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A New Approximation to the Normal

Distribution Quantile Function

Paul M. Voutier

Abstract

We present a new approximation to the normal distribution quan-
tile function. It has a similar form to the approximation of Beasley
and Springer [3], providing a maximum absolute error of less than
2.5 · 10−5. This is less accurate than [3], but still sufficient for many
applications. However it is faster than [3]. This is its primary bene-
fit, which can be crucial to many applications, including in financial
markets.

1 Introduction

The use of the inverse of the CDF for a probability distribution, also known as
the quantile function, is widespread in statistical modelling (see, for example,
[5, 7]).

During recent work, the need arose for a fast and reasonably accurate ap-
proximation to the normal distribution quantile function, N−1(x). Accuracy
similar to the approximation in Equation 26.2.23 of [1] was sufficient (max
absolute error less than 4.5 · 10−4). But speed was crucial.

The approximation of Beasley and Springer [3], along with related ap-
proximations such as Acklam’s [2], provides improvements in terms of both
accuracy and speed.

Both the Acklam and the Beasley-Springer approximations are based on
the same ideas:
(1) consider narrow tails separately from a wide central area
(2) use a rational function of x to approximate N−1(x) in this wide central
area (avoiding expensive operations like log and sqrt)
(3) take advantage of the fact that N−1(x− 1/2) is an odd function.
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The second and third ideas suggest that for the central region, we consider
rational approximations of the form

(x− 1/2)F ((x− 1/2)2),

where F is a rational function. The approximations of Acklam, Beasley-
Springer, and others for the central region are of this form.

The Beasley-Springer approximation for the central region is sometimes
called a (3, 4) scheme, since the numerator of F is cubic in (x − 1/2)2 and
the denominator of F is of degree 4 in (x − 1/2)2. Similarly, the Acklam
approximation is called a (5, 5) scheme.

2 New Approximations

For increased speed, here we consider a (2, 2) scheme for the central region
and a (3, 2) scheme for the tails.

We chose the boundaries between the central region and the tails to be
at 0.0465 and 0.9535, since with the above schemes and boundaries the max-
imum absolute error in both regions was nearly the same and both slightly
less than 2.5 · 10−5.

2.1 Central Region

2.1.1 0.0465 ≤ p ≤ 0.9535

Put q = p− 0.5 and let r = q2. For 0.0465 ≤ p ≤ 0.9535, define

fcentral(p) = q
a2r

2 + a1r + a0
r2 + b1r + b0

= q

(

a2 +
a′
1
r + a′

0

r2 + b1r + b0

)

where

a0 = 0.389422403767615,

a1 = −1.699385796345221,

a2 = 1.246899760652504,

a′
0

= 0.195740115269792,

a′
1

= −0.652871358365296,

b0 = 0.155331081623168,

b1 = −0.839293158122257.
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The benefit of the second expression is that we save one multiplication
by using it. Similarly, normalising the denominator so that the leading co-
efficient is 1, rather than the constant coefficient as some authors do, also
saves another multiplication.

There are 12 points of maximum error (also known as alternating points)
in the interval [0.0465, 0.9535]:

(p, errabs) (p, errabs)
(0.046500, 2.494327 · 10−5) (0.592289, 2.494326 · 10−5)
(0.054264, 2.494331 · 10−5) (0.752182, 2.494327 · 10−5)
(0.081621, 2.494328 · 10−5) (0.859308, 2.494323 · 10−5)
(0.140694, 2.494323 · 10−5) (0.918381, 2.494328 · 10−5)
(0.247820, 2.494327 · 10−5) (0.945738, 2.494331 · 10−5)
(0.407712, 2.494326 · 10−5) (0.945350, 2.494327 · 10−5)

From the theorems of Chebyshev and de la Vallée Poussin (see [4, Sec-
tion 5.5]), it follows that fcentral(p) is essentially the best possible rational
approximation of (2, 2) scheme.

For comparison, the maximum absolute error of the “central” approxi-
mation in [3] is under 1.85 · 10−9.

This approximation was found using the minimax function within the
numapprox package of Maple:

Digits:=60:with(numapprox):

uBnd:=0.4535^2:

minimax(x->inverseCDFCentralRatApprox(x),0..uBnd,[2,2],x->sqrt(x));

where
inverseCDFCentralRatApprox(x) is the function N−1(

√
x+ 1/2)/

√
x,

uBnd is the range we want the approximation over,
[2, 2] specifies that we want the degree of both the numerator and the de-
nominator to be 2, and√
x is the weight function we use, since we want to get the best approximation

to N−1(
√
x+ 1/2) rather than N−1(

√
x+ 1/2)/

√
x.

We tried other values of uBnd near 0.4535, but the smallest maximum
absolute error was found with this particular value.
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2.1.2 0.025 ≤ p ≤ 0.975

The use of an even wider central region may be preferred, as this can provide
further performance gains by reducing the expensive log and sqrt operations
required for the tails.

We give one such example here (found as above using Maple, but with
uBnd=0.475).

Put q = p− 0.5 and let r = q2. For 0.025 ≤ p ≤ 0.975, define

fcentral(p) = q
(

a2 +
a1r + a0

r2 + b1r + b0

)

where

a0 = 0.151015505647689,

a1 = −.5303572634357367,

a2 = 1.365020122861334,

b0 = 0.132089632343748,

b1 = −.7607324991323768.

The maximum absolute error for this approximation is less than 1.16·10−4

which occurs near p = 0.9692. While this error is much larger than the error
in the previous section, it is still well smaller than the maximum error for
the Abramowitz-Stegun approximation (4.5 · 10−4).

2.2 Tails

2.2.1 e−372/2 < p < 0.0465

For 5.3 . . . · 10−298 = e−37
2/2 < p < 0.0465, put r =

√

log(1/p2) and define

ftail(p) =
c3r

3 + c2r
2 + c1r + c0

r2 + d1r + d0
= c3r + c′

2
+

c′
1
r + c′

0

r2 + d1r + d0
.

where

c0 = 16.896201479841517652,

c1 = −2.793522347562718412,

c2 = −8.731478129786263127,
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c3 = −1.000182518730158122,

c′
0

= 16.682320830719986527,

c′
1

= 4.120411523939115059,

c′
2

= 0.029814187308200211,

d0 = 7.173787663925508066,

d1 = 8.759693508958633869.

As with the “central” approximation, this approximation was also found
using the minimax function within the numapprox package of Maple:

Digits:=60:with(numapprox):

v:=0.0465:

uBnd:=0.4535^2:

minimax(y->inverseCDF(exp(-y*y/2)), sqrt(log(1/v^2))..37, [3,2]);

Note that since we are approximating N−1(x) itself here, we do not include a
weight function in the arguments of the minimax function and so the default
weight function 1 is used.

The maximum absolute error in this case is less than 2.458 · 10−5.

2.2.2 0.9535 < p < 1− e−37
2/2

Due to the symmetry of N−1(p) about p = 1/2, we approximate N−1(p) by

−ftail(1− p) (note that here r =
√

log(1/(1− p)2)).

3 Abramowitz and Stegun Approximations

Having found the above new approximations, we turned our attention to the
approximations in Equations 26.2.22 and 26.2.23 of [1]. As those authors
note, these approximations are from [6]. In particular, Sheets 67 and 68 on
pages 191–192 of [6].

If we restrict our attention to ranges like e−372/2 < p < 1 − e−372/2 (this
includes almost the entire IEEE-754 range of representable real numbers),
then we can improve on the approximations of Abramowitz and Stegun.

For example, in this range, we can replace Equation 26.2.23 of [1] with

xp = t− c2t
2 + c1t+ c0

d3t3 + d2t2 + d1t+ 1
+ ǫ(p),
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where |ǫ(p)| < 8 · 10−5 and

c0 = 2.653962002601684482,

c1 = 1.561533700212080345,

c2 = 0.061146735765196993,

d1 = 1.904875182836498708,

d2 = 0.454055536444233510,

d3 = 0.009547745327068945.

This is over five times more accurate than the approximation in [1]. How-
ever, as one increases the range even closer to 0 and 1, the max absolute
increases until we obtain Equation 26.2.23 of [1]. The near-best possible na-
ture of Equation 26.2.23 is illustrated by the graph in Sheet 68 of [6] showing
that Chebyshev’s theorem nearly holds for this approximation.

Note also that this approximation shows the justification for the use of
√

log(1/p2) in these tail approximations. As p → 0, N−1(p) approaches

−
√

log(1/p2) plus a quantity that approaches 0 as p does.

4 Performance

Using Java (JDK 1.6.0 17), we coded the following approximations in order
to compare their performance.
• the Abramowitz-Stegun approximation (AS in the table below)
• the Beasley-Springer approximation (BS in the table below)
• the approximation from Section 2 using the central region approximation
in Section 2.1.1 (Rat22A in the table below)
• the approximation from Section 2 using the central region approximation
in Section 2.1.2 (Rat22B in the table below).

In each case, we calculated the approximation 200,000 times for each p
from 0.001 to 0.999 with 0.001 as our step size. These calculations were done
on a Dell Inspiron 1525, running Windows Vista and using an Intel Core 2
Duo T5800 2.00 GHz CPU. The times in milliseconds for each approximation
are given in the table below.
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method time(ms)
AS 25,210
BS 10,212
Rat22A 8052
Rat22B 6649

As one would expect, the new approximations given here are faster than
the currently known ones. The comparison between Rat22A and Rat22B is
also interesting, as it shows the impact of the calculation of the log and sqrt
operations. Although these operations only need to be performed for a small
subset of all values of p, reducing the number of these operations by just
under 50% reduced the CPU time required by nearly 20%.
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