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Dynamical decoupling for a qubit in telegraph-like noises
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Based on the stochastic theory developed by Kubo and Anderson, we present an exact result of the deco-
herence function of a qubit in telegraph-like noises under dynamical decoupling control. We prove that for
telegraph-like noises, the decoherence can be suppressed at most to the third order of the time and the periodic
Carr-Purcell-Merboom-Gill sequences are the most efficient scheme in protecting the qubit coherence in the
short-time limit.
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I. INTRODUCTION

Dynamical decoupling (DD) is a standard technique to sup-
press the spin decoherence, with a long tradition in magnetic
resonance spectroscopy [1, 2]. Nowadays, DD is important
in areas like quantum information processing, since prolong-
ing the qubit coherence is a fundamental requirement to carry
out effective operations on quantum states. The basic idea
of DD is using a sequence of control pulses that frequently
flip the spins to average out effects of random environmen-
tal field. DD is originated from Hahn’s first spin echo ex-
periment in 1950 [3]. After Hahn’s work, more complex
pulse sequences were introduced, among which a most fa-
mous example was the periodic Carr-Purcell-Merboom-Gill
sequence (CPMG) [1, 4], which was initially widely used in
magnetic resonance spectroscopy and, in recent years, was
introduced to protect the qubit coherence in quantum infor-
mation processing [5–8]. Concatenated DD (CDD) [9–14]
is of special interest, since it recursively constructs pulse se-
quences to eliminate qubit decoherence to an arbitrary order
of precision in the short-time expansion. The pulse number
in CDD, however, exponentially increases. The first optimal
pulse sequence in terms of the pulse number was introduced
by Uhrig [15], which was a non-periodic DD. Uhrig’s DD
(UDD) was later shown to be universal [16, 17], in the sense
that the leadingn orders of the time expansion of the decoher-
ence are eliminated by usingn pulses for general finite quan-
tum systems, i.e., systems with hard high-frequency cutoff in
noise spectra. Recent experiments achieved remarkable pro-
gresses in prolonging the coherence via DD schemes [18–20].

An interesting question is how different DD schemes per-
form in suppressing spin or qubit decoherence caused by clas-
sical non-Gaussian noises, such as multi-state telegraph-like
noises. For Gaussian noises, which are fully characterized
by their second-order correlation functions, the DD control
can be readily formulated as the integration of noise spec-
tra modulated by a filtering function determined by the DD
sequence [21]. For general non-Gaussian noises, however,
such a formalism is not available and one has to rely on cu-
mulant expansion and/or Gaussian approximation to numeri-
cally solve the problem. In Ref. [21], numerical calculation
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shows that CPMG is practically better than CDD and UDD
for a telegraph noise. Later in Ref. [22], numerical search for
optimal DD sequences finds solutions close to the CPMG for
noises with soft cutoffs and to UDD for noises with hard cut-
offs. These research indicates that CPMG may be optimal in
combating certain non-Gaussian noises, but more research is
still needed to reach the conclusive results.

In this paper, we present an exact result of the decoher-
ence function under DD control, based on a stochastic the-
ory [23–25] developed in 1950s mainly by Kubo and Ander-
son, when they studied the line shape of nuclear magnetic res-
onance (NMR) spectra. We prove that for a general multi-state
telegraph-like noise, any DD schemes cannot fully eliminate
the third order term in the short-time expansion of the deco-
herence, i.e., the decoherence function is at least ofO(t3), and
among all possible DD schemes, CPMG is the most optimal
in suppressing the qubit decoherence in the short-time limit.
Apart from the theoretical importance, these results are rele-
vant to the spin decoherence problem in real systems such as
spins in Si/SiO2 interfaces, where the noises from coupling
with dangling bonds can be approximately represented by a
discrete multi-state telegraph-like noise [26].

The paper is organized as follows. In section II, we obtain
the exact expression for the decoherence function under arbi-
trary DD control of a qubit in telegraph-like noises. In section
III, we expand the decoherence function, solve the optimiza-
tion problem and prove that CPMG is the global minimum
solution.

II. EXACT DECOHERENCE FUNCTION

We consider a qubit (spin-1/2) under an external field and a
random fieldw(t). The Hamiltonian (in the rotating reference
frame in which the external field is transformed to be zero) is

H = S zw(t), (1)

whereS x/y/z is the spin operator along thex/y/z direction. We
assumew(t) is a multi-state telegraph-like noise, i.e., it jumps
suddenly and randomly among a set of discrete values{w j},
with a transition rate matrixΓ, in the form

d
dt

Y j(t) = Γ j j′Y j′ (t), (2)

whereY j(t) is the probability forw(t) = w j. Such a noise
model is widely used in describing various stochastic physical
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process, such as the spectral diffusion of optical transitions
due to atom collisions [27].

The spin coherence is characterized by the transverse po-
larizationx ≡ S x + iS y. The equation of motion forx in the
form of a so-called Kubo oscillator is

ẋ(t) = iw(t)x(t). (3)

The ensemble average〈x(t)〉 ≡
∫

x(t)P[w(t)]D[w(t)] over a
distribution of the random fieldP[w(t)] gives the transverse
polarization of the spin. DefiningY j(ϕ, t) as the probability
density for findingx(t) = eiϕ andw(t) = w j, we can write the
ensemble averages〈wx〉 and〈x〉 as

〈wx〉 =
∑

j

∫ 2π

0
eiϕw jY j(ϕ, t)dϕ, (4a)

〈x〉 =
∑

j

∫ 2π

0
eiϕY j(ϕ, t)dϕ. (4b)

The probability density function satisfies the stochastic Liou-
ville equation [24, 25]

∂

∂t
Y j(ϕ, t) =

∑

j′
Γ j j′Y j′ (ϕ, t) − w j

∂

∂ϕ
Y j(ϕ, t), (5)

which contains both the sudden jumps of the random field and
the precession of the spin polarization. By multiplyingeiϕ to
both sides of Eq. (5) and integration over the phase angle, we
obtain

d
dt

y(t) = (Γ + iW)y(t), (6)

wherey j(t) ≡
∫ 2π

0
eiϕY j(ϕ, t)dϕ, W j j′ = δ j j′w j′ . The spin po-

larization is〈x(t)〉 =
∑

j y j(t).
Under DD control, the spin is subjected to a sequence of flip

operations between the+z and−z directions. In this paper, for
the sake of simplicity, we assume the case of idealπ pulses.
Equivalently, the flip control can be transformed to the flip of
the fieldw(t) in the reference frame rested on the flipped spin.
Thus, we have the controlled Liouville equation as

d
dt

y(t) =
[

Γ + iW f (t)
]

y(t), (7)

wheref (t) is a step-like function jumping between+1 and−1
every time a control pulse is applied. The exact solution of the
decoherence function under anN-pulse DD control is

〈x(t)〉 =
∑

j

[

e[Γ+(−1)N iW]aN+1t · · · e[Γ−iW]a2te[Γ+iW]a1ty(0)
]

j
, (8)

wherey(0) is the initial probability distribution of the random
force, and 0< ant < 1 is the interval between thenth and
(n − 1)th pulses with

∑

an = 1.

III. OPTIMAL DYNAMICAL DECOUPLING

To achieve a certain order of DD, we need to find the so-
lution of the set of (normalized) pulse intervals{ai} to make
the decoherence function〈x(t)〉 equal to unity up to an error
of a certain order oft in the short-time expansion. For this
purpose, we expand the exponential functions in Eq. (8) into
Taylor’s series oft. The zeroth order term contains neitherW
norΓ, and is explicitly

∑

j y j(0) = 1 (the sum probability must
be unity).

The higher order terms can be classified by the ordering
of the matricesW andΓ. A few rules can be established to
significantly simplify the expansion. First, any term starting
with Γ must vanish, because of the probability conservation
condition

∑

j

Γ jk = 0. (9)

Second, any term ending withΓ must vanish since

Γy(0) = 0, (10)

for the random force distribution is stationary. Third, the
terms of the same order and containing noΓ sum to zero. This
is because ifΓ is set to zero (corresponding to the static inho-
mogeneous broadening condition), the decoherence function
becomes

〈x(t)〉 =
∑

j

[

eiW(a1−a2+...+(−1)N aN+1)ty(0)
]

j
= 1, (11)

under the echo conditiona1 − a2 + ... + (−1)NaN+1 = 0.
Using the three rules above, the only non-vanishing term of
the decoherence up to the third order must have the form of
GN(a1, a2, . . . , aN)WΓWy(0). To minimize the decoherence
in the third order, we just need to minimize the coefficient
GN(a1, a2, . . . , aN).

With the conjecture that CPMG could be an optimal solu-
tion (as in the case of two-pulse control for Gaussian noises
with hard cutoffs), we write the coefficientGN(a1, a2, . . . , aN)
as a function of the deviations of the pulse positions from the
CPMG timing,

βn ≡ αn −
2n − 1

2N
, (12)

whereαnt is the position of thenth control pulse (i.e.,an ≡

αn−αn−1). The echo condition isβ1−β2+· · ·+(−1)N+1βN = 0,
and another constraint is 1> αN > αN−1 > · · · > α1 > 0.
These two conditions define the physical boundary for anN-
pulse sequence. Then the coefficient of the third order term
is
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GN(β) =
1

12N2
+

1
N

{

[

−βN + 2βN−1 − 2βN−2 + ... + (−1)Nβ1

]2
+
[

−βN−1 + 2βN−2 + · · · + (−1)N−1β1

]2
+ · · · +

[

−β1
]2
}

+
{

2β2
N

[

−βN + 2βN−1 − 2βN−2 + ... + (−1)Nβ1

]

+ 2β2
N−1

[

−βN−1 + 2βN−2 + · · · + (−1)N−1β1

]

+ · · · + 2β2
1 (−β1)

}

≡
1

12N2
+ hN + gN , (13)

wherehN denotes the second-order term, andgN the third-
order term. The first order term vanishes because of the echo
condition. Since the second order is always positive (hN > 0),
CPMG (β = 0) must be at least a local minimum solution of
the decoherence function.

If CPMG is not the global minimum, we can find a set of
{β , 0} so thathN(β) + gN(β) < 0. SincehN(β) > 0, we must
havegN(β) < 0. Using a real numberλ to scale the deviation,
we get a function of the scaling factor as

fN(λ) ≡ gN(λβ) + hN(λβ) = λ3gN(β) + λ2hN(β). (14)

The functionfN (λ) monotonically decreases withλ for λ ≥ 1.
Thus whenλ is increased from 1, the DD sequence suppresses
the decoherence better and better. Butλ cannot be infinitely
increased under the physical conditions. Whenλ is increased
to a boundary valueλB, the deviationλβ will reach the phys-
ical boundary, at which either two adjacent pulses coincide
(and become a null operation) or a pulse reaches the boundary
time at 0 ort. This means a new pulse sequence with fewer
pulses is obtained. Suppose the new pulse sequence hasN′

pulses (withN′ < N), the coefficient can be written as

1
12N2

+ fN(λB) =
1

12N′2
+ gN′ (β′) + hN′ (β′), (15)

whereβ′ is the deviation from theN′-pulse CPMG, andgN′

andhN′ are defined as in Eq. (13). Obviously,

gN′ (β′) + hN′ (β′) < 0. (16)

Then following the same procedure as in theN-pulse se-
quence, we can do the scalingλ′β′ again to find pulse se-
quences performing better in suppressing the decoherence by
increasingλ′ from 1 to a new boundary value. Then we
would find a new sequence which performs better with fewer
pulses thanN′. So on and so forth, we will have to con-
clude that the one-pulse sequence (Hahn echo) is the optimal
solution among all sequences (including the multiple-pulse
ones), which can be easily checked to be wrong by comparing
the performance of the two-pulse CPMG and the Hahn echo.
Thus, to avoid contradictions, we conclude with the following
theorem:

Theorem 1 For an arbitrary multi-state telegraph-like noise,
CPMG is the global minimum solution of the decoherence
function among all DD sequences of the same number of
pulses.

A corollary which can be directly derived from Eq. (13) is
Corollary 1 The decoherence of a qubit in a multi-state
telegraph-like noise can not be suppressed by DD beyond the
third order of the short-time expansion.

This conclusion is consistent with previous numerical solu-
tions in Ref. [22], which give pulse sequences close to CPMG
for boson baths with power-law high-frequency cutoffs. Actu-
ally, the second order correlation function of the telegraph-like
noise

〈w(t)w(t′)〉 =
∑

j

[

We−Γ(t−t′)Wy(0)
]

j
, (17)

has the form of exponential functions. The Fourier transfor-
mation to the frequency domain then has a power-law decay
profile in the high frequency end. Similarly, the higher or-
der correlation functions (which in general cannot be factor-
ized into the second order correlation functions as for Gaus-
sian noises) also have the form of exponential functions. Such
exponential function form of the correlation functions results
from the sudden jumps in the telegraph-like noises, which,
in the physical nature, is induced by instantaneous (Marko-
vian) collisions in the bath. It is the existence of a very short
timescale in the system (the collision memory time), or in
other words, a very large energy scale, that limits the perfor-
mance of any DD schemes to the third order of precision.

IV. CONCLUSIONS

In summary, we have derived an exact expression for
the decoherence function of a qubit in arbitrary multi-state
telegraph-like noises, based on the stochastic theory. We
prove that CPMG is the globally optimal solutions among all
possible dynamical decoupling sequences of the same number
of pulses to suppress the decoherence in the short time limit.
Because of the instantaneous random jumps in the noises, the
decoherence cannot be eliminated beyond the third order of
the short time.
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