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Dynamical decoupling for a qubit in telegraph-like noises

Ke Chen and Ren-Bao Lﬁu
Department of Physics, The Chinese University of Hong Hong, Shatin, New Territories, Hong Kong, China

Based on the stochastic theory developed by Kubo and Andlevee present an exact result of the deco-
herence function of a qubit in telegraph-like noises underathical decoupling control. We prove that for
telegraph-like noises, the decoherence can be suppressegsito the third order of the time and the periodic
Carr-Purcell-Merboom-Gill sequences are the mdBtient scheme in protecting the qubit coherence in the
short-time limit.

PACS numbers: 03.65.Yz, 82.56.Jn, 76.60.Lz

I. INTRODUCTION shows that CPMG is practically better than CDD and UDD
for a telegraph noise. Later in Ref. [22], numerical seah f
_ . ) . optimal DD sequences finds solutions close to the CPMG for
Dynamical decoupling (DD) is a standard technique to suppgises with soft cutis and to UDD for noises with hard cut-
press the spin decoherence, with a long tradition in magnetios These research indicates that CPMG may be optimal in

resonance spectroscopy [1, 2]. Nowadays, DD is important o mpating certain non-Gaussian noises, but more research i
in areas like quantum information processing, since p@Ion il needed to reach the conclusive results

ing the qubit coherence is a fundamental requirementtycarr |, this paper, we present an exact result of the decoher-

out dfective operations on quantum states. The basic idegnce function under DD control, based on a stochastic the-
0]‘ DD is using a sequence of control pulses that. frequentl)()ry [23-25] developed in 1950s mainly by Kubo and Ander-
flip the spins to average outfects of random environmen- 5o when they studied the line shape of nuclear magnetic res
tal field. DD is originated from Ha’hns first spin echo ex- 5nance (NMR) spectra. We prove that for a general multestat
periment in 19501[3]. After Hahn’s work, more complex (glegraph-like noise, any DD schemes cannot fully eliménat
pulse sequences were introduced, among which a most f@se third order term in the short-time expansion of the deco-
mous example was the periodic Carr-Purcell-Merboom-Gillherence i.e. the decoherence function is at lea®(dj, and
sequence (CPMG) [1! 4], which was initially widely used in 3mong all possible DD schemes, CPMG is the most optimal
magnetic resonance spectroscopy and, in recent years, WiSsyppressing the qubit decoherence in the short-time. limi
introduced to protect the qubit coherence in quantum 'nforApart from the theoretical importance, these results dee re

i i 5 . .
mation processing [5-8]. Concatenated DD (CDD) [9-14)\an 1o the spin decoherence problem in real systems such as
is of special |r_1te_rest, since it recursively construct$pu§e- spins in SISIO, interfaces, where the noises from coupling
quences to gllmlnate qub!t decoherence to an arbitraryrordg,;ip, dangling bonds can be approximately represented by a
of precision in the short-time expansion. The pulse numbegiscrete multi-state telegraph-like noisel[26].
in CDD, however, exponentially increases. The flrs_t optimal  the paper is organized as follows. In secfin I, we obtain
pulse sequence In terms of the pulse number was introducgde exact expression for the decoherence function under arb
by Uhrig [15], which was a non-periodic DD. Uhrig's DD ary DD control of a qubit in telegraph-like noises. In sect

(UDD) was later shown to be universal [16/ 17], in the Sens@ we expand the decoherence function, solve the optimiza
that the leading orders of the time expansion of the decoher-;4, problem and prove that CPMG is the global minimum
ence are eliminated by usimgpulses for general finite quan- ¢q,tion.

tum systems, i.e., systems with hard high-frequencyfEurio
noise spectra. Recent experiments achieved remarkable pro
gresses in prolonging the coherence via DD schemes [18-20]. II. EXACT DECOHERENCE FUNCTION

An interesting question is how fiierent DD schemes per-
form in suppressing spin or qubit decoherence caused by clas We consider a qubit (spin/2) under an external field and a
sical non-Gaussian noises, such as multi-state teledikh- random fieldw(t). The Hamiltonian (in the rotating reference
noises. For Gaussian noises, which are fully characterizefiame in which the external field is transformed to be zero) is
by their second-order correlation functions, the DD cadntro H = S,w(t) (1)
can be readily formulated as the integration of noise spec- T
tra modulated by a filtering function determined by the DD whereS;,y,, is the spin operator along thgy/z direction. We
sequencel [21]. For general non-Gaussian noises, howeverssumen(t) is a multi-state telegraph-like noise, i.e., it jumps
such a formalism is not available and one has to rely on cusuddenly and randomly among a set of discrete vajugs
mulant expansion aridr Gaussian approximation to numeri- with a transition rate matrik, in the form
cally solve the problem. In Ref._[21], numerical calculatio

d
G Vi =T Y (), @

whereY;(t) is the probability forw(t) = w;. Such a noise
*Electronic addres$: rbliu@cuhk.edu.hk model is widely used in describing various stochastic ptalsi


http://arxiv.org/abs/1009.0984v1
mailto:rbliu@cuhk.edu.hk

process, such as the spectrafusion of optical transitions I11. OPTIMAL DYNAMICAL DECOUPLING
due to atom collisions [27].

The spin coherence is characterized by the transverse po-
larizationx = Sy + iSy. The equation of motion fox in the
form of a so-called Kubo oscillator is

To achieve a certain order of DD, we need to find the so-
lution of the set of (normalized) pulse intervdés} to make
the decoherence functigm(t)) equal to unity up to an error
X(t) = iwt)x() 3) of a certain order of in the short-ti_me exp_ansiqn. For th?s

' purpose, we expand the exponential functions in Eqg. (8) into

The ensemble averaga(t)) = fx(t)P[w(t)]D[w(t)] overa Taylors se_ries ot_. _The zeroth order term contains_neitMir
distribution of the random fieldP[w(t)] gives the transverse NOrT, andis explicitlyy;; y;(0) = 1 (the sum probability must
polarization of the spin. Definind;(¢,t) as the probability P& Unity)- 3 _
density for findingx(t) = €¢ andw(t) = w;, we can write the The higher order terms can be classified by the ordering
ensemble averagewx) and(x) as of the matricedV andI’. A few rules can be established to
significantly simplify the expansion. First, any term stagt

o with T' must vanish, because of the probability conservation
wxy =) J; e“w; Yj (e, t)de, (423)  condition
i

2m _
0= [ éVite0 (ab) 2. M=o ©
J

The probability density function satisfies the stochastmt ~ Second, any term ending withmust vanish since

ville equation [[24, 25]

P P I'y(0) =0, (10)

SN = D TirYi(e.t) - wi=—Yilp. ), (5 o . _
i 4 for the random force distribution is stationary. Third, the

) ) ) ] terms of the same order and containingisum to zero. This

which contains both the sudden jumps of the random field angs pecause if"is set to zero (corresponding to the static inho-

the precession of the spin polarization. By multiply#i§to  mogeneous broadening condition), the decoherence functio
both sides of Eq[(5) and integration over the phase angle, Wgecomes

obtain

— iW(ag —ag+...+(~1)Nan,1)t _
300 = (T + W) (6) () = 2 ¢ YO =1 (11

wherey;(t) = fz" g¢Y;(¢, )dp, Wj; = 6j;wj. The spin po- under the echo conditioa; — a + ... + (-1)Nan;1 = O.

larization is(x(8 =2 vi. Using the three rules above, the only non-vanishing term of

Under DD control, the spin is subjected to a sequence of flighe decoherence up to the third order must have the form of
operations between thez and—zdirections. In this paper, for Gn(a, @, . .., an)WI'Wy(0). To minimize the decoherence
the sake of simplicity, we assume the case of idepllses. in the third order, we just need to minimize the fiagent
Equivalently, the flip control can be transformed to the flip o Gn(as, @, . . ., an).

the fieldw(t) in the reference frame rested on the flipped spin.  With the conjecture that CPMG could be an optimal solu-

Thus, we have the controlled Liouville equation as tion (as in the case of two-pulse control for Gaussian noises
with hard cutdfs), we write the coicientGy(ay, ay, . . ., an)
Ey(t) = [T +iWF ()] y(t), (7)  asafunction of the deviations of the pulse positions froen th
dt CPMG timing,
wheref (t) is a step-like function jumping betweetl and-1
every time a control pulse is applied. The exact solutiomef t B = an — 2n - 1, (12)
decoherence function under Binpulse DD control is 2N

(X)) = Z [e[r+(—1)NiW]aN+1t e e[F—i\NJazte[Hi\NJalty(o)} , (8) Whereayt is the position of thenth control pulse (i.e.a, =
j i an—an_1). The echo condition i8; -8+ - -+ (=1)N*18y = 0,
and another constraintis 2 any > an-1 > -+ > a1 > 0.
wherey(0) is the initial probability distribution of the random These two conditions define the physical boundary foNan
force, and O< ant < 1 is the interval between thath and  pulse sequence. Then the fugent of the third order term
(n = 1)th pulses withy, a, = 1. is



Gn(B) :Tll\lz + % {[_.BN +2BN-1 - P2+ F (—1)’\',31]2 + [_,BN—l +2BN2+ -+ (—1)’\'71,31]2 +oeet [—51]2}
+ {268 [ BN + 28n-1 = 2Bna + o+ (F1)NBL| + 288 [Bna + Bua+ oo+ (LB + -+ 28 (B0)

1
E—lZNZ +hn + ON» (13)

wherehy denotes the second-order term, apdthe third- A corollary which can be directly derived from EQ.{13) is
order term. The first order term vanishes because of the ech@orollary 1 The decoherence of a qubit in a multi-state
condition. Since the second order is always positive* 0), telegraph-like noise can not be suppressed by DD beyond the
CPMG {8 = 0) must be at least a local minimum solution of third order of the short-time expansion.

the decoherence function.

If CPMG is not the global minimum, we can find a set of This conclusion is consistent with previous numerical solu
{8 # 0} so thathy(8) + gn(B) < 0. Sincehy(B8) > 0, we must  tions in Ref.[22], which give pulse sequences close to CPMG
havegn(B) < 0. Using a real number to scale the deviation, for boson baths with power-law high-frequency digoActu-
we get a function of the scaling factor as ally, the second order correlation function of the telegréike

noise
fn(2) = gn(4B) + w(4B) = Lon(B) + °hn(B).  (14) )
wOwW(t) = > [we T wy(0)]

The functionfy (1) monotonically decreases withfor 1 > 1. ] J
Thus whent is increased from 1, the DD sequence suppresses

the decoherence better and better. Baannot be infinitely  has the form of exponential functions. The Fourier transfor
increased under the physical conditions. Whda increased mation to the frequency domain then has a power-law decay
to a boundary valugg, the deviatiomg will reach the phys-  profile in the high frequency end. Similarly, the higher or-
ical boundary, at which either two adjacent pulses coincidealer correlation functions (which in general cannot be facto
(and become a null operation) or a pulse reaches the boundaiged into the second order correlation functions as for Gaus
time at 0 ort. This means a new pulse sequence with fewersian noises) also have the form of exponential functionshSu
pulses is obtained. Suppose the new pulse sequendd’has exponential function form of the correlation functionsuks

(17)

pulses (withN’ < N), the codficient can be written as from the sudden jumps in the telegraph-like noises, which,
1 in the physical nature, is induced by instantaneous (Marko-

+ fu(le) = +anv(8) + hn (B), 15 vian) collisions in the bath. It is the existence of a veryrsho
12Nz2 N(4e) 12N’? O (B) + hw (8) (19) timescale in the system (the collision memory time), or in

other words, a very large energy scale, that limits the perfo

whereg’ is the deviation from thé\’-pulse CPMG, angjv mance of any DD schemes to the third order of precision.

andhy are defined as in EJ.(IL3). Obviously,

onv (8) +hn (8) <O. (16)
IV. CONCLUSIONS
Then following the same procedure as in tNepulse se-
quence, we can do the scaling’ again to find pulse se-  |n summary, we have derived an exact expression for

quences performing better in suppressing the decohergnce khe decoherence function of a qubit in arbitrary multi-tat
increasingd’” from 1 to a new boundary value. Then we telegraph-like noises, based on the stochastic theory. We
would find a new sequence which performs better with fewelprove that CPMG is the globally optimal solutions among all
pulses tharN’. So on and so forth, we will have to con- possible dynamical decoupling sequences of the same number
clude that the one-pulse sequence (Hahn echo) is the optimgf pulses to suppress the decoherence in the short time limit
solution among all sequences (including the multiple-puls Because of the instantaneous random jumps in the noises, the

ones), which can be easily checked to be wrong by comparingecoherence cannot be eliminated beyond the third order of
the performance of the two-pulse CPMG and the Hahn ech@he short time.

Thus, to avoid contradictions, we conclude with the follogyi

theorem:

Theorem 1 For an arbitrary multi-state telegraph-like noise, Acknowledgments
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