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Abstract

By identifying non-local effects in systems of identical Bosonic qubits
through correlations of their commuting observables, we show that
entanglement is not necessary to violate certain squeezing inequalities
that hold for distinguishable qubits and that spin squeezing may not
be necessary to achieve sub-shot noise accuracies in ultra-cold atom
interferometry.

1 Introduction

A generic state of N distinguishable qubits is defined to be entangled if it is
not fully separable [1], namely if it cannot be written as

ρsep =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k · · · ⊗ ρ

(N)
k , (1)

where the pk ≥ 0 are weights,
∑

k pk = 1, while each ρ
(j)
k is a density matrix

for the j-th qubit acting on the corresponding Hilbert space Hj.
Entangled N -qubit states have been proposed as means to beat the so-

called shot-noise limit in metrological applications [2, 3] and spin-squeezing
techniques have been devised to generate them in systems of ultra-cold
atoms [4, 5]. These states are then used in interferometric experiments where
their states are rotated by means of collective spin components; in the case
of distinguishable qubits, all these rotations are local; therefore, preliminary
spin squeezing of separable states is necessary in order to introduce (non-
local) quantum correlations.

1

http://arxiv.org/abs/1009.0995v1


However, in the case of ultra-cold trapped atoms, the qubits involved are
identical, a fact that asks for a rethinking of the properties and behaviors
valid for distinguishable qubits. Indeed, the notion of separability based
on (1) is strictly associated with the tensor product structure of the Hilbert
space, HN =

⊗N
j=1Hj, which is natural for N distinguishable particles. On

the other hand, pure Bosonic states must be symmetric under exchange of
particles and mixed states must be convex combinations of projections onto
such states. This fact demands a different approach to the notions of non-
locality and entanglement based not on a structure related to the particle
aspect of first quantization, as in (1), rather on the behavior of correlation
functions of commuting observables [6, 7, 8, 9], more generally related to the
mode description typical of second quantization.

In the following, based on a generalized notion of entanglement [9] which
reduces to the standard one for distinguishable qubits, we show that nei-
ther entangled states, nor spin-squeezing are necessary in order to achieve
sub-shot noise accuracies. Though necessary, non-locality comes not from
the states, rather from the rotations that are implemented in the interfero-
metric experiments. Indeed, while all rotations are local for distinguishable
qubits, certain collective spin observables become instead non-local for iden-
tical qubits and might permit sub-shot noise accuracies without the need of
a preliminary squeezing of the input state as in [4, 5].

2 Entanglement for Identical Particles

In general, density matrices as in (1) are not allowed Bosonic states not even

if ρ
(i)
k = ρk for all i. Indeed, consider two qubits and fix an orthonormal

basis C
4 ∋ |ij〉, i, j =↑, ↓. If they are Bosons, their states cannot have

non-vanishing components on the anti-symmetric state |Ψ−〉 =
| ↓↑〉 − | ↑↓〉√

2
.

Since 〈Ψ−|ρ⊗ ρ|Ψ−〉 = Det(ρ), the density matrix ρ ⊗ ρ cannot correspond
to a state of two Bosonic qubits unless ρ is a projection (Det(ρ) = 0).

Therefore, the tensor product structure which is natural for distinguish-
able particles is not appropriate for discussing the entanglement properties
of systems of indistinguishable particles. These should rather be investigated
within the second quantization formalism whereby one introduces creation
and annihilation operators a#i of single-particle orthonormal basis states |i〉,
obeying the canonical commutation relations [ai , a

†
j] = δij.

Entanglement in such a context should correspond to whether, given a
state ω of the system, there are non-classical correlations among commuting
observables [7, 9]; for instance, between non-overlapping spatial regions V1,2.
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Specifically, this can be inspected by considering the structure of two-point
functions of the form ω(PV1PV2), where PVα is any polynomial in creation
and annihilation operators a#(ψα) of states |ψα〉 spatially localized in the
region Vα. The relevant fact is that the spatially local algebras generated by
polynomials PVα commute: [a(ψ1) , a

†(ψ2)] = 〈ψ1|ψ2〉 = 0.
More in general, one can argue about the entanglement between observ-

ables belonging to two generic commuting sub-algebras (A,B) of the entire
algebra generated by creation and annihilation operators, which we shall re-
fer to as algebraic bipartition [9]. We shall call an operator (A,B)-local if
of the form AB, A ∈ A and B ∈ B and a state ω (A,B)-separable if the
expectations ω(AB) of local operators AB can be decomposed into a convex
linear combination of product of expectations:

ω(AB) =
∑

i

λiω
a
i (A)ω

b
i (B) , λi > 0 ,

∑

i

λi = 1 , (2)

in terms of other states ωa,bi ; otherwise, ω is (A,B)-entangled.
Remark 1. In the case of two qubits, the above definitions reproduce the
standard notions if one chooses the algebraic bipartition A = B = M2,
where M2 the algebra of 2× 2 matrices over C2, and ω(AB) = Tr (ρA⊗ B),
with ρ a two-qubit density matrix. However, for identical particles, there
is no a priori given bi-partition so that questions about entanglement and
separability, non-locality and locality are meaningful only with reference to
a specific class of (commuting) observables.

2.1 N Bosons in a Double-Well Potential

A concrete application of the previous considerations is the second quantiza-
tion of a single-particle with Hilbert space C2 which, in the Bose-Hubbard
approximation, effectively describes N ultra-cold atoms confined by a double-
well potential. Then, the state | ↓〉 describes one atom located within the
left well and the state | ↑〉 an atom localized within the right one. Let |0〉 be
the vacuum state and a†, b† the creation operators of a particle in the states
| ↓〉 and | ↑〉, that is a†|0〉 = | ↓〉, b†|0〉 = | ↑〉.

When the total number N is conserved, the symmetric Fock space of
this two-mode system is generated by N +1 orthonormal eigenvectors of the
number operator a†a+ b†b:

|k〉 = (a†)k(b†)N−k

√

k!(N − k)!
|0〉, 0 ≤ k ≤ N . (3)
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Because of the orthogonality of the spatial modes, by considering the norm-
closures of all polynomials Pa in a, a†, respectively Pb in b, b†, one obtains
two commuting subalgebras A and B.

According to (2), the states |k〉 are (A,B)-separable; indeed, they are
created by the (A,B)-local operators (a†)k(b†)N−k. More in general, (A,B)-
separable states must be convex combinations of projections |k〉〈k| [9]:

ρ =
N
∑

k=0

pk|k〉〈k| pk > 0 ,
N
∑

k=0

pk = 1 . (4)

Consider instead the following operators

Jx =
1

2
(a†b+ ab†) , Jy =

1

2i
(a†b− ab†) , Jz =

1

2
(a†a− b†b) , (5)

that satisfy the SU(2) algebraic relations [Jx , Jy] = i Jz. They are all non-
local with respect to the algebraic bipartition (A,B) and such are the expo-

nentials eiθJx and eiθJy , while eiθJz = eiθa
†ae−iθb

†b is (A,B)-local.
By means of a Bogolubov transformation to other creation and annihi-

lation operators (c#, d#), such that a =
c+ d√

2
and b =

c− d√
2

, one obtains

another bipartition (C,D) and rewrites

Jx =
1

2
(c†c− d†d) , Jy =

1

2i
(d†c− dc†) , Jz =

1

2
(c†d+ cd†) .

Relatively to {C,D}, it is now eiθ Jx = eiθ c
†ce−iθ d

†d which acts locally.

Remark 2. In first quantization, an (A,B)-separable state for a N = 2

Bosonic qubits like |11〉 = a†b†|0〉 corresponds to
| ↑↓〉+ | ↓↑〉√

2
. Such state

is surely entangled for distinguishable qubits, while, according to our defi-
nition, it is no longer so for identical Bosonic qubits; the reason is that its
entanglement is only formal as it comes from the necessary symmetrization
of the separable state | ↑↓〉 [10].

A Bogolubov transformation as the one above corresponds to a change of
basis in the single particle Hilbert space, from the one of spatially localized

states, to the one of c†|0〉 = 1√
2
(| ↓〉+ | ↑〉), d†|0〉 = 1√

2
(| ↓〉 − | ↑〉). Physi-

cally speaking, such states are eigenstates of the single particle Hamiltonian
in the Bose-Hubbard approximation with a highly penetrable barrier. The
change to the energy bipartition (C,D) is non-local with respect to the spatial
bipartition (A,B), though it corresponds to a local unitary rotation in first
quantization.
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2.2 Collective Spin Inequalities and Entanglement

In the case of a system of N distinguishable qubits, the collective angular
momentum operators Jx,y,z and the corresponding rotations are sums of single

particle spin operators, J
(j)
x,,y,z, i. e. Jx,y,z =

∑N
j=1 J

(j)
x,y,z. These operators are

local with respect to the tensor product structure in (1).
Based on this, the variance ∆2J~n of the collective spin J~n = nx Jx +

ny Jy+nz Jz along the unit spatial direction ~n = (nx, ny, nz), with respect to

separable vector states |Ψ〉 =
⊗N

j=1 |ψj〉 results

∆2J~n = 〈Ψ|J2
~n|Ψ〉 − 〈Ψ|J~n|Ψ〉2

=
N

4
−

N
∑

j=1

(

〈ψj |J (j)
n |ψj〉

)2

≤ N

4
. (6)

Therefore, ∆2J~n is an entanglement witness for pure states, in the sense that
if ∆2J~n > N/4 then the pure state |Ψ〉 cannot be fully separable.

This is no longer the case for N identical Bosonic qubits. Indeed, consider
the number states |k〉 in (3); using (5), one gets

〈k|J~n|k〉 =
nz
2

(2k −N) (7)

〈k|J2
~n|k〉 =

N + 2k(N − k)

4

+ n2
z

N(N − 1)− 6k(N − k)

4
(8)

∆2 J~n =
1− n2

z

4

(

N + 2k(N − k)
)

. (9)

Therefore, if k 6= 0, N , for all ~n that satisfy

n2
z <

2k(N − k)

N + 2k(N − k)
≤ 1 ,

the states |k〉, though (A,B)-separable, nevertheless yield ∆2 J~n > N/4;
therefore, ∆2 J~n is not an entanglement witness for pure states of Bosonic
qubits.

In greater generality, inequalities for mean values and variances of col-
lective spin operators with respect to any (mixed) separable state of distin-
guishable qubits (1) have been derived in [11]; these are called spin squeezing
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inequalities and read 1

〈J2
~n1
〉+ 〈J2

~n2
〉+ 〈J2

~n3
〉 − N(N + 2)

4
≤ 0 , (10)

∆2J~n1
+∆2J~n2

+∆2J~n3
− N

2
> 0 , (11)

〈J2
~n1
〉+ 〈J2

~n2
〉 − N

2
− (N − 1)∆2J~n3

≤ 0 , (12)

(N − 1)(∆2J~n1
+∆2J~n2

)− 〈J2
~n3
〉 − N(N − 2)

4
> 0 , (13)

where ~n1,2,3 denotes any triplet of unit vectors corresponding to orthogonal
spatial directions and 〈X〉 the mean value of an operator X .

It is thus interesting to study whether these inequalities are also satisfied
by (A,B)-separable states (4) of N identical qubits. Let 〈ka〉 =

∑N
k=0 pk k

a,
a = 1, 2, denote first and second moments of the N + 1-valued stochastic
variable k with respect to the probability distribution π = {pk}Nk=0. Us-
ing (7), (9), mean-values and variances of collective spin operators J~n with
respect to the states in (4) read

〈J~n〉 =
nz
2

(

2〈k〉 −N
)

(14)

〈J2
~n〉 =

N(1 + 2〈k〉)− 2〈k2〉
4

+
n2
z

4

(

N(N − 1)− 6N〈k〉+ 6〈k2〉
)

(15)

∆2J~n =
N(1 + 2〈k〉)− 2〈k2〉

4

+
n2
z

4

(

6〈k2〉 − 2〈k〉(N + 2〈k〉)−N
)

. (16)

From the orthogonality of the triplet ~n1,2,3, it follows that n
2
1z+n

2
2z+n

2
3z = 1;

one can thus check that all inequalities but (12) are satisfied by (A,B)-
separable states. Concerning (12), its left hand side reads

δ =
N

2

(

∆2k − 〈k〉(N − 〈k〉)
)

+
n2
3z

2

(

(N + 2)〈k〉(N − 〈k〉)− 3N∆2
k

)

, (17)

where ∆2k := 〈k2〉−〈k〉2 is the variance of k with respect to π = {pk}Nk=0. If π
is chosen such that a := 〈k〉(N − 〈k〉) > N∆2k, then δ becomes positive and

1In [11], these inequalities are derived with respect to the standard triplet ~n1 = x̂,
~n2 = ŷ, ~n3 = ẑ. The result easily extends to more general triplets.
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thus (12) results violated by the corresponding (A,B)-separable states (4)
for all orthogonal triplets with

1 ≥ n2
3z >

N(a−∆2k)

(N + 2) a− 3N ∆2k
. (18)

Consider the pure states |ℓ〉 in (3) with ℓ 6= 0, N ; in such a case, pk = δkℓ,
〈k〉 = ℓ and ∆2k = 0, so that (12) is violated for 1 ≥ n2

3z > N/(N + 2).

3 Spin Squeezing and Metrology

The preceding results indicate that spin-squeezing inequalities that are de-
rived for distinguishable qubits can not directly be used as entanglement
witnesses in the context of identical qubits. Since the use of spin-squeezed
states for metrological purposes have recently become the focus of much the-
oretical [2, 3, 12, 13] investigations, we now discuss the impact of particle
indistinguishability on such an issue.

3.1 Spin Squeezing

For any orthogonal triplet of space-directions ~n1,2,3, the Heisenberg uncer-
tainty relations for the SU(2) operators J~n read

∆2J~n1
∆2J~n2

>
1

4
〈J~n3

〉2 . (19)

One speaks of spin-squeezing when one of the variances can be made smaller

than 1
2

∣

∣

∣
〈J~n3

〉
∣

∣

∣
. The relevance of states satisfying this condition for achieving

otherwise unavailable accuracies has been studied in relation to the measure
of an angle θ by interferometric techniques. These are based on a rotation of
an input state ρ into

ρθ = exp(−iθJ~n1
) ρ exp(iθJ~n1

) , (20)

and upon measuring on ρθ the collective spin J~n2
, where ~n2 ⊥ ~n1. By choosing

the remaining orthogonal unit vector ~n3 such that 〈J~n3
〉 = Tr(ρ J~n3

) 6= 0,
by error propagation, the uncertainty δθ in the determination of θ can be
estimated by [3]

δ2θ =
∆2J~n1

(

∂θ〈J~n2
〉θ
∣

∣

∣

θ=0

)2 =
∆2J~n1

〈J~n3
〉2 =

ξ2W
N

, (21)
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in terms of the spin-squeezing parameter

ξ2W :=
N∆2J~n1

〈J~n3
〉2 . (22)

The value δ2θ =
1

N
is called shot-noise limit; in the case of distinguishable

qubits, it gives the lower bound to the attainable accuracies when the input
state ρ is separable. Indeed, in such a case one finds ξ2W ≤ 1. This result
follows from the inequality ξ2W ≥ ξS2 where the new spin-squeezing parameter

ξ2S :=
N∆2J~n1

〈J~n2
〉2 + 〈J~n3

〉2 , (23)

has been introduced in [12]; by means of the local structure of the collective
spin operators Jx,y,z, one can prove that ξ2S is always ≥ 1 for separable states
of distinguishable qubits. Therefore, using distinguishable qubits, the shot-
noise limit can be beaten, namely accuracies better than 1/N can be achieved
only if ξ2S < 1, that is only by means of entangled states.

Let us instead consider N identical Bosonic qubits in the (A,B)-separable
pure states |k〉 and any triplet of orthogonal spatial directions ~n1,2,3 with
~n1 6= ẑ. Using (7)-(9) and n2

1z + n2
2z + n2

3z = 1, one computes

ξ2S =
N∆2J~n1

〈J~n2
〉2 + 〈J~n3

〉2 = N
1− n2

1z

n2
2z + n2

3z

N + 2k(N − k)

(2k −N)2

=
N(N + 2k(N − k))

(2k −N)2
≥ 1 , 0 ≤ k ≤ N . (24)

In the case of the (A,B)-separable density matrices (4), first observe that,
thanks to the Cauchy-Schwartz inequality, one has

∑N
k=0 pk〈J~n〉2k ≥ 〈J~n〉2,

where 〈X〉2k denotes the mean-value of X with respect to the number state
|k〉. Then,

ξ2S ≥ N

∑N
k=0 pk∆

2
kJ~n1

〈J~n2
〉2 + 〈J~n3

〉2

=
1− n2

1z

n2
2z + n2

3z

∑N
k=0 pkN

(

N + 2k(N − k)
)

(

∑N
k=0 pk (N − 2k)

)2

≥
∑N

k=0 pk
(

k − N
2

)2

(

∑N
k=0 pk

(

k − N
2

)

)2 ,
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where the last inequality follow from the second line of (24). A further
application of the Cauchy-Schwartz inequality to the right hand side of the
last inequality yields ξ2S ≥ 1 for all (A,B)-separable states when n1 6= z.

If one chooses ~n1 = ẑ, in the case of (A,B)-separable mixed states, one
finds ∆2Jz 6= 0 and 〈J~n2,~n3

〉 = 0; therefore, ξ2S (and ξ2W ) diverges. Instead, for
(A,B)-separable pure states |k〉 also ∆kJz = 0 whence ξ2S (and ξ2W ) are not
defined and must thus be computed by means of suitable limiting procedures.

Let us consider the (A,B)-entangled vector state |Ψ〉 =
∑N

k=0

√
pk |k〉,

with real coefficients from a probability distribution π = {pk}Nk=0 over the
stochastic variable k. Then, from (7)–(9) it follows that 〈Jy〉 = 0 and ∆2Jz =
∆2k; therefore ξ2S = ξ2W and

ξ2W =
N ∆2Jz
〈Jx〉2

=
N ∆2k

(

∑N
k=1

√

k(N − k + 1)
√
pk pk−1

)2 . (25)

In the case of a Gaussian distribution peaked around k = ℓ 6= 0, N ,

pk =
1

Z
exp

(

−(k − ℓ)2

σ2

)

, Z =
N
∑

k=0

exp

(

−(k − ℓ)2

σ2

)

, (26)

one finds

ξ2W =
2N +O

(

e−
1

2σ2

)

(

√

(ℓ+ 1)(N − ℓ) +
√

ℓ(N − ℓ+ 1)
)2 . (27)

Thus, for sufficiently small σ, ξ2W < 1 for all ℓ 6= 0, N .
On the other hand, by choosing

|Ψ〉 = p

N

N
∑

k=0 , k 6=N/2

|k〉+ (1− p) |N/2〉 , 0 < p < 1 , (28)

it turns out that ∆2k = p(N + 2)(N + 1)/12 so that (25) yields

ξ2W =
N(N + 1)

12(
√
1− p+ q)2

,

where

q =

√

p

N2(N + 2)

∑

k 6=N/2,N/2+1

√

k(N − k + 1) .

Letting p→ 0 one gets |ψ〉 → |N/2〉 and, if N > 3,

ξ2W → N(N + 1)/12 > 1 .
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Remark 3. The above two examples show that, when ~n1 = ẑ, the spin-
squeezing parameters ξW,S are not well-defined: different values for ξ2W,S
can be obtained by approaching a state |k〉 via different limit procedures.
This fact is also of practical importance: indeed, in [14], approximations to
Fock states |k〉 have been experimentally constructed that are characterized
by spin-squeezing parameters ξ2W < 1. This property arises from the fact
that the approximations are (A,B)-entangled states. The previous discus-
sion shows that some care has to be taken in constructing the perturbations
of |k〉; indeed, not all (A,B)-entangled states arbitrarily close to it automat-
ically have ξ2W,S ≥ 1. Therefore, the spin-squeezing parameters ξ2W,S are not
always useful for metrological applications, a better quantity is the so-called
quantum Fisher information [15], which as we shall show below, is continuous
and well defined for all Bosonic qubits.

3.2 Quantum Fisher Information

In a measurement of the angle θ based on the state rotation (20), the error
∆θ given by a locally unbiased estimator E of the angle θ is bounded by (see
the Appendix)

∆2θ ≥ 1

F [ρ, J~n1
]
, (29)

where F [ρ, J~n1
] is the so-called quantum Fisher information associated with

the rotation of ρ around ~n1.
In order to overcome the shot-noise limit ∆2θ = 1/N , the quantum Fisher

information must then be strictly larger than N . In the appendix it is also
showed that, in full generality,

F [ρ, J~n1
] ∆2J~n2

≥ 〈J~n3
〉2 , (30)

where ~n1,2,3 is a triplet of orthogonal spatial directions. Thus, if 〈J~n3
〉 6= 0,

one gets the following relation between the quantum Fisher information and
the squeezing parameter ξ2W in (22):

F−1[ρ, J~n1
] ≤ ∆2J~n2

〈J~n3
〉2 =

ξ2W
N

. (31)

In the case of distinguishable qubits, from (29) and (31) it follows that spin-
squeezing, namely ξ2W < 1, opens the possibility of achieving ∆2θ < 1/N ,
thus of beating the shot-noise limit.

In the case of identical qubits and of (A,B)-separable states, the right
hand side of the above inequality diverges if ~n1 = ẑ as 〈J~n3

〉 = 0, while it
does not make sense if ~n2 = ẑ for then also ∆2J~n2

= 0 whence, as already
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observed, ξ2W is not defined. However, the quantum Fisher information is
always well-defined. Indeed, using (38) and (9), one finds that, if k 6= 0, N ,

F [|k〉〈k|, J~n] = 4∆2Jz = (1− n2
z)
(

N + 2k(N − k)
)

> N (32)

for 0 ≤ n2
z <

2k(N − k)

N + 2k(N − k)
< 1. In particular,

F [|k〉〈k|, Jy] = N + 2k(N − k) ,

so that, according to (29), for all k 6= 0, N the (A,B)-separable pure states |k〉
might overcome the shot-noise limit, with the twin Fock state |N/2〉 yielding
F [ρ, Jy] = O(N2) thus permitting to approach the so-called Heisenberg limit
∆2θ = 1/N2.

Remark 4. Notice that even approximating a number state |ℓ〉 by an ex-
perimentally more realistic superposition |ℓ, σ〉 of states |k〉 with coefficients
as in (26), may beat the shot noise limit. Indeed, one computes

F [|ℓ, σ〉〈ℓ, σ|, Jy] = 4∆2Jy = N + 2ℓ(N − ℓ) +O
(

e−
1

σ2

)

,

which can be kept > N by suitably small σ.
Instead, making the quantum Fisher information larger than N is impos-

sible without (A,B)-non-locality; indeed, F [|ℓ〉〈ℓ|, Jz] = 4∆2Jz = 0. Even
considering the (A,B)-entangled perturbation |ℓ, σ〉 does not help; indeed,

F [|ℓ, σ〉〈ℓ, σ|, Jz] = 4∆2Jz = 8e−
1

σ2 +O
(

e−
2

σ2

)

.

Therefore, the lower bound to the error in (29) becomes arbitrarily large
when σ → 0.

When dealing with (A,B)-separable mixed states (4), by means of equa-
tion (37) in the Appendix, one computes [9]

F [ρ, J~n] = (1− n2
z)
(

N + 2N〈k〉 − 〈k2〉 (33)

− 4
N
∑

k=0

pkpk+1

pk + pk+1

(k + 1)(N − k)
)

. (34)

Thus, if (32) holds for a certain |ℓ〉, then, by continuity, F [ρ, J~n] > N for a
probability distribution π = {pk}Nk=0 suitably peaked around k = ℓ, hence
able to overcome the shot-noise limit.

On the other hand, from the previous section we know that for all such
mixed states ξ2W ≥ ξ2S ≥ 1; therefore, based on this lower bound to the
squeezing parameter, we would wrongly discard such states as not useful for
metrological applications.
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4 Discussion

Unlike for distinguishable qubits, in the case of identical Bosonic qubits, en-
tangled states are not necessary to reach sub-shot noise accuracies in param-
eter estimation. This phenomenon is surely due to the non-local character
of the system; however, the non-locality is not in the states |k〉 which in fact
are (A,B)-separable, rather in the (A,B)-non-local character of the state-
rotation (20) generated by J~n 6= Jz. Were the qubits distinguishable, neither
the state nor the rotation would carry elements of non-locality so that in or-
der to beat the shot-noise limit, the state should be turned into an entangled
one before feeding the interferometric apparatus practically implementing
the state-rotation (20). This is exactly what is done via a spin-squeezing
technique in the experiments reported in [4, 5]. Instead, the main point we
make here is that in experiments involving identical qubits, no preliminary
squeezing is needed before rotating the state. One might as well do with,
say, a state |N/2〉, the rotation around ~n 6= ẑ taking care of introducing the
necessary non-locality.

5 Appendix

A most used quantum Fisher information F [ρ, J~n] is given by [16]

F [ρ, J~n] := tr
(

ρL2
)

, (35)

where L, known as symmetric logarithmic derivative, is a Hermitean operator
such that

∂θρθ

∣

∣

∣

θ=0
=
ρL + Lρ

2
= −i [J~n , ρ] . (36)

Given a spectral decomposition ρ =
∑

j rj |rj〉〈rj|, one computes

F [ρ, J~n] = 2
∑

i,j : ri 6=rj

(ri − rj)
2

ri + rj

∣

∣

∣
〈ri|J~n |rj〉

∣

∣

∣

2

. (37)

From such an expression one sees that the quantum Fisher information is a
continuous function of the state ρ and that, for pure states,

F [|ψ〉〈ψ|, J~n] = 4∆2
ψJ~n . (38)

An estimator E is locally unbiased if ∂θTr(ρθ E)
∣

∣

∣

θ=0
= 1; then, inequality (29)

follows from applying to this relation the Cauchy-Schwartz inequality for
matrices

∣

∣

∣
Tr(AB)

∣

∣

∣

2

≤ Tr(A†A)Tr(B†B) .
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Analogously, inequality (30) follows from the fact that Tr(ρθ(J~n2
−〈J~n2

〉θ) = 0
implies

∣

∣

∣
Tr

(

∂θρθ(J~n2
− 〈J~n2

〉θ
)
∣

∣

∣
=

∣

∣

∣
∂θ〈J~n2

〉θ
∣

∣

∣
=

∣

∣

∣
〈J~n3

〉θ
∣

∣

∣
.
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