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Abstract 
 

An effective two-stage method for an estimation of parameters of the linear regression is conside-

red. For this purpose we introduce a certain quasi-estimator that, in contrast to usual estimator, pro-

duces two alternative estimates. It is proved that, in comparison to the least squares estimate, one 

alternative has a significantly smaller quadratic risk, retaining at the same time unbiasedness and 

consistency. These properties hold true for one-dimensional, multi-dimensional, orthogonal and 

non-orthogonal problems. Moreover, a Monte-Carlo simulation confirms high robustness of the 

quasi-estimator to violations of the initial assumptions. Therefore, at the first stage of the estimation 

we calculate mentioned two alternative estimates. At the second stage we choose the better estimate 

out of these alternatives. In order to do so we use additional information, among it but not exclu-

sively of a priori nature. In case of two alternatives the volume of such information should be 

minimal. Furthermore, the additional information is not built-in into the quasi-estimator structure, 

so that any kind of information, even intuitive one, can be used. These features, in combination with 

decrease of the quadratic risk, provide a great advantage of our method. A variety of types of the 

additional information for choosing the better estimate is considered. One example is the successful 

processing of the famous experiment conducted by astronomers in 1919 to verify the General The-

ory of Relativity of A. Einstein.  

 

Key words: Gauss-Markov’s scheme, least squares method, quasi-estimator, unbiasedness, consis-

tency, simulation, robustness, choice from two alternative estimates.  

 

1   Introduction 

 
Let us consider the problem of parameters estimation for the following linear regression 

model:                                                                                                                 

                                                              Y X β ε= + ,                                                           (1)                                         

where Y  is a 1n×  vector, X  is a  n k×  matrix of non-random regressors, β  is a  1k ×  

vector of the parameters to be estimated, and ε  is an 1n×  errors vector.  

In order to estimate the parameter β , let us make additional assumptions regarding this pa-

rameter, the matrix of regressors X  and the vector ε . Suppose the rank of the matrix of re-

gressors is ( )rank X k= , the errors vectorε  has its mathematical expectation equal to zero, 

i.e. ( )E 0ε = , the variance-covariance matrix of ε  is equal to 2

ncov( ) Iε σ= , where 2σ  is 

the error variance, nI - the identity n x n-matrix.  Regarding the parameter β  to be esti-

mated, assume that it has no constraints, in other words that kRθ ∈ , where θ  - is the set of 

a priori values for β . 

We should make a remark regarding the assumption ( )E 0ε = . This assumption can be 

weakened to ( )E aε = , where a  is a constant. In this case, centring Y  and X  reduces this 

problem to the one considered. The results of estimating parameters from the centred data 
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are all identical with the results obtained when adding a unit  1n×  column to the matrix X . 

In this case, we have the model (1.1) with an added intercept.  

The second remark concerns the requirement 2

ncov( ) Iε σ= . If 2
Gcov( )ε σ= , where G  is 

a known non-identity matrix, then, using a transformation of variables (cf. [1]), we can re-

duce the model to the  initial form. 

          The above stated conditions completely correspond to the assumptions of the Gauss-

Markov theorem (cf. [1]). The theorem states that the least squares estimator (OLS-

estimator) defined as  

                                                           1
( ) ,

T T
b X X X Y

−=                                                  (2)         

where“T ” is  the symbol of transposing, is unbiased and has the smallest variance in the 

class of unbiased estimators linear relative to Y . 

It is also well-known (cf. [2]) that, for the normal distribution of ε , the estimator (2) will 

be the best in the class of all (linear and non-linear) unbiased estimators.  

It obviously follows from the above that the OLS-estimator, in the mentioned class, has 

also the smallest mean squared distance from β , criterion (the quadratic risk) which will be 

used in the present paper.  

         However, the fact that the estimator is optimal in one sense does not guarantee that it 

is good for practical purposes. Let us consider certain situations met in practice. Let us rep-

resent the estimator in the following form:  

                                         b β δ= + ,                                                              (3) 

where δ   is a random variable. Then obtain from (1.2), (1.3) the following equation:                                                     

                                                         1
( ) ,

T T
X X Xδ ε−=                                                         (4) 

which, in accordance with  properties of  X  and ε ,  implies ( )E 0δ = .  

Let us find now the mean square of the distance from the OLS-estimator to β , taking into 

account (3), (4):   

                                     

                   

2 1 1

2 1 1 2 1 2

1

(( ) ( )) ( ) ( ( ) ( ) )

( ( ) ( ) ) (( ) ) ,

T T T T T T

T T T T
k

i

i

L E b b E E X X X X X X

Sp X X X X X X Sp X X

β β δ δ ε ε

σ σ σ λ

− −

− − −

=

= − − = = =

= = = ∑
              (5)                                                     

where Sp is the trace of the matrix, iλ is the i-th eigenvalue of the inverse matrix 1
( )

T
X X

− . 

In obtaining (5) the properties of random quadratic forms and of matrix traces (cf. [1]) were 

used.   

We see from (5) that 2
L  is increased with the increase in the variance of the errors and the 

sum of eigenvalues of the inverse matrix, which all have positive values, because the matrix 
1

( )
T

X X
−

 
is positively defined. The sum of eigenvalues increases with the decrease in num-

ber of observations n (the problem of the small sample), and  also with the increase in the 

linear correlation among the columns of the matrix X , in other words, in the presence of 

multicollinearity. The multicollinearity always appears while studying controlled objects, 

i.e. objects with feedback. Among these there is a vast majority of the operating techno-

logical, biological, medical and other objects. The multicollinearity appears also in the ab-

sence of feedback, in those cases when the regressors X  from the equation (1) are repre-

sented by multidimensional polynomials or by some other non-orthogonal series. 

There exists also another danger. The structure of the matrix X  could be such that in the 

expression (4) the absolute values of the coefficients of some ,...,j mε ε  will be so big that, 
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even with moderate values of these ε , their  impact to the estimate will be too great. Men-

tioned effects, as well as a number of other effects, can lead to the situation where the esti-

mates  b  will strongly differ from the true values β  to be estimated. As a consequence, 

predicted values of response Y
∧

 calculated by equation XY b
∧
=  can be far away from true 

values X β . 

Precisely because of this, with the aim of increasing quality of the estimation, in the theo-

retical and applied statistics such methods of the linear regression parameters estimation are 

being developed and investigated in which, explicitly or implicitly, a priori information 

regarding the parameters to be found are used. Among those are shrinkage estimation, ridge 

estimation, Bayesian estimation, and others (see e.g. [3], [4], [5]). 

In the present paper, the approach, first proposed in [6], [7], [8], is developed in close de-

tail, including  new results. This approach is also using  a priori or, in general, additional, 

external information. It differs substantially, however, from the known approaches. The 

essence of the method is as follows.  

The estimation of the regression parameters in the model (1) is conducted in two stages.  

          At the first stage, the least squares estimation is calculated. Subsequently, it is addi-

tively corrected by the vector that has the dimension of vector β  and depends on a certain 

random value. This value is the sign of a scalar, determined via the random error (4) of the 

least squares estimator. The result obtained can be interpreted as a certain quasi-estimator, a 

function of a discrete random variable taking only two values +1 or -1. With the correct 

choice of the sign, the quasi-estimate, as is shown further in the paper, will possess a num-

ber of useful properties: unbiasedness, consistency, and a significantly smaller value of 

quadratic risk, compared to the OLS-estimator. Moreover, these properties hold for one-

dimensional and multi-dimensional, orthogonal and non-orthogonal problems. The paper 

also gives the results of the Monte-Carlo simulation, showing high robustness of the quasi-

estimator with respect to violations of the initial assumptions.  In applications, we have two 

alternative estimates one of which is superior to the least squares estimate. 
         At the second stage, the better estimate is chosen out of the two alternatives available. 

The minimal volume (1 bit) of the required additional information is obvious, and this fact 

extraordinarily simplifies practical application  of the method. Moreover, this information 

can be of any nature: theoretical, empirical, based on the subject matter experience, ob-

tained as the result of an additional experiment, and even intuitive. It is important that the 

additional information is not built-in into the estimator construction, and therefore many 

kinds of information can be used sequentially. All this significantly increases the probabil-

ity of correct choice and, as a final result, an effectiveness of the method. 

A number of types of additional information for choosing the better estimate is reviewed in 

the paper. 

 

2   Quasi-estimator and its properties 
 

Consider two non-linear, non-homogenous in Y  estimators: 

                                                  1 ,Tb b c e e q= +                                                          (6)      

                                                        2 ,Tb b c e e q= −                                                          (7) 

 where b is an OLS-estimate (2), e  is the ( n 1× ) vector of the known regression residuals:                                   

                                                             ,e Y Xb= −                                                               (8) 
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q is an arbitrary normalized ( )Tq q 1=   ( k 1× ) vector, and c  is a constant, as yet unknown, 

that we will subsequently define.  We take  positive values for the radicals in  (6)  and  (7).  

The estimates (6) and (7) differ only in the sign of the additive correction to the vector of 

the OLS-estimator. 

Let us make a convention that, in every application, we choose, out of the two estimators 

(6) and (7), the one whose correction sign is equal to ( ),Tsign q δ−  where δ  is the random 

error for the OLS-estimator, determined by (4), and the sign -function is defined by the 

rule: ( )sign x 1=  if x 0≥ , and ( )sign x 1= −   if  x 0< . 

Now we have obtained the following quasi-estimator:  

                                                  ( )T Tb b sign q c e e qδ= −ɶ                                                 (9) 

The term “quasi-estimator” is used because the expression (9) involves a discrete random 

variable ( )Tsign q δ , which receives just two values: +1 or -1. 

Let us determine the constant c  in such a way so that the average square of the distance 

between the quasi-estimator (9) and β
  

is minimized for any q . The aforementioned mean 

square of the distance, for bɶ ,  is equal to:  

                                                    
2

(( ) ( )).
T

L E b bβ β= − −ɶ ɶɶ                                                  (10) 

Substituting into (10) the value of bɶ  from (9), and then of  b  from (3), taking the deriva-

tive with respect to c ,  and equating the result to zero, we obtain the following: 

                                  
ɶ

2 2

1

T T T

R

L E Ec arg(min ) ( ( q ) e e ) / ( e e ).

c

δ= =
∈

ɶ                     (11)                                      

Now the quasi-estimate with the minimal ɶ
2

L  will have the following form:  

                                                 ( )T Tb b sign q c e e qδ= − ⋅ ⋅ɶ ɶ ,                                           (12) 

where cɶ  is taken from  (11). 

 

Note that when  n k=  the residual sum of squares is equal to Te e 0=  and, as follows from 

(12), b b=ɶ . 

Thus, in the sequel, we will restrict ourselves to the case n k> . 

The aforementioned is already sufficient to prove the following:  

  

PROPOSITION 1.   Suppose ( )E 0ε = , 
2

ncov( ) Iε σ= , n k>  and  q  is an arbitrary nor-

malized   k 1×  vector. Then  
2 2

L L<ɶ
 
, for the quasi-estimator (12).   

 

Proof. Substitute (11) into (12), and  the  result obtained – into (10). After  some  calcula-

tions, writing 2( ) ( )T T T Tsign q q q qδ δ δ δ⋅ =| |= and  using  (3)  and  (5), we obtain:                                          

                                            
2

2 2 2( ( ) ) ( )/T T T
L L E Eq e e e eδ = −   
ɶ                                 (13) 

Since the value being subtracted from  
2

Lɶ  is positive, the proposition is proven.  ■ 
 

Up to this point, we did not consider the distribution of the errorε . Assume now that ε  is 

normally distributed, i.e. that N(0, ),ε σ∈
 
maintaining all our previous stipulations. In that 
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case we can, first of all, determine what the vector q should be in order to minimize the 

value  
2

Lɶ  from (13).  

                                                      
    

PROPOSITION  2.    Suppose ( )E 0ε = , 
2

ncov( ) Iε σ= , n k>  and the  distribution of the 

error ε  is normal, .N(0, )ε σ∈  

Then the minimum of   
2

Lɶ  is achieved when the vector q  from (12) equals the normalized 

eigenvector 1z  1 1
T(z z = 1)  which corresponds to the maximum eigenvalue of the inverse 

matrix 1
( )

T
X X

− :  

                                                     
1

T

2

k
R

1

L )

=

q

q q

z = arg(min
∈
ɶ

    

Proof  

Let us consider (13) and, first, show independence of the quadratic forms 2( )Tq δ  and Te e . 

Toward this, using (2), (4), (8) and, taking into account that Tq δ  is a scalar, let us represent 

these forms as   T
Tε ε   and T

Bε ε , correspondingly, where the matrices T and B are equal,  

correspondingly, to:
                             

                                                 
1 1

( ) ( )
T T T T

XT X X X X Xqq− −= ,                                         (14)     

                                                      1
( )

T T

nB I X X X X
−= −                                                  (15)  

Direct verification shows that TB BT 0= = . This is a necessary and sufficient condition for 

independence of the quadratic forms from the considered normal random values  ε   (cf .  

[9]). 

It follows from the independence, that the denominator in (13)    (while the radicals are 
taken positive) can be represented as a product: 

          2
2

( ( ) )
T T

E q e eδ = 
  

2
2 2 22

( ( ) ) ( ) ( ) ( )T T T TE E E Eq e e q e eδ δ=      | |          
. 

In order to minimize �
2

L , one needs to maximize the first multiplicand of the above product. 

Scalar Tq δ  is a normal random variable with the zero mathematical expectation.  

The module of such a variable has semi-normal distribution. Its mathematical expectation is 

known  (cf.  [10]):  

                               
2

( ) ( ),
2 2

( ) ( )TT T T
DDE q q E q q

π π
δ δ δ δ== ⇒  | | | |     

where D   is the symbol of variance. Let us find this variance:   

                         
2 2

1 1

1 1 1

( ) ( ) ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ) ,

T T T T T T T T

T T T T T T

D E E X X X X X

Sp X X X X X X X X

q qq qq X

qq q q

δ δ δ

σ σ

ε ε− −

− − −

= = =

= =
 

where, as designated above, Sp  is the symbol of the trace of the matrix and σ is the stan-

dard deviation of ε . Obtaining this result, we use properties of the matrix traces and the 

equality of the trace of the scalar to the scalar itself.  

To finish the proof of the proposition, we are left to find out what should be the value of the 

normalized vector q  in order to maximize the value of the obtained scalar.  The answer is 

found right in the Rayleigh-Ritz theorem (cf. [11]), according to which this maximum is 
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equal to the maximal eigenvalue 
1

λ  of the matrix 1
( )

T
X X

− and is obtained at the normal-

ized eigenvector of this matrix corresponding to such a maximum eigenvalue. 

The proposition is proven. ■ 

Now the quasi-estimator gets the following form: 

                                                 1 1( )T Tb b sign z c e e zδ= − ⋅ ⋅ɶ ɶ                                          (16) 

Normality ofε and the above result allow us to define concretely the expression cɶ  in (16) 

and, eventually, obtain the final form for the optimal quasi-estimator.             

 

PROPOSITION  3.  Let ( ) ,E 0ε =  
2

ncov( ) I ,ε σ= n k>  and .N(0, )ε σ∈     

Then the quasi-estimator (16) gains the following form: 

                                
1

1 1

1 2

2 2

T T
o

Γ(( n k ) / )
b b sign( z ) e e z

Γ(( n k ) / )

λ
δ

π
− +

= −
− +

ɶ ,                      (17) 

where Γ(x)  is the gamma-function, and  1λ    
and  

 
 1z ,  as noted above, are the maximum 

eigenvalue of the matrix 1
( )

T
X X

−  and the normalized eigenvector corresponding to it, re-

spectively. 

Proof. 

Let us find cɶ  from (11) and substitute the result into (16). 

First let us find the numerator in (11). Taking into account (4) and the property 
1

1 1 1( )TX X z zλ− =  of the eigenvector of the matrix (cf. [1]), let us represent 
2

1( )Tz δ  in the 

following form: 
2 2

1 1( ) ,T T
z σδ λ ε ε= Αɶ ɶ

 
where εɶ  is the normalized error, 

( )/ , N 0,1σε ε ε= ∈ɶ ɶ  and 1 1 1 .T TA Xz z Xλ=  Checking shows that 2
A A= , i.e. A is an 

idempotent matrix with ( ) ( ) .rank A Sp A 1= =
 
 When N(0,1)ε ∈ɶ , this is a necessary and suf-

ficient condition for the assertion 
2
1

T Aε ε χ∈ɶ ɶ , i.e. the shown quadratic form has distribu-

tion 
2χ  with one degree of freedom. Similarly represent the quadratic form  

2
,

TT
Be e σ ε ε= ɶ ɶ

 where the matrix B  is determined from (15).  

Then   
1 2

( ) ,
T T

nB I X X X X B B
−= − =    and   ( )Brank n k−= , whence 

2T
n kBε ε χ −∈ɶ ɶ . 

The numerator in the expression for cɶ   will get now the following form: 

                                  2
1 1

2( ( ) ) ( ).T T T TE z e e E A Bσδ λ ε ε ε ε= ⋅ɶ ɶ ɶ ɶ  

Analogously to our earlier remark, the quadratic forms under the sign of radical are inde-

pendent, since AB BA 0= = . 

       Let us now compute the mathematical expectation of the positive value for the square 

root of the product of independent random variables distributed as 
2
1χ  and  

2
n kχ − . Using 

known relations between the distribution densities and the mathematical expectation of the 

function (cf. [10]), we obtain: 

 

    

2

1

12 0.5 0.5 0.5 ( 2) /2

( )/2
0 0

( )( )

1
exp( ) exp( )

2 22 (( ) / 2)2

T T

n k

n k

z e eE

x y
x x dx y y dy

Γ n k
σ

δ

λ

π
− − −

−

∞ ∞

=

= − − =
−∫ ∫
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2
1 12 ( 1)/2

( ) /2

2(( 1) / 2) (( 1) / 2)
2 2 .

(( ) / 2)2 (( ) / 2)2

n k

n k

Γ n k Γ n k

Γ n kΓ n k

σ
σ

λ λ

π π
− +

−
− + − +

= =
−−

 

Substituting the mathematical expectation Te e  into the denominator in the expression (11),    

namely 2( ) ( )TE e e n k σ= − , and using the property ( 1) ( ).Γ x xΓ x+ =  (cf. [11]) of the 

gamma-function, we   obtain     (( 2) / 2) (( ) / 2) (( ) / 2)Γ n k n k Γ n k− + = − −  and                                                

                                             
1 (( 1) / 2)

(( 2) / 2)

Γ n k

Γ n k
c

λ

π

− +

− +
=ɶ                                                   (18) 

We are left to substitute this expression for cɶ  in the equation (16), and Proposition 3 has 

been proven. ■  

       Possessing the definitions and the results (6), (11), (18), we can compute the ratio of 

the
2

oLɶ

  
for the optimal quasi-estimator to the 2

L of the OLS-estimator: 

                                    
2 2 1

1

2

2
/

(( 1) / 2)
1

(( 2) / 2)
o

k

i i

L L
n k Γ n k

Γ n k

λ
π λ

=

− − +
= −

− + ∑
ɶ                               (19) 

Using the relation from [11]:  

                      21
( ) / ( ) (1 ( )( 1)) (1 / ),

2

hpΓ p Γ h p h p h Oα α α α
α

−+ + = + − + − +   

we can get from  (19) the equation that is more  easy for the following analysis when  
2(n - k) / 4 1 :≫  

                                          
2 2 2 1

1

/ ( )o
k

i

i

L L
2 0.25

1 1
n k

λ
π

λ
=

= − −
−

∑
ɶ                                             (20)                      

As can be seen from (19) and (20), the relative gain for the quasi-estimator depends mainly 

on the distribution of the eigenvalues iλ  of the matrix 1( )TX X −  , and can be quite substan-

tial. Thus, in the one-dimensional case, when 1

1

k

i

i

λ λ
=

=∑ ,  the ratio 
2 2

/oL Lɶ  is close to 0.4, 

i.e. the quasi-estimator has 
2

oLɶ  smaller than the OLS-estimator 2
L   by the ratio of 2.5. This 

fact can have a great significance, in particular, when processing direct measurements. 

In the case of multicollinearity, when 1

1

,
k

i

i

λ λ
=

≅∑  we obtain approximately the same result. 

When processing orthogonal data, the effect, naturally, will be smaller and will substan-

tially depend on the number of variables k . 

Let us establish some more important properties of the optimal quasi-estimator. When the 

property under consideration holds for the original quasi-estimator (9), with an arbitrary 

vector q , we will mention this in our remarks. 

 

PROPOSITION  4   Let ( ) ,E 0ε = 2

ncov( ) I ,ε σ= n k and> .N(0, )ε σ∈    

Then the optimal quasi-estimator  obɶ
 
 from (17) is unbiased, i.e.  ( )oE b β=ɶ . 



8 

 

  To prove this, let us compute the mathematical expectations of  both sides of the 

equation (17), taking into account the independence of 
1

T
z δ

 
and  Te e  proved above and 

therefore of their functions: 

                           
1

1
1

(( 1) / 2)
( ) ( ) ( ( ))

(( 1) / 2)
( ) .T T

o
n k

E b E b E sign z E
n k

e e zδ
λ
π

Γ − +
= −

Γ − +
ɶ  

Using (4) and the defining property of the eigenvector, we obtain: 

                                                         1 1( , ),T
z N 0δ σλ∈                                                    (21)            

that  is, the random variable 1

T
z δ  has normal distribution with the zero mathematical expec-

tation and variance 2
1σλ .  The mathematical expectation of this function is equal to the fol-

lowing:                    

1
( ( )) ( ) ( ) ,T

E sign z sign x f x dxδ
∞

−∞

= ∫  where ( )f x  - is the distribution density of the normally 

distributed value (21), continuous, symmetrical and bounded above.       

In view of our definition of the sign-function ( ( )sign x 1=  when  x 0≥  and  ( ) 1sign x = −  

when x 0<  ), the given integral is equal to zero due to the symmetry of the integrand func-

tion for all x 0≠   and its boundedness at the point x 0= . 

From this, since 1( ( ))
T

E sign z 0δ =  and, because of unbiasedness of the OLS-estimator 

( )E b β= ,  we get  ( )oE b β=ɶ .      ■    

Remark 1. We will obtain the same result for any continuous, symmetric, and bounded 

above distribution of the error  ε , for which the mathematical expectation exists. 

Remark 2.  The property of unbiasedness, under conditions of Remark 1, applies also to the 

estimator (9). 

 

PROPOSITION  5.     Let  ( ) ,E 0ε = 2

ncov( ) I ,ε σ= n k and> .N(0, )ε σ∈   

     Then the variance-covariance matrix for the optimal quasi-estimator (17)   is equal to:                           

        [ ]
2

2 1 1

1 12

(( 1) / 2)
(( ( ))( ( )) ) ( ) ( )

(( 2) / 2)

TT T
o o o o

n k
Q E b E b b E b X X n k z z

n k

λ
σ

π
− Γ − +

= − − = − −
Γ − +

ɶ ɶ ɶ ɶ        (22) 

Proof. 

Proceeding from the definition of the variance-covariance matrix given on the left side of 

(22), and taking into account the unbiasedness of the estimator obɶ , and also the relations 

(3),(17),(18),  after some manipulations, we obtain: 

    
1 1 1 1 1 1

2
( ( ) ( ) )

T T T T T T T T T
Q E c sign z z B c sign z z B c B z zδδ δ δ ε ε δ δ ε ε ε ε= − − +ɶ ɶ ɶ  (23)                                                                                                                           

                                                                                                                                                       

Let us consider the second summand in (23) which includes the product of three random 

variables. 

Using (4) and the known expansion 1

1

( )
T

k
T

i i i

i

X X z zλ−

=

=∑ , express this summand as follows:       

                                   
1 1 1( )2 T T T T

sign z z X Bkad c z z
i i i

δ ε ε ελ= − ∑ɶ .                           (24) 
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Let us prove that when 1i >  the mathematical expectation of the corresponding summand 

in (24) is equal to zero. Let us first establish the mutual independence of the three random 

scalars 1 ,, T TT
iz X Bzδ ε ε ε  and, therefore, their functions. For this purpose use the fol-

lowing fact (cf. [9]): for positive semi-definite quadratic forms of normal random vari-

ables, their statistical independence follows from their pairwise independence. The inde-

pendence of the first and the third scalars was established during  the proof of  Proposition 

2.  The independence of the first and the second normally distributed scalars follows from 

their noncorrelatedness: 2 2

1 1 1( )
T T T T T T

i i i iE z X Xz z X X z z z 0εε σ σ λ= = =  because of the 

orthogonality of the eigenvectors.  Finally, let us prove the independence of the second sca-

lar and the quadratic form T
Bε ε . For this purpose, divide the scalar by σ , multiply by iλ  

and form from the result a quadratic form T
Aε εɶ ɶ , where ( )N 0, 1ε ∈ɶ  and T T

i i iA X z z Xλ= . 

Verification shows that the matrix A  is idempotent (the idempotency of B  has been estab-

lished earlier, during the proof of Proposition 3) and that AB 0= , from which follows inde-

pendence of the second and the third scalars in (24), and the mutual independence of the 

members of the triple product as a whole, when 1i > . In this case, the mathematical expec-

tation of the product is equal to the product of the mathematical expectations, and, as two of 

those are equal to zero, it is also equal to zero.                          

Let us find the mathematical expectation of the first summand in 2ad  (24), corresponding 

to 1i = :  

            
1 1 1 1 1 1 1 1

2

1 1 1

1( ( ) ) ( ( ) )

( ( ) ) .

T T T T T T

T T T

T T
Xc E sign z z z z B c E sign z z B z z

c E z B z z

λδ ε ε ε δ δ ε ε

δ ε ε

− −

−

= =

=

ɶ ɶ

ɶ

 

The obtained mathematical expectation has been found during the proof of Proposition 3. 

Using this result, the expression for the gamma-function used in the same proof, and the 

expression (18), we obtain: 
1 1

2 2
( )2

T
n kad c z zσ −= − ɶ . Using the same method, we get the 

same result for the third summand in (23). Finally, the mathematical expectation of the first 

and fourth summands in (23) is known:  

                          2 1

1 1

2 2
1 1(( ) )( )'( )T T T T

n kB X Xc z z c z zE δδ ε ε σ −
+ + −=ɶ ɶ . 

Putting the obtained results together and substituting cɶ  from (18), we will get (22).     ■ 

 

Remark.  It follows from (22) that, under the above mentioned assumptions, every element 

of the vector of the quasi-estimator obɶ  has variance not greater than the variance of the cor-

responding element of the vector b  of the OLS-estimator. That is, taking into account the 

unbiasedness of the quasi-estimator, we can consider this result as a certain analogue, for 

the optimal quasi-estimator, of the Gauss-Markov’s theorem, however, in a restricted form, 

not for an arbitrary distribution, but only for normal distribution of the error ε . 

Let us note right away that, in the one-dimensional case, as it follows from Proposition 1, 

the quasi-estimator (even in its original form, and still more for the optimal quasi-estimator) 

always has smaller variance than the OLS-estimator, whatever the distribution of the error 

is. 

           Let us present also the following facts regarding the variance-covariance matrix Q . 

It is easy to verify that the maximal eigenvalue of the matrix  Q  is equal to: 
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2

21

(( 1) / 2)

(( 2) / 2)
(1 )Q

n k

n k

n k
λ λ

π
Γ − +

Γ − +

−
= − ,          (25) 

that all other eigenvalues are equal to the corresponding eigenvalues of the matrix 
1

( )
T

X X
− , all eigenvectors of the matrix Q  are equal to the eigenvectors of the matrix                        

 1
( )

T
X X

− . In addition, obviously, the matrix Q  is positively defined.                                                 

 

Let us establish yet another property of the optimal quasi-estimator (17).     

               

PROPOSITION  6.  If the OLS-estimator is consistent in the mean-square sense, then the 

optimal quasi-estimator (17) is also consistent in the same sense.  

Proof. Suppose that 1lim ( )T

n
n

X X 0−

→∞
= , i.e. that the OLS-estimator is quadratic mean consis-

tent (cf. [9]). Consider the variance-covariance matrix (22) for the optimal quasi-estimator 

obɶ
 
 as a function of n .  

Substitute 1

1( )
T

n nX X z
− instead of 1 1n nzλ  and take out  1

( )
T

n
X X

− : 

                                  
2

2

2
1 1

1 (( 1) / 2)

(( 2) / 2)
( ) ( ).T T

n n nn k

n k
Q X X

n k

n k
I z zσ

π
− Γ − +

Γ − +

−
= −  

Using the relation for the   gamma- function first used in the derivation of (20), we obtain: 

                                            
2

2

(( 1) / 2)
lim(( ) ) 2.

(( 2) / 2)n

n k
n k

n k→∞

Γ − +
− =

Γ − +
 

Taking into account that 1 1
T

n nz z  is bounded, since the eigenvector 1nz  is normalized, we fi-

nally get lim n
n

Q 0
→∞

= .      ■ 

Let us now consider questions related to estimation of the confidence intervals for the op-

timal quasi-estimator (17).   Taking into account its unbiasedness, represent the estimator in 

the following form: ob β δ= +ɶ ɶ , where, in view of (3), (17), (18)  

                                                  
1 1( )
T T

sign z c z e eδ δ δ= −ɶ ɶ
                           

                   (26) 

Let us consider the moments of the   j-component of the vector δɶ , denoting it by  jδɶ . Re-

member that the mathematical expectation of the component is 0. Short of producing a te-

dious proof, let us only remark that the odd central moments of this component are equal to 
0, and the even ones are not much different from the normal distribution moments. In par-

ticular, the variance of this distribution is equal to  

the j-th diagonal element of the variance-covariance matrix Q  from (22), and the forth 

momentum is determined by the following equation:  

 

                     
2

4 2 2 44
1 1 14

2 2
1 1

( )
( ) 3 2( ) ( )(3( ) 2)

6 ( ) ( ) 3( ) ,T T
j j j j

j
z j n k c n k n k c

z j n k c A A A A

µ
λ λ

σ
λ +

 
 

 
 

= − − − − − + +

+ − −

ɶ ɶ

ɶ

 

where 

                      
2

( )
i

k

j i i iz j X zA λ
=

=∑ , and also 
 j 0A = , if  k=1.                             (27)                                                                    
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Dividing  4 ( )jµ  from (27) by the squares of the corresponding diagonal elements of the 

matrix  Q  and subtracting 3, we are obtaining the kurtosis of the component jδɶ .  The 

analysis shows that the excess is positive, varying in the interval between 0 and 1, depend-

ing on the characteristics of the matrix X , and reaching the upper limit at the components 

with a high co-variance. This means that the distribution is somewhat more leptokurtic than 

the normal one. Therefore, when assuming it to be approximately normal, we will have a 

reserve in the confidence interval. 
Thus, using the approximate relation 

                                                             ( , ),o N Qb β∈ɶ                                                          (28)                                                           

we can extend all known results from the theory of the regressive analysis (cf. [2], [9]) to 

the optimal quasi-estimator (17). In particular, the individual confidence interval for the j-
component of the vector of the quasi-estimator is computed with the help of the formula: 

                                            ,( ) ( ,1 / 2) ,o j jQb j n k st α± − −ɶ                                          (29) 

where ( ,1 / 2)n kt α− −  is the 1 / 2α−  point of the Student distribution with n k−  degrees 

of freedom, ,j jQ  - is the corresponding diagonal element of the matrix  
2

Q

σ
, s - is the 

standard deviation estimate: 

                                                      / ( )Te e n ks = −                                                          (30) 

The joint  100(1 )α−  -percent confidence area for the quasi-estimator obɶ  will be determined 

from the expression: 

                              2
( ) ( ) ( , , )

T
o o 1Q Fb b ks k n kβ β α− − ≤ − −ɶ ɶ ,                             (31)   

where ( , , )1F k n k α− −  is  the ( )1 α− -percent point for the ( , )F k n k−  distribution.                                                                                        

      Finishing consideration of the basic properties of the optimal quasi-estimator (17), let 

us answer the following important question: how the efficiency index (19) will change 

when the original assumptions are violated, namely if the error distribution ε  is symmetri-

cal, but different from normal, and the error covariance matrix is not the identity matrix. 

An answer to this question was obtained with the help of statistical modelling using Statis-

tics Toolbox from the Matlab package. Errors with the normal distribution ( )N 0,1 , uni-

formly distributed in the interval (- 2.2), a mixture of the normal distributions ( )N 0,1 -80% 

and ( )N 0,10 -20%, and also the errors representing a time series with the exponential auto-

correlation function 2 | |
( )

q
R e

τστ −=  ,  with 2σ =1 and q =0.3, were modelled. The number 

of tests was 10,000.  As data, the unit vector 10,1X  has been used (i.e. a one-dimensional 

problem of direct measurements Y β ε= +
 
was modelled), as well as the matrix 10,2X  with 

a significant linear contingency of its columns (i.e. a two-dimensional problem 

1 1 2 2Y X Xβ β ε= + +  was modelled under conditions of multicollinearity). The degree of 

multicollinearity is characterized by the following two indicators: the ratio of the maximal 

eigenvalue of the matrix ( ) 1
T

X X
−

 to the minimal one, which was equal to 448.8, and the 

correlation coefficient between the columns of the matrix X , which was equal to 0.9955. 

The data for the two-dimensional problem were centred. The results of modelling are 

shown in the tables 1 and 2 below. 
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Table 1. One-dimensional problem 

   
     Normal  

distribution 

N(0.1) 

Uniform 

 distribution in 

interval 

(-2÷2) 

Mixture of 

 distributions 

N(0,1)-80% and 

N(0,10)-20% 

Exponential 

autocorrelation 

,1 0.3qσ = =  

 
Theoretical value 

of   
2 2

/L Lɶ  

 

0.39772 

 

- 

 

- 

 

- 

Experimental 

value of 
2 2

/L Lɶ  

 
0.39472 

 
0.41411 

 
0.25095 

 
0.65278 

 

Table 2. Two-dimensional problem 

 
 Normal 

 distribution 

N(0.1) 

Uniform  

distribution in 

interval   

 (-2÷2) 

Mixture of  

distributions 

N(0,1)-80% and 

N(0,10)-20% 

Exponential 

autocorrelation 

,1 0.3qσ = =  

 

Theoretical value 

of  
2 2

/L Lɶ  

 

 
0.40319 

 

 
- 

 
- 

 
- 

Experimental 

value of 
2 2

/L Lɶ  

 

0.40013 
 

 

0.40937 

 

0.37667 

 

0.52594 

 

One can see from Tables 1 and 2 that the optimal quasi-estimator shows a high degree of 

robustness, i.e. of maintaining stability in the presence of deviations from original assump-

tions regarding the errorε . A visible reduction in efficiency is observed only in the one-

dimensional problem with the autocorrelated errorε , which is explained by the absence of 

centred data in the one-dimensional case. On the other hand, in the one-dimensional case, 

and with very heavy characteristics of the mixture of the distributions, one observes an in-

crease in efficiency, i.e. in this case the robustness of the quasi-estimator is increased. For 

the two-dimensional problem, almost the same picture is typical, but with smaller scatter  

for the efficiency criterion 
2 2

/L Lɶ .    

 

3   Choice of a better estimate from two alternatives 
 

Let us next consider some of the possibilities for the choice of the best estimates from two 

alternative ones. For this purpose, the additional information available to the researcher is 

used. This information can be of any nature: theoretical, empirical, based on the subject 

matter experience, obtained from an additional experiment of a smaller volume, based on 

one’s intuition.  

Here there are two reasons allowing us to assert that we are obtaining maximal results from 

using additional information. First, other conditions being equal, we need minimal addi-

tional information (1 bit) for the choice of one out of the two estimates; second, we are able 

to use all kinds of additional information, available to the researcher, sequentially, because 

it is not incorporated into the structure of the quasi-estimator. And then, in different appli-

cations, different kinds of a priori information can be efficient. 
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3.1   Case study:  confirmation of one of the two competing theories with the help of an ex-

periment.          

As an example, let us consider a widely known experiment conducted by astronomers 

Dyson, F.W., Eddington, A.S., and Davidson, C.R. in the year of 1919 (cf. [13]). The pur-

pose of the experiment was to determine the deflection of a ray of light in the gravitational 

field of the sun. They considered three possibilities: the deflection is absent; the deflection 

conforms to Newton’s theory and is equal to 0.87”; the deflection conforms to the General 

Theory of Relativity of A. Einstein and is equal to 1.75”. As the outcome of the experiment, 

there were obtained three independent values: 1.98± 0.12, 1.61± 0.3, and 0.93. For the first 

two values, after the symbol ± , the probable error is shown, which is equal, as is known, to 

0.6745σ . For the third value, the authors did not give the value of the probable error. Not-

ing that it is too big, they discarded that value. Subsequently, this fact led to doubts and 

prolonged discussions, and only a double checking, conducted in 1979, has shown that the 

error in the third measurement was indeed big (cf. [14]). We will process these data without 

discarding the third measurement 0.93 and assuming its probable error as equal to ± 0.6. 

Taking into account independence and using a known transformation (cf. [15]) to remove 

their heteroscedasticity, we obtain, according to (17), the alternative estimates: 2.0051” and   

1.7862”. The choice of one of these estimates is obvious, since the estimate 2.0051 exceeds 

all a priori allowed values. Thus the final result is 1.7862”, which is very close to the value 

1.75”, given by the General Theory of Relativity.  

It is important to note that, even if we substantially reduce the expected probable error for 

the third measurement, changing it to ± 0.4, i.e. assigning greater weight to the measure-

ment 0.93, we will get the following alternative estimates: 2.0 and 1.7141. The final esti-

mate, in this case, would be 1.7141, which is also close to the theoretical value. Let us also 

note that the last fact demonstrates the robustness of the quasi-estimator. 

 

3.2   Case study:  studying systems with negative feed-back and known parameters’ signs.  
Suppose that we are to estimate the increase of blood glucose level in a patient with the in-

sulin-dependent form of diabetes mellitus when he/she is receiving a certain quantity of 

carbohydrates orally. In particular, precisely such a situation arises when conducting tests 

on glucose tolerance. However, such a test induces the patient into a state of temporary, and 

sometimes prolonged, hyperglycemia and, therefore, of decompensation, which is ex-

tremely undesirable. Avoiding such a situation is possible by injecting the patient with in-

sulin at the same time as glucose is taken in.   

However, in this case, the statistician processing these data will encounter two difficulties. 

First, the change in the blood sugar level will be insignificant; therefore the ratio sig-

nal/noise will be big. Second, the prediction variables will be strongly correlated, i.e. the 

statistician will encounter the problem of multicollinearity.  

Such a situation is typical when studying all systems with the negative feedback, which 

means all functioning biological, technological and others systems. Precisely because of 

this, for example, it is very complex and, even impossible, to conduct active experiments in 

industry according to the plans developed in the theory of experimental design. These ex-

periments are destroying the functioning and necessary negative feedbacks, which leads, in 

the best case, to the production of defective goods, and in the worse case, to accidents, in-

cluding the grave ones (cf., for example, [16]). 

In the considered situation, application of the quasi-estimator proves to be quite effective. 

In addition, the choice of the better estimate, out of the two, becomes obvious, since the 

signs of the parameters are known. For example, in the case of studying parameters of the 
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diabetic patient, it is obvious that a greater amount of the orally received glucose leads to 

higher blood glucose levels, which means that the corresponding parameter is positive, 

while, with the increase in the quantity of insulin, the blood glucose level is decreased, and 

therefore the corresponding parameter is negative. 

As an illustration for a study of a diabetes patient, consider a simplified example of the 

form 1 1 2 2* *  Y X Xβ β ε= + + , where 
1

X - is the increment in the glucose level obtained, 

relative to the mean of the sample, 2X - the analogues increment for the quantity of insulin, 

Y - the same relative to the mean for the blood glucose, ε - is the random error which is an 

application of the normal distribution ( )N 0,1 , also centred relative to the mean. Suppose 

now that there exists someone who knows the patient’s parameters and suppose that they 

are equal to 1β = 40, 
2

β = -37, which means that the vector  β  is equal to 
40

37
β

 
=  − 

. Also 

suppose that now this someone wants to see what estimates will be obtained by us applying 

our approach. Exactly this kind of method of testing of the quality of estimation is the 

strictest. The data for the given problem is collected in Table 3. 

 

Table 3.  Example of a two-dimensional regression 
1

β = 40, 
2

β = -37 

     

# 1 2 3 4 5 6 7 8 9 10 

1
X  -0.061 -0.051 0.059 -0.271 0.109 0.099 -0.101 0.149 0.089 -0.021 

2
X  -0.055 -0.055 0.065 -0.255 0.085 0.095 -0.085 0.155 0.065 -0.015 

ε 0.3132 0.9672 1.5252 -0.7748 -1.0008 -1.6578 -0.4138 1.6742 -0.3428 -0.2898 

Y  -0.0918 0.9622 1.4802 -2.1798 0.2142 -1.2128 -1.3088 1.8992 0.8122 -0.5748 

 

It is easy to see that 1
X and 2

X are strongly correlated, i.e. the problem is characterised by 

multicollinearity. Let us now perform  a standard regression analysis and obtain the OLS-

estimate. 
0.2868

7.9614
b

− 
=  
 

. Note that the received estimate b drastically differs from true val-

ues β , and the norm of the obtained OLS-estimations is sharply smaller than the norm of 

the true coefficients: 2969
T T

b b β β<< = . This is wholly typical for systems of this kind, 

those with negative feedback, in spite of the well-known (and also easily obtainable from 

the preceding) relation 
1

2
( )

T T T

i

k

i

E b b β β σ λ β β
=

= + >∑ . Thus, for the data collected in the 

Table 3, if one starts to varyε , the norm of the OLS-estimations will become smaller than 

the norm of the true coefficients, approximately in 50% of all cases. It is also obvious that 

the OLS-estimations are remote from the true ones and that the square of the Euclidian dis-

tance is ( ) ( )Tb bβ β− − = 3644.6.    

Now, we obtain, using the relation (17), two alternative results corresponding to the possi-

ble values    1( )Tsign z δ  = +1 or -1:  1

 21.473

 -15.329 
b

 
=  
 

 and  2

22.047
 

31.252
b

− 
=  

 
.  
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However, the signs of the coefficients are known to us, and therefore it is natural to choose 

1b  as the correct possibility. It is easy to verify that the square of the Euclidean distance to 

the true values for the obtained estimate will be equal to 812.9, in other words, 4.48 times 

smaller. 

 

3.3   Case study:  known constrains on the parameters, given in the form of inequalities. 
In order to formalize the use of additional information, let us consider, from all of types of 

information and all approaches corresponding to them, the approach based on the availabil-

ity of the additional information in the area where the unknown parameters are lying. Addi-

tionally, let us restrict ourselves to the one-dimensional case. Such a choice is justified by 

the fact that the results obtained can be extended to the multi-dimensional case, because a 

multi-dimensional task can be reduced to a certain set of one-dimensional tasks. 

When using the mentioned additional information, the final estimator b
•

 can possess prop-

erties different from the properties of the quasi-estimator  obɶ . Thus b
•

 can become a biased 

estimate with its variance – higher than the variance of  obɶ . However, the mean sum of the 

squares of the deviations of b
•

  will be lower than the same for the OLS-estimation. How-

ever, it is reasonable to compare properties of the resulting estimate b
•

 with the properties 
of that OLS-estimation which uses the same a priori information, in other words, with the 

OLS-estimation with the constrains in the form of inequalities. As will be shown below, 

compared to this one, the proposed estimate  b
•

 will also have an advantage.  

Let    
1 1 1,Y X where Xβ ε= + - is a 1n×  column vector. As is known, the variance of the 

OLS-estimation  b  is in this case 
,

1

2 2 2
/ .

n

i 1

i

xσ σ
=

= ∑ɶ  Suppose that it is known that 

1 21a aβ≤ ≤ . Minimizing the sum of the squares of the deviations under the latter con-

straint, the following estimator is obtained in this case (OLS-estimator with constraints 
given by inequalities):  

 

                                                 
1 2

2 2

1 1

H

b i f a b a

b a i f b a

a i f b a








≤ ≤
= >

<

                                             (32)                                               

Denoting 1 2 21 1 1,C a C aβ β= − = −  (with 1 20; 0C C≤ ≥ ) and using the results from the 

theory of  moments of the functions of random variables, we will obtain the mean square of 

the distance from the estimate  Hb  to 
1

β : 

 

                        

� � �

� �

� � � �

22

2 2
1 1 2 2

2) 22 2
1 1 2 2

2 1( ) 0.5 ( / 2 ) ( / 2)

0.5 1 ( / 2 ) 0.5 1 ( / 2)

( / 2 ) exp( / 2 ) ( ) / 2 exp( / 2 ),

HP b C C

C C C C

C C C C

σ σ σ

σ σ

σ π σ σ π σ

 = Φ − Φ + 

   + + Φ + − Φ +   

+ − − −

               (33) 
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where    2

0

( ) (2 / ) exp( )

x

x t dtπΦ = −∫    is the Laplace integral.  Let us construct now the 

resultant estimate b
•

, based on the use of the optimal quasi-estimator (17),  for the case of 
additional information under consideration.  

Denote by 
1b  the minimal estimate from the two alternative ones, and by 

2b  - the maximal 

one.  Then the estimate  b
•

 has the following form:                                     

                  

2

1 1 2 1 1 2 2 2 2 1 1 2

2 1 2 1 1 1 2 2 1 1 2 2

1 1 2 1 1 2 2

2 2 1 2 2 1

1 1 2 2 1 2 1 1 2 2

&

& & &

& & &

& &

&

, , & &

|

|

|

|

|

b

b if a b a a b a b a a b a

b if a b a b a a b a a b a

b a if b a b a

a if b a a

b if a b b b a a b a b a b a

b a

b a

b a b a

b a b a

•

<

< <

>

< ≤ ≤ < > <


≤ ≤ < < <


= < >
 >
 ≤ ≤ ≤ ≤ < >

≥
≤

< <
> >

              (34)                                                                                                                                                

Where the sign &  denotes the logical connective “and” and the sign  ׀ – the logical “or.” 

For the estimate  b
•

, an analytical expression for the mean sum of the error squares is also 

obtained for the case of the normal distribution of the errorε . Introduced as the sum of 

double integrals, it is reduced to the sum of one-dimensional integrals with the integrands 

containing incomplete gamma functions. This result is not given here because of its bulki-

ness. Besides, our task was studying cases with deviations from the starting assumptions. 

Therefore, in the sequel we will use the method of statistical modelling – which, with the 

modern capacities of the computing and of the software, is not less universal than computa-

tions based on theoretical relations. 

Let us now consider the results  of  comparison of the OLS-estimator (32), under constrains 

given by the inequalities, – with the proposed method (34).  The problem for 

16, 1n β= =  was studied. As before, the length of the application in this statistical testing 

was 10,000. The results of this statistical modelling are given in the tables 4-5.        

It can be seen from the tables that, in all cases, (with the symmetric and asymmetric a pri-

ori region, relative to the parameter 1β  ) the proposed estimator has substantial advantage.   

Let us also note that, for the canonical and non-canonical constrains of the form  
2 ,T cβ β =   or  2T cβ β ≤ , which are used in the proof of the optimality of the ridge regres-

sion in  [15],  in our case, the problem of choosing the better of the two alternative esti-

mates becomes trivial.   

 

 

Table 4.  Comparative data for the mean squared distances 

Normal distribution ( )N 0,1ε∈ , for the OLS-estimator  �
2

L = 0 .1667  

 Constraints 

Method 10.3 1.7β≤ ≤  

 

10.5 1.5β≤ ≤  

 
10.8 .21β≤ ≤  

 

10.6 1.7β≤ ≤

 
10.3 1.4β≤ ≤

 
OLS-estimator with  

constraints 
0.14140 0.10861 0.02985 0.11375 0.11157 

Proposed method 0.07649 0.05126 0.01925 0.06337 
0.06421 
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               Table  5. Comparative data for the mean squared distances 

Uniform  distribution ε  is in the interval ( -2,2) ,  for the OLS-estimator  �
2

L = 0.2216  

Table  6. Comparative data for the mean squared distances 

Mixed distributions 
1 ( )N 0,1ε ∈ − 80 % and 2 ( )N 0,10ε ∈ - 20 % ,for OLS-estimator 

2

Lɶ =2.91  

 

 

4   Conclusion 
 

The considered approach allows one to substantially increase the quality of parameters es-

timation in the orthogonal and non-orthogonal, one-dimensional and multi-dimensional re-

gression problems, using minimal volume of additional information, which is practically 

always available to the researcher. The experience in application of the quasi-estimator 

demonstrates that the additional information used, in particular  a priori one, can be either 

formalizable  or non-formalizable (intuitive). Additionally, all available types of informa-

tion can be used simultaneously, with the increase in the probability of the correct choosing 

of the better estimate out of two alternatives provided by the quasi-estimator.  

It is also worth mentioning that the quasi-estimator is extremely simple to apply and re-

quires only minimal modifications when working with any computer software for standard 

regression.    
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