(2+2γ)},

relative to dn.

Usually, we can view Jn to be a sequence of random variables with a prior
distributions. It can be prove that the posterior can convergence at the same
rate.
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Corollary 1. Assume that η0 ∈ Cα[0, 1], V0 ∈ Cγ[0, 1] for some α, γ ≥ 1
2
,

V0 is away from 0, and (7) holds. Let Π
(η)
n and Π

(f)
n be priors of η and

f both induced by NJn(0, I) on the spline coefficients. Jn is a sequence of
geometric distributed random variables with successful probability pn satis-
fying pkn−1

n (1 − pn) = e−nǫ2n, with kn = ⌊min{(n/ logn)1/(2α+1), n1/(2+2γ)}⌋,
ǫn ∼ max{(n/ logn)−α/(1+2α), n−γ/(2+2γ)}.Then, the posterior convergence
rate is ǫn, relative to dn.

3.2 Gaussian process prior

For higher dimensional case, we employ prior distributions, constructed by
rescaling smooth Gaussian random field. Let Θ be C[0, 1]d, the space of all

continuous functions defined on [0, 1]d. As in [20], we set W (g) = (W
(g)
x : x ∈

R
d) to be a centered, homogeneous Gaussian random field with covariance

function of the form, for a given continuous function φ:

EW (g)
s W

(g)
t = φ(s− t).

To be specific, we choose W (g) = (W
(g)
x : x ∈ R

d) to be the squared ex-
ponential process, which is the centered Gaussian process with covariance
function

EW (g)
s W

(g)
t = exp(−||s− t)||2),

where ||.|| is the Euclidean norm on R
d.

Let A be a random variable defined on the same probability space as
W (g) and independent of W (g). Here we assume Ad possesses a Gamma dis-
tribution. W (g)A is used to denote the rescaled process x → WAx restricted
on [0, 1]d, which can be considered as a Borel measurable map in the space
C[0, 1]d, with the uniform norm ||.||∞, as showed in [20].

Theorem 2. Assume that η0 ∈ Cα[0, 1]d, V0 ∈ Cγ[0, 1]d for some α, γ ≥ 1
2
,

V0 is away from 0. We consider the prior on g is (g denotes f or η) W (g)A,
which is the restricted and rescaled squared exponential process with Ad a
Gamma distributed random variable. Then, the posterior converges at the
rate

ǫn = max{n−α/(d+2α)(log n)(d+1)α/(2α+d), n−γ/(d+2γ)(logn)(d+1)γ/(2γ+d)}

relative to dn.
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The proof can be found in Section 4. Also, this rate of contraction is not
minimax. By choosing a different prior for A, the power (d+1)α/(2α+ d) of
the logarithmic factor can be improved. Though the prior does not depend
on α and γ, the convergence rate is true for any level of α, and γ. In this
sense, it is rate-adaptive.

If we do not consider about the property of adaption or the regularity
levels are known, we can find the minimax rate by using proper priors.

Corollary 2. Assume that η0 ∈ Cα[0, 1], V0 ∈ Cγ[0, 1] for some α, γ ≥ 1
2
,

V0 is away from 0. For simplicity, we only consider the one-dimensional
situation for simplicity. We denote W (g) to be a standard Brownian motion
and Z0, · · ·Zkg independent standard normal random variables. We consider

the prior on g is the process x → I
kg
0+W

(g)
x +

∑kg
i=1 Zix

i/i!, where I0+W de-
notes x →

∫ x

0
W (x)dx, and Ik0+W denotes I10+(I

k−1
0+ W ). Then, the posterior

converges at the rate

max{n−α/(2kη+2), n−γ/2kf+2}

When γ = kf + 1/2 and α = kη + 1/2,

ǫn = max{n−α/(1+2α), n−γ/(1+2γ)}

which is the minimax rate.

This example shows, for the case α, and γ are known, we can use the
above specific Gaussian process prior to get the minimax rate. However, this
is not optimal for all level of α and γ, so other choice of kg will corresponds
to under-or-over-smoothed prior.

4 The proofs for the main results

In preparation for the proofs of the main results, we first collect some lemmas,
which are used to bound the average hellinger distance entropy, Kullback-
Leibler divergence and variance divergence with the L2 norm of the regression
functions.
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Lemma 1. The average hellinger distance entropy of the product space Θn

can be bounded by a multiple of the summation of ||.||n-entropy of Θ
(η)
n and

Θ
(f)
n , reminding that f = log V , which means

logN(3ǫ,Θn, dn) . logN(ǫ/eNn ,Θ(η)
n , ||.||n) + logN(ǫ,Θ(f)

n , ||.||n). (8)

With this lemma, the ǫ-covering number relative to dn-metric can be es-
timated that with relative to L2-metric.

Lemma 2. Under the assumption that both f1 and f2 are uniformly bounded
by a constant N,

K(Pη1,V1,Pη2,V2) ≤ (1 + e2N )(||η1 − η2||2n + ||(f1 − f2)||2n);
V ar(Pη1,V1 ,Pη2,V2) ≤ e4N(||η − η0||2n + ||f − f0||2n).

(9)

We use this lemma to estimate the prior concentration probability. The
proofs can be found in the Appendix.

4.1 Proof for theorem 1

We consider sieve Θn = Θ
(f)
n ×Θ

(η)
n where

Θ(f)
n = {fβ ∈ supp{Π(f)

n }, ||fβ|| ≤ Nn};

Θ(η)
n = {ηβ ∈ supp{Π(η)

n }, ||ηβ|| ≤ Mn},
where supp{Πn} means the support of Πn and Mn, Nn are sequence of
real numbers goes to infinity as n goes to infinity. Since we suppose η0 ∈
Cα[0, 1], V0 ∈ Cγ[0, 1], and V0 is away from 0, we have log V0 ∈ Cγ [0, 1], too.
By the Lemma 4.1 in [12], there exists some βη0 , βf0 ∈ R

Jn(dependent on n),
for the true density of f0 and η0, the basic approximation property of splines
are satisfied as

||βT
f0
B − f0||∞ ≤ AJ−γ

n ||f0||γ;
||βT

η0
B − η0||∞ ≤ A

′

J−α
n ||η0||α,

(10)

where A, and A
′

are constant.
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Under the assumption of (7) in Theorem 1, we can use Euclidean norms
on the spline coefficients to control the L2 distance of functions, since for all
β, β

′ ∈ R
Jn,

C−1||β − β
′|| ≤

√
J ||gβ − gβ′ ||n ≤ (C

′

)−1||β − β
′|| (11)

are satisfied for some constants C and C
′

.
We verify all the conditions of general results on rates of posterior con-

traction (e.g. Theorem 4 of [13] ), except that the local entropy in condition
(3.2) is replaced by the global entropy logN(ǫ,Θn, dn) without affection rates.
The parameter θ in Theorem 4 of [13] is (η, V ) with θ0 = (η0, V0).

We start from the estimation of entropy number. We project g0 onto
the Jn-dimensional space of splines and denote the projection function g

β
(n)
g
.

Using the property of projection combined with (11), we have that {β :

||gβ − g0||n ≤ ǫ} ⊂ {β : ||β − β
(n)
g || ≤ C

√
Jnǫ} for every ǫ > 0. For details,

please refer to [13]. Thus, we can use the C
√
Jnǫ-covering numbers relative

to Euclidean norm to bound the ǫ-covering number of the set {β : ||gβ−g0||n}
relative to L2 norm. Thus, we have

N(ǫ/3,Θ(η)
n , ||.||n) . N(C

√

Jnǫ,Θ
(η)
n , ||.||) . (

KMn

ǫn
)Jn, (12)

where K is a constant, η can be replaced by f with Mn replaced by Nn

together. So by lemma 1, the entropy condition logN(ǫ,Θn, dn) . nǫ2 is
satisfied, provided Jn logMn . nǫ2n, JnNn . nǫ2n and Jn log ǫ

−1
n . nǫ2n.

Then, we turn to estimate the prior concentration probability for the true
density, which is in form of

Πn(Bn((η0, f0), ǫn; 2)) =

{

(η, V ) : K(Pη,V ,Pη0,V0) ≤ ǫ2, V ar(Pη,V ,Pη0,V0) ≤ ǫ2
}

.

(13)
We denote N/2 to be ||f0||∞. Under the assumption that ||f ||∞ ≤ N and
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||f0||∞ ≤ N , when n is sufficiently large,

Πn(Bn((η0, f0), ǫn; 2))

≥
{

(η, V ) : K(Pη,V , Pη0,V0) ≤ ǫ2, V ar(Pη,V , Pη0,V0) ≤ ǫ2, ||f ||∞ < N

}

≥ Πn(||f − f0||2n + ||η − η0||2n ≤ e−4N ǫ2n, ||f ||∞ < N)

≥ Π(f)
n (f : ||f − f0||2n ≤ e−4N

2
ǫ2n, ||f ||∞ < N)× Π(η)

n (η : ||η − η0||2n ≤ e−4N

2
ǫ2n)

≥ Pr
βTB∈Θ

(f)
n

(β : ||β − β
(n)
f || ≤ e−2NC

′
√

Jnǫn, |β(n)
j | < N)

× Pr
βTB∈Θ

(η)
n

(β : ||β − β(n)
η || ≤ e−2NC

′
√

Jnǫn, |β(n)
j | < N)

≥ ( inf
β1∈[−2N,2N ]

φ(β1))
2V ol(β : ||β − β

(n)
f || ≤ e−2NC

′

ǫn)V ol(β : ||β − β(n)
η || ≤ e−2NC

′

ǫn)

& ǫ2Jnn

(14)

where vol denotes the volume in Euclidean space and inf
β1∈[−2N,2N ]

φ(β1) repre-

sents the infimum value of density function φ, which is the density function
of normal distribution, constrained on the open set [−2N, 2N ]. The second
inequality is derived from lemma 2. inf

β1∈(−2N,2N)
φ(β1) is a real number away

from zero, which can be derived from the facts that φ is nonzero at any point
belongs to R alone with its continuity, and [-2N, 2N] is a compact set in R.

To satisfy the entropy and the prior concentration conditions, it is neces-
sary that JnNn . nǫ2n, Jn logMn . nǫ2n, and Jn log ǫ

−1
n . nǫ2n together with

ǫn & 2J−ν
n , where ν = min{α, γ}. When we set Nn ∼ n1/(2ν+2), Mn ∼ n, all

conditions of above are satisfied, with

Jn ∼ min{(n/ logn)1/(1+2α), n1/(2+2γ)},

and
ǫn ∼ max{(n/ logn)−α/(1+2α), n−γ/(2+2γ)}.

The left is to get the condition on which the probability assigned by prior
to Θn complement is exponentially small. As we mentioned, ηβ = βTB(x) for

all x ∈ [0, 1]d, and |
∑Jn

j βjBj| ≤ maxJnj=1 |βj |. Then for tn > 0, by Markov’s
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inequality and Chernoff Bounds, we have

Pr
{

sup
x∈[0,1]

|
Jn
∑

j

βjBj | > Mn

}

≤ Jn exp
(

− tnMn +
1

2
t2n

)

2Φ(tn), (15)

where Φ is the standard normal distribution function. By taking tn = Mn,
we have

Pr
{

sup
x∈[0,1]

|
Jn
∑

j

βjBj | > Mn

}

. Jnexp
(

− M2
n

2

)

. (16)

With the Mn, Nn, Jn and ǫn defined as above, and n sufficiently large,

Jn exp
(

− M2
n

2

)

. exp
(

− nǫ2n

)

, (17)

and the formula replacing Mn with Nn are also satisfied. Thus,

Πn(Θ \Θn) ≤ Π(f)
n (Θ(f) \Θ(f)

n ) + Π(η)
n (Θ(η) \Θ(η)

n )

= Pr
{

sup
x∈[0,1]

|
Jn
∑

j

βjBj | > Mn

}

+ Pr
{

sup
x∈[0,1]

|
Jn
∑

j

βjBj | > Nn

}

. exp
(

− nǫ2n

)

.

(18)

The whole proof is completed.

Remark 1. When we generalize the priors of η and f , which are induced by
the spline coefficients, with some limitation, the convergence rate will stay
unchanged. We assume the same prior Π on each βj ∈ R, j = 1, · · · , Jn,
with density function d(βj) ∈ C[R] (the set of continuous functions), which
satisfies

Π(|βj| > M) . e−Mρ

;

d(βj = r) 6= 0 for any r ∈ R,
(19)

where ρ is a real number larger than 1. The normal distribution can be
viewed as a special case satisfying (19). Then, with ǫn, Mn Nn, and Jn

defined as above, 18 are not affected, since

Pr
{

sup
x∈[0,1]

|
Jn
∑

j

βjBj | > Mn(Nn, resp.))
}

. Jn exp
(

− Mρ
n

2

)

. exp
(

− nǫ2n

)

.

(20)
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The prior concentration probability estimation can also be bounded below
by a multiple of the volume of a Euclidean ball. Added with the fact that
priors does not affect the entropy, we finish showing that the convergence
rate can keep still when we generalize the priors.

4.2 Proof for corollary 1

The proof is almost the same with that for theorem 1. We consider the sieves
Θn = Θ

(f)
n ×Θ

(η)
n in the form of

Θ(f)
n = {fβ ∈ supp{Π(f)

n }, ||fβ|| ≤ Nn, Jn ≤ kn};

Θ(η)
n = {ηβ ∈ supp{Π(η)

n }, ||ηβ|| ≤ Mn, Jn ≤ kn},
where kn = ⌊min{(n/ logn)1/(2α+1), n1/(2+2γ)}⌋ and ⌊.⌋ denotes the Integral
part. With (12), the ǫn-entropy of Θn is bounded by a multiple of ( Mn

ǫne−Nn
)Jn×

(Nn

ǫn
)Jn, which have been proved to be always bounded by a multiple of enǫ

2

with Jn ≤ ⌊min{(n/ logn)1/(2α+1), n1/(2+2γ)}⌋, Mn ∼ n, Nn ∼ n1/(2γ+2)and
ǫn ∼ max{(n/ logn)−α/(1+2α), n−γ/(2+2γ)}.

The prior concentration probability (13) can be estimated in the form of

Πn(Bn((η0, f0), ǫ; 2))

=
kn
∑

k=1

Pr(Jn = k)Πn(Bn((η0, f0), ǫ; 2), Jn = k)

≥ Pr(Jn = kn)( inf
β1∈[−2N,2N ]

φ(β1))
2V ol(β : ||β − β

(n)
f || ≤ e−2NC

′

ǫ)V ol(β : ||β − β(n)
η || ≤ e−2NC

′

ǫ)

& Pr(Jn = kn)ǫ
2kn

With the assumption for pn and the fact that we have already proved ǫ2Jn &

e−nǫ2 with Jn ∼ min{(n/ logn)1/(1+2α), n1/(2+2γ)}, and ǫn ∼ max{(n/ logn)−α/(1+2α), n−γ/(2+2γ)}.
we can guarantee

pkn−1
n (1− pn)ǫ

2kn
n & e−nǫ2n.

13



We compute the probability of (Θ
(η)
n )c as following:

Πn((Θ
(η)
n )c)

=

kn
∑

k=1

Pr(Jn = k) Pr
{

sup
x∈[0,1]

|
k

∑

j

βjBj | > Mn

}

+

∞
∑

k=kn+1

Pr(Jn = k)

.

kn
∑

k=1

Pr(Jn = k)k exp
(

− M2
n

2

)

+

∞
∑

k=kn+1

Pr(Jn = k)

. kn exp
(

− M2
n

2

)

+

∞
∑

k=kn+1

Pr(Jn = k)

. e−nǫ2

We derive the last . through the facts that kn exp
(

− M2
n

2

)

. e−nǫ2, and the

assumption pkn−1
n (1− pn) = e−nǫ2n.

4.3 Proof for theorem 2

We denote κ to be α or γ. By theorem 3.1 in [20], there exists a Borel

measurable subset B
(g)
n of C[0, 1]d such that

Pr(||W (g)A − g0||∞ ≤ ǫn) > e−nǫ2n;

Pr(W (g)A /∈ B(g)
n ) ≤ e−4nǫ2n ;

logN(ǫn, B
(g)
n , ||.||∞) < K(g)nǫ2n,

(21)

hold, for every sufficiently large n, and ǫn = n−κ/2(κ+d)(log n)(d+1)κ/(2κ+d),
K(g) is a sufficiently large constant. As stated in [20], this power can be
improved by using a slightly different prior for A. Then, the final rate of
contraction will be improved, too, as which can be seen from the following
proof.

We set Θn in the following way. Denote Θ
(f)
n = {WA ∈ B

(f)
n , and ||WA||∞ ≤

Nn}. So, Θ
(f)
n increases to B

(f)
n as n increases to infinity. As we assumed,

{Nn} is a sequence of real numbers increasing to infinity. We choose Nn

satisfying
Pr(W (f)A ∈ B(f)

n )− Pr(WA ∈ Θ(f)
n ) ≤ e−4nǫ2n .

14



Then
Pr(WA /∈ D(f)

n ) ≤ 2e−4nǫ2n.

This can be achieved, since Pr(W (f)A ∈ Bn) goes to 1 and e−4nǫ2n goes to

zero. Then we set Θn = B
(η)
n ×Θ

(f)
n ⊂ C[0, 1]d × C[0, 1]d.

We start to verify all the conditions of general results on rates of posterior
contraction. First, we bound the average hellinger distance entropy of the
sieve of parameter space.

logN(ǫn,Θn, dn)

. logN(ǫn, B
(η)
n , ||.||n) + logN(ǫn,Θ

(f)
n , ||.||n)

≤ logN(ǫn/e
Nn , B(η)

n , ||.||∞) + logN(ǫn, B
(f)
n , ||.||∞)

≤ Knǫ2n.

The first . is from Lemma 1, the last ≤ is because of the third inequality of
(21).

To estimate the prior positivity, we still use Lemma 2. With the as-
sumption that ||f ||∞ ≤ Nn, and ||f0||∞ ≤ Nn, for sufficiently large n, we can
get

Πn(Bn((η0, f0), ǫn; 2)) ≥ Πn(||f − f0||2n + ||η − η0||2n ≤ e−4Nnǫ2n)

≥ Π(f)
n (f : ||f − f0||2n ≤ e−4Nn

2
ǫ2n)× Π(η)

n (η : ||η − η0||2n ≤ e−4Nn

2
ǫ2n)

≥ Pr(||W (f)A − f0||∞ ≤ e−2Nn

√
2

ǫn)× Pr(||W (η)A − η0|| ≤
e−2Nn

√
2

ǫ)

≥ e−2nǫ2n.

Thus, for Θn ⊂ C[0, 1]d × C[0, 1]d defined above, and

ǫn = max{n−α/(d+2α)(log n)(d+1)α/(2α+d), n−γ/(d+2γ)(log n)(d+1)γ/(2γ+d)},

we have proved

logN(ǫn,Θn, dn) ≤ 2Knǫ2n

Πn(Bn((η0, f0), ǫ; 2)) ≥ e−2nǫ2n

Πn((f, η) /∈ Θn) ≤ 3e−4nǫ2n.

The three assertions can be matched one-to-one with the assumption of
general results on rates of posterior contraction (e.g. Theorem 4 in [12]), so
the proof is completed.
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The proof Corollary 2 is almost the same, except that the value of ǫn is
given by Theorem 4.1 of [18].

5 Discussion

In this paper, we investigated the posterior convergence rate for heteroscedas-
tic nonparametric regression model with both mean function and variance
function unknown and nonparametric. We considered both of the cases with
random covariate x, and deterministic covariates. We also put the high-
dimensional case in consideration. Though the rates we gave are not the
minimax, they are only different with the optimal ones by a logarithmic fac-
tor. Besides, they are optimal for every regularity level. And we gave the
minimax rate under the condition with known regularity level.

Whether the logarithmic factor of the posterior convergence rate is neces-
sary for unknown regularity level is not known. To investigate this problem,
other kinds of priors must be used, since as van der Vaart and van Zanten
have conjectured in [20], the logarithmic factor is necessary with the rescaled
Gaussian random field prior, and our current method used in the section of
splines cannot give the desired result, either.

6 Appendix A. Proof of Lemma 1

By applying the inequalities 2−2ab ≤ 2−2a+2−2b, when a ≤ 1 and b ≤ 1,
together with 1 − e−x ≤ x for x ≥ 0, and 1 − 2x

x2+1
≤ (2 log x)2 for all the x,

we have

2− 2exp(− (η1(x)− η2(x))
2

4(V1(x) + V2(x))
)×

√

2
√

V1(x)V2(x)

V1(x) + V2(x)

≤ 2(1−

√

2
√

V1(x)V2(x)

V1(x) + V2(x)
) + 2(1− exp{− (η1(x)− η2(x))

2

4(V1(x) + V2(x))
})

≤ 2(log(
V1(x)

V2(x)
)2 + 2

(η1(x)− η2(x))
2

4(V1(x) + V2(x))
.
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Thus ,we have

d2(Pη1,V1,Pη2,V2) =

∫ ∫

(P
1
2
η1,V1

− P
1
2
η2,V2

)2 dy dQ

≤ 2

∫

(log(
V1(x)

V2(x)
)2 + 2

(η1(x)− η2(x))
2

4(V1(x) + V2(x))
) dQ

held, which is followed by the result

logN(3ǫ,Θn, dn) . logN(ǫ/eNn ,Θ(η)
n , ||.||n) + logN(ǫ,Θ(f)

n , ||.||n).
provided ||Vi|| > e−Nn , i = 1, 2.

7 Appendix B. Proof of Lemma 2

For the Kullback-Leibler divergence, we have,

Kx(Pη1,V1 ,Pη2,V2) =
1

2
log

V2

V1
− 1

2
(1− V1

V2
) +

1

2

[η1(x)− η2(x)]
2

V2(x)

=
1

2
|(f2(x)− f1(x))−

1

2
(1− ef1(x)−f2(x))|+ 1

2

[η1(x)− η2(x)]
2

V (x)
.

We know that, for |z| ≤ 2N,

|z − 1 + e−z| ≤ |z|+ |e−z − 1| ≤ (e2N + 1)|z|;
when z ≥ 1,

(e2N + 1)|z| ≤ (e2N + 1)z2,

when z ≤ 1

|z − 1 + e−z| ≤
∞
∑

n=2

zn/2 ≤ |z|2/2
1− |z| ≤ (e2N + 1)z2.

Thus:

K(Pη1,V1,Pη2,V2) ≤ (1 + e2N )(||η1 − η2||2n + ||(f1 − f2)||2n).
For the variance divergence, we have

V arx(Pη1,V1 ,Pη2,V2) = 2[−1

2
+

1

2

V1(x)

V2(x)
]2 + [

V1(x)

V2(x)
[η1(x)− η2(x)]]

2.

We can finish the proof with the inequality |1− ez|2 ≤ (e2N )2z2 for |z| ≤ 2N .
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