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Abstract

Using virtual stock markets with artificial interacting software in-
vestors, aka agent-based models (ABMs), we present a method to reverse
engineer real-world financial time series. We model financial markets as
made of a large number of interacting boundedly rational agents. By op-
timizing the similarity between the actual data and that generated by the
reconstructed virtual stock market, we obtain parameters and strategies,
which reveal some of the inner workings of the target stock market. We
validate our approach by out-of-sample predictions of directional moves
of the Nasdaq Composite Index.

“What I cannot create, I cannot understand”: On physicist Richard Feynman’s
blackboard at time of death in 1988; as quoted in The Universe in a Nutshell
by Stephen Hawking.

1 Introduction

The prediction of financial markets has long been the object of keen interest
among both financial professionals and academics. The widely, - if not uni-
versally -, accepted Efficient Market Hypothesis (EMH) (Fama, 1970), (Fama,
1991) provides a powerful argument that markets are inherently unpredictable,
in particular on the basis of prior price data: Because all information about
the future is incorporated into the current price (for all practical purposes im-
mediately), price changes must follow a random walk (Malkiel, 2003). There is
considerable evidence however that prices do not perfectly follow a random walk
and that some price inefficiency is present, varying over time, perhaps enough
at times to be exploitable (Dahlquist and Bauer, 1998). However, recent assess-
ments of the performance of hedge-funds (Barras, Scaillet, and Wermers, 2008)
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and of mutual funds (Fama and French, 2009) cast doubt on the reality of the
gains resulting from the practical implementation of these inefficiencies, if they
exist. As illustrated in the approaches of Barras, Scaillet, and Wermers (2008)
and Fama and French (2009), deviations from the EMH are searched in the
form of anomalous performance, beyond what can be explained by risk premia
associated with exposures to a few dominating risk factors.

The near-absence of predictability in financial markets, or more precisely of
risk-adjusted arbitrage opportunities, is truly remarkable. A rich academic lit-
erature has clarified the zen-like nature of the EMH in the sense that, the more
intelligent are the investors and the harder are their efforts to gather information
to make the best possible investment decisions, the fewer trading opportunities
there are, and the more efficient is the market. The fact that markets are close to
efficient can thus be understood as a macroscopic organization that result from
the collective actions of the active investors. Borrowing from the jargon of com-
plex system theory, market efficiency is an emergent phenomenon. Emergence,
the existence of qualitatively new properties exhibited by collections of inter-
acting individuals, is often taken to be the defining characteristic of complex
adaptive systems.

Reciprocally, we ask here how the observation of the large scale behavior of a
macroscopic system can (i) uncover the internal properties of a system and the
organization among its constituents and (ii) be used for its prediction. Following
Richard Feynman, we argue that, in order to really understand a system, we
need to be able to strip things down, then rebuild them in order to play with the
reconstructed simplified system and analyze variants, from which understanding
can emerge. We address this question of “reverse engineering” in the context
of one-dimensional financial (market) time-series. The challenge consists in
building a virtual stock market with artificial interacting software investors.
The method presumes that real-world discrete market price changes may be in
principle modeled as the aggregated output of a large number of interacting
boundedly rational agents. These agents have limited knowledge of the detailed
properties of the markets they participate in and create, have access to a finite
set of strategies to take only a small number of actions at each time-step and
have restricted adaptation abilities. Given the time series data, our method
of reverse engineering determines what set of agents, with which parameters
and strategies, optimizes (in the sense of various robust metrics) the similarity
between the actual data and that generated by an ensemble of virtual stock
markets peopled by software investors. We provide a validation step by testing
the performance of the reverse engineered artificial market in predicting out-of-
sample directional moves of the real-world time series. Using only some of the
simplest strategies and agents, the p-value for the statistical significance of the
prediction of the directional moves for more than 600 trading days of the Nasdaq
Composite Index is smaller than 0.02. The results are robust with changes of
the styles of agents’ strategies and for different market regimes.
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Our work uses the extensive literature on agent-based models that has been
developing at least since the 1960s (see LeBaron (2000) and references therein).
In ABMs, a system is modeled as a collection of autonomous decision-making
entities, called agents. Repetitive competitive interactions among agents gen-
erate complex behavioral patterns. Due to the evolutionary switching among
strategies, ABMs are highly nonlinear. The aggregation of simple interactions
at the micro level may generate sophisticated structures at the macro level
which provide valuable information about the dynamics of the real-world sys-
tem which the ABM emulates. The main benefits of ABMs are that they (i)
capture emergent phenomena; (ii) provide a natural description of a system; (iii)
are flexible. ABMs have already been successfully applied in real-world prob-
lems, such as, flow simulation, organizational simulation, diffusion simulation
and market simulation (Bonabeau, 2002). In this article we focus on financial
market simulation.

Hommes (2006, 2002) shows that ABMs can explain the main statistical regu-
larities observed in financial time series - their so-called “stylized facts” - such
as excess volatility and volatility clustering, high trading volume, temporary
bubbles and trend following, sudden crashes and mean reversion, and fat tails
in the distribution of returns. Toy models such as the Minority Game (MG),
described in detail in Challet and Zhang (1997), capture key features of one
generic market mechanism (competition for a scarce resource). The basic inter-
action between agents and public information is described in Challet, Chessa,
Marsili, and Zhang (2001); Marsili (2001). Details of the ABMs we employ
will be introduced as we describe the implementation of our reverse engineering
process. In brief, we concentrate on the so-called MG and its key variants and
on the so-called $-game and related majority games.

A major thrust of the literature of ABMs dealing with finance is aimed at
developing artificial stock markets and then analyzing the conditions which yield
the stylized facts of real markets. Changes of parameters or of the model proper
affect the collective behavior of the model and thus provide potential insight
into the underlying structure of the real-world market. We take this one step
further and focus on reverse engineering specific financial markets with the help
of ABMs. Reverse engineering means that we are trying to find a generating
process of a real financial time series based on the time series itself. We provide
a first validation step, not by quantifying how well the reconstructed synthetic
market explains stylized facts but, rather by testing simple predictability.

In Jefferies, Hart, Hui, and Johnson (2000); Johnson, Lamper, Jefferies, Hart,
and Howison (2001), the authors developed a first reverse engineering approach,
using a “Grand Canonical” Minority Game (GCMG), whose detailed description
is found in Johnson, Hart, Hui, and Zheng (2000). The GCMG is an extension
to the basic MG, in which the total number of actively participating agents
fluctuates. The authors did not report results using real financial time series,
but a time series generated by a known ensemble of such agents they pretend
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to know nothing about this ensemble apart from its output. Hence, they called
it a “black box” ensemble. They then began with an ensemble of agents with
randomized parameters (so-called Third Party Games (3PGs)) and, by iteration,
“evolve” in parameter space this ensemble of 3PGs until its output matches
that of the known, black box, ensemble. Here, matching meant maximizing the
cross-correlation of the black box and 3PG time series. One may then open the
black box to determine how well this procedure has approximated the structure
of the unknown black box. When the evolutionary process is successful, this
can be applied to a real world series. In the sequel, we will follow this general
procedure and treat heuristically the resulting 3PG ensemble as a model of the
truly unknown real world market structure of traders.

The main challenge in this procedure is finding an adequately optimized set
of parameters for the 3PG, as parameter space is large and grows extremely
rapidly with every increasing level of sophistication. Furthermore, the land-
scape of the solution space is extremely rugged, reflecting the underlying degree
of frustration among competing agents in the model (and presumably, in the
market being modeled). For this search, we use a genetic algorithm (GA), which
is a methodology that adopts evolution used in nature to optimize the adapta-
tion of life to the environment (Goldberg, 1989; Holland, 1992). For example
in Arifovic (1996); Chen, Gou, Guo, and Gao (2008); Lettau (1997); Palmer,
Arthur, Holland, Lebaron, and Tayler (1994), GAs are successfully used to equip
agents with learning behavior for acting more profitably. We apply a GA not
for the individual learning process of the agents but for finding an ensemble of
agents and their strategies best able to reproduce the time series that we hope
to predict, referred to as the external time series throughout the article. In
Andersen and Sornette (2005), a prototype is developed which identified a new
mechanism for short-term predictability in ABMs. In order to test the validity
of this approach, i.e., to test how well the generating process of the time series
can be captured by the reverse engineered ABM 3PG, we analyze the predic-
tions we obtain from the identified 3PG when it must predict out-of-sample real
financial data.

2 Model / Methodology

2.1 General set-up of the reverse engineering method

Figure 1 illustrates the whole process from the input to the prediction which
will be explained stepwise in the following. In a nutshell, given a financial time
series over some time interval and for a fixed ABM, using a GA (specified by its
structure and parameters governing its search), we select a set of “best” ABMs
i.e., their output best matches the financial time series. By “best” match we
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Figure 1: demonstrates a process overview of how a time series of daily adjusted
closing prices is fed to a GA along with different parameters determining (i) the
type of ABM for the 3PG which is used for generating a similar time series to the
real one (during the in-sample period) and (ii) the convergence behavior of the
GA for the search of the best - most similar - 3PG according to measurements
like L1, L2 and the Hamming distance. This result is then analyzed with respect
to the types of ABMs present in which types of markets. The generating process
is validated by the accuracy of one-step predictions.

mean a minimization of “distances” between the financial time and the 3PG
series, based on correlations (Lamper, Howison, and Johnson, 2001) and differ-
ent standard norms. The results are found robust with respect to the choice of
these norms.

2.2 The Nasdaq Composite index as the input of the re-
verse engineering process

As input to our model, we use daily adjusted closing prices of the Nasdaq Com-
posite index. We assess the performance of the reverse engineering approach
from its ability to predict the signs of out-of-sample returns on the same Nasdaq
time series. Results are obtained for 606 predictions. We present both aggre-
gated metrics as well as results sorted according to different market regimes
(upward trend, downward trend and no-trend), and compare with standard
benchmarks i.e., with buy-and-hold (winning in upward trends), sell-and-hold
(winning in downward trends), and random strategies. By distinguishing the
three market regimes, we can infer from the performance of different type of
ABMs which population of investors were dominant. For instance, it is intuitive
and we confirm that trend-following strategies are dominant during upward
trending markets. More surprising is the evidence we find for contrarian (or
minority-type) strategies also performing well during such market phases, as we
describe below.

5



The size of our statistical tests over 606 predictions constitutes a significant im-
provement with respect to prior effort of Andersen and Sornette (2005), which
dealt with only a few tens of predictions. We were able to improve on this
previous work using more efficient coding and the access to more computer re-
sources available at ETH Zurich through the Brutus super-cluster. While much
larger, our sample size remains limited by the high computational processing
costs associated with the search of the GA exploring a large parameter space.

2.3 Description of the different types of ABMs

While we use different ABMs to be described shortly, the following properties
are common to all of them. For a given ABM with N agents, each agent
has to repeatedly choose among buying, selling or staying out of the market,
according to their strategies. The agents base their decision on (i) the previous
performance of their strategies indicated by the virtual point counters, (ii) their
threshold - is it profitable to trade with their strategies? - and (iii) their memory
of prior returns - in its binary representation (up / down) - of the external time
series.

The following types of ABMs are used, which differ in the incentives provided
to the agents.

1. “Grand Canonical” Minority Game (GCMG). In the GCMG, an
agent is rewarded for being in the minority (Johnson, Hart, Hui, and
Zheng, 2000), whereby the extension of the classical MG consists therein
that an agent has the possibility not to trade and hence, allowing for a
fluctuating number of agents invested in the stock market.

2. “Grand “Canonical” Majority Game (GCMjG). In the GCMjG,
an agent is rewarded for being in the majority instead of in the minority
(Marsili, 2001).

3. Delayed “Grand Canonical” Majority Game (delGCMjG). In
the delGCMjG, an agent is rewarded similarly to an agent in the GCMjG
but for the fact that the return following the decision is delayed by one
time step, in order to reflect the more realistic market property that re-
turns are accrued after some time following an investment decision. The
grand canonical version is derived from the so-called $-game introduced
by Andersen and Sornette (2003).

4. Delayed “Grand Canonical” Minority Game (delGCMG). This
game is the analog of the delGCMjG, except for the minority payoff,
whereby each agent is rewarded according to how the return at the next
time step is compared with her decision taken at the previous time step.
In other words, the delGCMG is a delayed GCMG.
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5. Mixed Game (MixG). In the version of the MixG used here, we con-
sider a mix of agents, with 50% of the agents obeying the rules of the
GCMG and the other 50% obeying the rules of the GCMjG.

2.4 Description of the genetic algorithm

The 3PG which best reproduces the external time series provides the solution
to our reverse engineering problem. This 3PG is determined from a search in
the space of parameters of the ABM using a Simple Genetic Algorithm (SGA)
as shown in Algorithm 1. First a population of 3PGs is initialized, whereby
the number of agents, the number of strategies an agent obtains, the size of her
memory, and her threshold are constant in the current version of the SGA. The
only aspect in which the 3PGs differ is the initial strategy distribution (ISD)
which is the crucial parameter set over which we optimize the fit to an external
time series.

Algorithm 1 Simple Genetic Algorithm.
function SGA(extReturns, fitness(·))

t← 0 . Time in nbr of generations
p← p0 . Initialization of 3PGs
while (not terminal condition) do . Evolution

t← t+1
fitness(pt−1, extReturns) . Calculate the fitness
pt ← crossOver(selection(pt−1)) . Create a new generation
mutation(pt) . Mutate randomly

end while
return bestOf(pt) . Return best 3PG

end function

For the first generation, the ISDs are initialized randomly. Then for every 3PG,
its fitness - reflecting how well the time series generated by the 3PG matches
the external time series - is determined. This value is computed via a fitness
function using different metrics, such as the L1 and L2-norms, the Hamming
distances (with binary and ternary coding) between the two time series.

3PGs are selected to produce offspring according to their fitness, with the fittest
yielding more offspring. Each new generation of 3PGs is obtained as a mixture
of the agents and of the strategies of the previous parent generation. Many
generations evolve until a convergence criterion is reached, which leads us to
finally identify a 3PG which best represents the external time series within
the in-sample period. The search is performed ten times to obtain ten 3PGs.
The differences between these ten solutions provide a measure of the quality of
the reverse engineering method. The ten 3PGs are also used to quantify the
uncertainty in the next-day out-of-sample prediction.

Figure 2 shows the excess demand obtained from the aggregate decisions of all
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Figure 2: This is an illustration of the procedure which is repeated for each day
out of the analyzed period of 606 days and for each of the 5 types of ABMs
described in Subsection 2.3. In the figure, the actual data (Nasdaq return il-
lustrated as red crosses) and that generated by the reconstructed virtual stock
market (the best 10 3PGs - in this sample consisting of GCMjG agents - illus-
trated as gray dots and their average in blue) are plotted, whereby the vertical
line separates the in-sample period during which their similarity is optimized
(here 25 days) from the out-of-sample period (one-step prediction).
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the agents of one selected best 3PG for a given time window of the Nasdaq
Composite index. The data point to the right of the vertical line is the next-
step, out-of-sample, prediction, whereas all points to the left of it belong to the
in-sample period during which the 3PG has been trained on the external time
series and has been optimized in terms of its ISD. Every run of the GA results
in one best - according to its fitness - 3PG which then can be used to predict
the next day return.

For each time window of the Nasdaq Composite index, we obtain the best 3PG
for each of the five types of ABMs defined in Subsection 2.3, using the above GA.
This provides us with five different “lenses” to examine the Nasdaq Composite,
that reveal its different characteristics.

3 Validation by the statistical significance of the
success rate of next-day prediction

In order to test the predictive value of the reverse engineered 3PG for each of the
five ABMs, we report the success rate, that is, the fraction of days out-of-sample
for which the predicted and realized returns have the same sign.

In order to assess the statistical significance of the obtained success rates, we
compare them to those of 1000 random strategies, obtained by predicting with
equal probability 1/2 the rise or decline of each next-day market price. Using
random strategies has been shown to provide the most robust estimations of
the statistical significance of strategies in the presence of biases and trends
(Daniel, Sornette, and Woehrmann, 2009). In Table 1, we report the p-value of
the 3PGs for each ABM, calculated as the fraction of random strategies that
perform better.

Table 1 reports the success rates and their corresponding p-values for each type
of ABM averaged over (i) all 606 days, (ii) for the trending 1 periods (202
days) and (iii) for the non-trending 2 periods (404 days). In the second column,
the success rates are averaged over all parameter sets of the GA. The third
and fourth column report the minimum and maximum success rates over the
parameter sets of the GA.

Over all days independently of the presence or absence of trends, the success
rates of the reverse engineered 3PG are superior to all random strategies (p <

1Bullish markets consisting of at least double the amount of days having a positive return
than days having a negative return. In other words, on 2 out of 3 days the market goes up;
vice-versa for bearish markets.

2Not trending markets are composed of an equal amount of days on which the market is
going up as going down.
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agent type (p-val) avg min max
All periods

GCMG (0.01) 0.55 0.51 0.60
GCMjG (0.00) 0.57 0.54 0.60
delGCMjG (0.00) 0.57 0.54 0.59
delGCMG (0.02) 0.54 0.51 0.57
MixG (0.00) 0.56 0.53 0.58

Trending periods
GCMG (0.02) 0.57 0.54 0.63
GCMjG (0.00) 0.66 0.63 0.68
delGCMjG (0.00) 0.67 0.64 0.70
delGCMG (0.01) 0.58 0.55 0.61
MixG (0.00) 0.67 0.62 0.68

Non-trending periods
GCMG (0.07) 0.53 0.49 0.58
GCMjG (0.13) 0.53 0.49 0.55
delGCMjG (0.24) 0.52 0.49 0.54
delGCMG (0.15) 0.52 0.50 0.55
MixG (0.33) 0.51 0.48 0.54

Table 1: Success rates (average, minimum, and maximum) and their p-values
(stated in parentheses) for each type of ABM cumulated over (i) all days, (ii) the
trending periods, and (iii) the non-trending periods. The trending periods cover
202 days from 1985-10-25 until 1986-03-20, and from 1984-01-05 until 1984-05-
29. The non-trending periods cover 404 days from 1976-05-10 until 1976-09-30,
from 1984-04-05 until 1984-08-28, from 2002-06-20 until 2002-11-11, and from
2008-10-21 until 2009-03-17.
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0.001) for the GCMjG, delGCMjG, and MixG. For the GCMG and delGCMG,
the results are still very significant with p-values given respectively by 0.01 and
0.02.

Decomposing the 606 test days into trending and non-trending periods, we find
that the success rates are very significant for the former periods and less so
for the later periods. The reverse engineering procedure is thus a good trend
detection method.

While it is expected that the GCMjG, delGCMjG, and MixG would perform
in trending period due to their majority incentive, it is a priori quite surprising
that the GCMG and delGCMG also perform very significantly. We interpret
this result as follows. First, the reverse engineering process applied with the
GCMjG, delGCMjG, and MixG selects the trend-following strategies which,
when used by a majority of agents, allow a good fit to the trend. Second, the
fact that GCMG and delGCMG also perform well in trending periods implies
that these trending periods are not just simple trends, but are decorated with
cycles or alternating correction phases that the minority mechanism is able to
pick up.

In contrast, all ABMs show a strong drop in performance in the non-trending
periods, with the best performing game being the GCMG. This later result can
be rationalized by the minority incentive of this game, which is known to lead to
oscillation prices resulting from the frustration inherent to the minority payoff
(Marsili, 2001).

4 Conclusion

In conclusion, we have shown that reverse engineering a real financial time series
with simple ABMs selected by using a genetic algorithm might be possible and
provide novel insight in the properties of financial time series. Notwithstanding
the simplicity (some would say “naivety”) of the used ABMs, the aggregation
of simple interactions at the micro level is sufficient to generate sophisticated
structures at the macro level, which is probably the explanation for the good
performance obtained in the validation step.

Finally, the method developed here is more generally applicable to the prediction
of complex systems with an underlying multi-agent structure.

Acknowledgements: We acknowledge financial support from the ETH Com-
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