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Continuous center-of-mass position measurements performed on an interacting harmonically
trapped Bose-gas are considered. Using both semi-analytical mean-field approach and completely
quantum numerical technique based on positive P-representation, it is demonstrated that the atomic
delocalization due to the measurement back action is smaller for a strongly interacting gas. The nu-
merically calculated second-order correlation functions demonstrate appearance of atomic bunching
as a result of the center-of-mass measurement. Though being rather small the bunching is present
also for strongly interacting gas which is in contrast with the case of unperturbed gas. The per-
formed analysis allows to speculate that for relatively strong interactions the size of atomic bunches
can become smaller than the initial cloud size resulting in a sort of squeezing effect.

PACS numbers: 05.30.Jp, 03.75.Kk, 02.70.Ss

I. INTRODUCTION

Now when generation of the trapped degenerate gases
has become almost routine procedure in many laborato-
ries the experimental and theoretical activities are di-
rected towards applications of these systems. Among
such applications are new frequency standards [1] and
various types of thin force detectors [2, 3]. Another im-
portant application of such quantum systems is testing
quantum-mechanical predictions in mesoscopic regimes.
All these experiments involve measurements of some

property of the trapped gas. As is extensively discussed
in quantum theory, the measurements of small objects
do inevitably disturb them even if they are prepared as
so called quantum non-demolition [4] ones. This issue
becomes especially important if the measurement is con-
tinuously performed during an experiment. A prominent
example of such an experiment is quantum-limited feed-
back control of the gas [5, 6]. In this case the unavoidable
measurement back action has to be taken into account to
correctly describe the system evolution.
An important degree of freedom is the collective or

center-of-mass position of the trapped gas. This degree
of freedom can be accessed via bringing the system into
interaction with a few-mode external field. Hence, it is
potentially simpler to implement this type of measure-
ments than a measurement resolving internal structure
of the trapped cloud. Thus, quantum motion of a degen-
erate gas with the continuously measured center-of-mass
position is worth studying and will be addressed in this
article.
Unlike some other works [2, 6], where similar problems

are addressed, we focus on a gas of interacting particles.
It is known that the center-of-mass (CM) motion of a
harmonically trapped gas is not coupled to the relative
degrees of freedom [7]. This means that the inter-particle
interactions do not affect the quantum dynamics of the
center of mass. The CM measurement does, however, in-

fluence the properties that depend on the relative motion
such as particle density distribution [6]. These properties
are also affected by the inter-particle interaction. Thus
an interesting question arises. Whether the simultaneous
action of the CM position measurement and the interac-
tion can result in some nontrivial dynamics of the gas
or, in other words, how the interaction strength influ-
ences the behavior of the measured gas? It should be
mentioned that interesting effects in a different system
that however also contains open interacting BEC have
recently been discussed in Ref. [8].

Considering a harmonically trapped repulsively inter-
acting 1D Bose gas we show that interaction-induced
nonlinearity provides a mechanism that partially com-
pensates measurement back action and stabilizes the
cloud spreading. This can be accompanied by the
”squeezing” of the instant density profile of the trapped
gas. The master equation used in this article to describe
the effect of the measurement also describes situations
where the CM of the gas is weakly coupled to a hot reser-
voir [9]. To some extent such coupling might describe
quantum fluctuations of the trapping potential that are
always present in an experiment. Thus the discussed ef-
fects might be relevant even for the cases where there is
no explicit observation or control.

We base our discussions on the numerical solution
of the many-body quantum problem using positive P-
representation of the density operator [10]. Although this
approach is known to be limited to relatively small evo-
lution times [11] it seems to be least resource consuming
allowing to obtain reasonable results on a single desk-
top computer. As a complement to numerical results we
derive simplified mean-field approach that qualitatively
comply with numerics.

The article is organized as follows. In Sec. II the model
that is considered is described and examples of possible
physical implementations of the CM position measure-
ments are given. The mean-field approach is derived and
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discussed in Sec. III. Section IV is devoted to the nu-
merical analysis of the system and to the comparison of
the results with the mean-field predictions. In Sec. V we
present the summary of the results of the article.

II. MODEL

Let us consider a gas of spin-0 bosons with mass m
interacting via a repulsive δ-function potential. The gas
is trapped in a cylindrical potential along x axis with
frequencies ω0 and ω⊥ in axial and radial directions, re-
spectively; a0 =(mω0)

−1/2 and a⊥ =(mω⊥)
−1/2 are the

corresponding lengths of the harmonic oscillator ground
state. In the case of tight confinement in radial direction
(ω0 ≪ ω⊥) and at low enough temperature all atoms
are in the ground state of the radial potential and the
gas can be considered as being effectively a trapped 1D
gas. In quasi-1D case given that a⊥ ≫ a0 the inter-
action of bosons can be described by the coupling con-
stant g1D=2asω⊥ [12], where as is the s-wave scattering
length.
We assume that the center-of-mass or, more precisely,

collective position of the gas in a trap is continuously ob-
served. Strictly speaking one should distinguish between
the center-of-mass and collective position. The former is
the true mean value that accounts for particle number
fluctuations while the latter is merely the weighted sum
of particles coordinates. Below we will deal with states
having small particle number fluctuations and neglect the
mentioned difference.
As a physical model of such a measurement one can

suggest, for example, the approach discussed in [13] and
experimentally realized in [14]. In this experiment the
87Rb atoms trapped in an atom chip have been coupled
to high-finesse optical cavity. The authors show that the
atoms can be localized entirely within a single antinode
of the standing-wave cavity field. Under these conditions
the collective atomic position determines the atom-field
coupling strength and can be figured out measuring the
cavity transmission. Another straightforward example
is Faraday rotation of the non-resonant light polariza-
tion passing through the gas placed in a non-homogenous
magnetic field. Within the framework of the classical the-
ory [15] one can easily find the following expression for
the total rotation angle

φ =
2πe3ω2

m2
ec

2(ω2
0 − ω2)2

∫

n(x)B(x)dx, (1)

where e is the charge of an electron, me is the mass of
an electron, c is the velocity of light in a vacuum, ω is
the probe light frequency, ω0 is the atomic resonance fre-
quency n(x) is the atom density, B(x) is the magnetic
field. Here we integrate over the atomic sample thick-
ness and neglect second order deviations of the refractive
index from unity. It is seen from Eq. (1) that in the case
of the linear magnetic field the Faraday rotation is pro-
portional to the center-of-mass coordinate of the atoms

X̄ = (1/N)
∫

dxxn(x), where N is the estimate of the
number of atoms that, for simplicity might be thought
of as the average number of atoms. One certainly can
invent several other schemes to measure the CM coordi-
nate. Therefore, below we do not concentrate on a par-
ticular realization but consider the effects typical for all
possible experimental approaches to CM position mea-
surements.
Our main concern is the measurement back action thus

we ignore particular measurement outcomes and analyze
unconditioned dynamics. In this case the system is de-
scribed by the master equation [20]

˙̂ρ = −i[Ĥ, ρ̂]− κ[X̂, [X̂, ρ̂]]. (2)

The first term on the right-hand side of this equation cor-
responds to the hamiltonian evolution. In second quan-
tization the Hamiltonian has the form

Ĥ =

∫

[

− 1

2m
Φ̂†(x)∂2

xΦ̂(x) +
mω2

0

2
x2Φ̂†(x)Φ̂(x)

+ g1DΦ̂
†(x)2Φ̂(x)2

]

dx, (3)

where Φ̂(x) and Φ̂†(x) are bosonic field operators obeying

the commutation relation [Φ̂(x), Φ̂†(x′)]= δ(x−x′). The
second term in Eq. (2) describes the measurement of the
CM coordinate of the atoms

X̂ =
1

N

∫

xΦ̂†(x)Φ̂(x)dx. (4)

The parameter κ characterizes the measurement resolu-
tion of the apparatus and determines the back-action
strength. Note that the same master equation can be
obtained if all the atoms are weakly coupled to the same
heat bath of high temperature. Namely, taking these
limits into account Eq. (2) follows from the well known
Caldera-Legget master equation [9].

III. MEAN-FIELD APPROXIMATION

The evolution of the continuously measured interact-
ing Bose gas can be found from the Hamiltonian (3) and
the master equation (2). However, even for the moder-
ate numbers of atoms N the direct numerical integration
of the master equation is impracticable due to the large
dimensionality of the N -atom Hilbert space. This prin-
ciple problem of many-particle physics can be attacked
with various numerical methods. In this article we use
approach based on positive P-representation of the den-
sity operator [10]. However, before presenting numerical
results we give a simple mean-field consideration that
qualitatively describes the system behavior. It is shown
that even this approach reveals some interesting features
in the dynamics of the continuously measured interacting
Bose gas.
We start by defining a single-atom density matrix as

ρ(x1, x2) = Tr{Φ̂†(x1)Φ̂(x2)ρ̂}. (5)
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The evolution of the single-atom density matrix is de-
scribed by the following equation

ρ̇(x1, x2) =
{

i
m

2
(∂2

x2
− ∂2

x1
)− i

mω2
0

2
(x2

2 − x2
1)

+ 2ig1D[n(x1)− n(x2)]

− κ

N2
(x2 − x1)

2
}

ρ(x1, x2), (6)

which was obtained from the master equation (2) ne-
glecting density-density correlations. More precisely, the
following approximation has been used

〈Φ̂†(x1)
2Φ̂(x1)Φ̂(x2)〉 ≈ (〈n̂(x1)〉 − 1)ρ(x1, x2). (7)

It should be noted that without the last term in the
right-hand side of Eq.(6) the substitution ρ(x1, x2) =
ϕ∗(x1)ϕ(x2) demonstrates the equivalence of this equa-
tion to the standard Gross-Pitaevskii equation (GPE) for
the condensate wave-function. The presence of the mea-
surement, as can be seen from Eq. (6), results in decay
of non-diagonal elements (coherence) of the single-atom
density matrix [16]. This measurement-induced decoher-
ence does not allow to describe the gas in terms of the
condensate wave-function.
Using Eq. (6) the evolution of single-atom fluctuations

can be derived as

∂t〈∆x2〉 =
1

m
〈{x, p}〉, (8)

∂t〈∆p2〉 = −mω2
0〈{x, p}〉 − 4g1D〈n′(x)p〉 + 2κ

N2
,

∂t〈{x, p}〉 =
2

m
〈∆p2〉 − 2mω2

0〈∆x2〉 − 4g1D〈n′(x)x〉,

where n′(x) denotes the derivative of the density distri-
bution with respect to the coordinate. Here we restrict
the consideration to the states with 〈x〉 = 〈p〉= 0. The
system (8) is not closed since it contains the terms pro-
portional to 〈n′(x)p〉 and 〈n′(x)x〉 that in general cannot
be expressed via the single-atom second moments only.
To render the system (8) closed we perform the follow-

ing rough approximation, which, as will be seen below,
enough to grasp qualitative behavior. First we note that
without interactions the continuous measurement of the
CM coordinate does not change the shape of the distribu-
tion function describing the state of the atoms. It follows
directly from the solution of the Fokker-Planck equation
(FPE) for the Wigner function W (x, p) in the case of the
non-interacting gas

∂tW (x, p) =
(

− p

m
∂x +mω2

0x∂p +
κ

N2
∂2
p

)

W (x, p). (9)

Solving this equation analytically with Gaussian initial
condition one easily finds that the measurement of BEC
only changes the width of the distribution preserving its
Gaussian shape. We assume that in the considered situ-
ation the distribution also remains Gaussian during the
system evolution. This is certainly not true for the strong

interaction case [7]. However, for weak interactions this
might be rather good approximation. In this case one
obtains the following expressions for the sought averages

〈n′(x)p〉 ≈ − N

8
√
π〈∆x2〉3/2 〈{x, p}〉,

〈n′(x)x〉 ≈ − N

4
√
π〈∆x2〉3/2 〈∆x2〉. (10)

Substituting this result into the system (8) one obtains
the following closed system of equations

∂t〈∆x2〉 =
1

m
〈{x, p}〉,

∂t〈∆p2〉 = −mΩ2
eff〈{x, p}〉+

2κ

N2
,

∂t〈{x, p}〉 =
2

m
〈∆p2〉 − 4mΩ2

eff〈∆x2〉, (11)

where the effective frequency Ωeff defined via

Ω2
eff = ω2

0 −
g1DN

2
√
πm〈∆x2〉3/2 (12)

has been introduced. The effective frequency is deter-
mined by the size of the atomic localization domain,
which is represented by 〈∆x2〉. The set of nonlinear or-
dinary equations (11) can easily be solved using one of
well established numerical techniques [17].
To characterize the effect of the CM position measure-

ment on the gas we use the so called relative spreading
of the atoms η, defined as

η =

√

〈∆x2〉
meas

−
√

〈∆x2〉
no−meas

√

〈∆x2〉
meas

. (13)

Taking for the initial values of the fluctuations the results
obtained from the solution of the time-independent GPE
we obtain the results shown in Fig. (1). In this plot the
dependence of the relative spreading on the interaction
parameter g1DN [21] is shown for two values of measure-
ment strength κ/N2. The time instant is t = T0/4, which
corresponds to the time when initial momentum uncer-
tainty transforms to the position uncertainty. It is seen
that being always positive the relative spreading η goes
down for larger values of the interaction constant. This
means that the CM measurement always increases the
width of the atomic localization domain, but for stronger
atomic interactions the measurement-induced spreading
is slower. Thus, an interacting trapped gas appears to be
more stable against the measurement back-action noise
than an ideal.
A simple explanation of this effect might be obtained

on the basis of Eq. (12). The effective frequency repre-
sents a degree of atomic localization in an effective po-
tential that is a combination of the trap and mean-field
potentials. According to Eq. (12) the measurement in-
duced spreading of the cloud due to non-linear response
also increases the effective frequency, which corresponds
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FIG. 1: Relative spreading of the atomic cloud (η) as a func-
tion of the interaction strength for κ/N2 = 1 (blue squares)
and κ/N2=5 (red circles).

to better localization. This mechanism partially compen-
sates for atomic delocalization due to the measurement
back action. As follows from Eq. (12) the effect should be
more pronounced for larger atom-atom coupling. How-
ever, the validity of this approach is limited at least by
g1DN<2

√
πmω2

0〈∆x2〉3/2.
There is another interesting feature of the dynamics

of an interacting gas subjected to the CM position mea-
surement. Note that the CM of harmonically trapped
gas is not coupled to the relative motion [7]. Thus,
the measurement-induced delocalization of the CM is in-
creased regardless of atomic interaction strength. The
single atom distribution on the contrary depends on the
interaction and for strong interaction the measurement-
induced change of this quantity can be rather small.
This implies appearance of correlations corresponding to
bunching of atoms and narrowing of the instant atomic
distribution compared with the initial unperturbed one.

The easiest way to demonstrate this is to consider two
atoms. Assume that initially each of them spread over
the same region in the trap (Fig. 2). For the sake of
simplicity let the atoms to be spatially anti-correlated
(perform anti-phase oscillations). In this case, the size of
the atomic cloud is equal to the size of the single-atom
localization region, while the CM is strongly localized
near the center of the trap. The measurement of the CM
leads to its delocalization, whereas the size of the atomic
cloud (atomic localization domain) remains almost un-
changed. As illustrated in Fig. 2 to ensure such dynamics
the atoms have to bunch together. Since for strong inter-
action the region occupied by the atoms grows very slow
the size of this bunch have to become smaller than the
initial atomic cloud demonstrating a sort of squeezing.
In an experiment this effect manifests itself in a size of a
single resonance-image or contrast-image snapshot that
should become narrower after some time of the system

FIG. 2: Two-atom illustration of the measurement-induced
bunching. The oval symbolizes the region of a single-atom
localization that remains almost unchanged. The pulsed-
shape distribution represents the CM position uncertainty
that gradually increases due to the measurement back ac-
tion. These two conditions can be simultaneously fulfilled if
the atoms constituting the gas bunch together.

evolution.

IV. NUMERICAL SIMULATIONS

In this section we discuss the results of ab initio nu-
merical simulations of the system. We use the numerical
scheme based on the positive P-representation [10]. In
spite of known drawbacks [11] of this approach it is ef-
ficient for dynamical calculations restricted to relatively
short evolution times or small nonlinearities. In addition,
this method is rather easy to implement.

A. Phase-space representation

To treat the problem numerically the continuous
atomic distribution is approximated by a lattice model.
The space region occupied by the atoms is divided into
M equal parts of the length ∆x: xi = i∆x, where
i = 1, . . . ,M . For each lattice site i we define annihi-
lation operator âi =

√
∆xΦ̂(xi). The Hamiltonian (3)

can be approximated by the following Hamiltonian of the
Bose-Hubbard form

Ĥ =
∑

ij

Υij â
†
i âj +

g1D
∆x

∑

i

(â†i )
2â2i . (14)

Here the dimensionless ”generalized frequency” Υ is de-
fined as

Υij =

(

1

∆x2
+

x2
i

2

)

δij−
1

2∆x2
δi+1j−

1

2∆x2
δi−1j . (15)

The discrete version of the non-Hamiltonian term of the
master equation (2) is obtained in much the same way
and need not be explicitly written.
The total (many-atom) density operator is expanded

using a positive P-representation P (+)

ρ̂ =

∫

P (+)(a)Λ̂(a)d2Mα d2Mβ (16)
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using the following operator basis

Λ̂(a) =
|α〉〈β∗|
〈β∗|α〉 . (17)

Here, a = (α,β), where α = {α1, . . . , αM} and β =
{β1, . . . , βM} are complex vectors with components αi=
α′
i+ iα′′

i and βi = β′
i+ iβ′′

i . The P (+) representation is
guaranteed to always produce positive-definite diffusion,
which is a necessary requirement for a stochastic differ-
ential equation.
Substituting the expansion (16) in the master equa-

tion (2), using the standard operator identities [10]

âΛ̂(a) = αΛ̂(a),

â
†Λ̂(a) = (∂α + β)Λ̂(a),

Λ̂(a)â = (∂β +α)Λ̂(a),

Λ̂(a)â† = βΛ̂(a) (18)

and integrating by parts, provided boundary terms van-
ish, one gets the FPE for the positive P -function

∂

∂t
P (+)(a) =

[

− ∂µAµ +
1

2
∂µ∂ν(BintB

T
int)µν (19)

+
1

2
∂µ∂ν(BmeasB

T
meas)µν

]

P (+)(a).

Here, ∂µ denotes partial derivatives ∂/∂αµ if µ ≤ M and
∂/∂βµ−M otherwise, µ and ν take values µ, ν=1, . . . ,M .
The elements of the drift vector A={A1, . . . , AM+1, . . .}
are given by

Ai = −iΥijαj − i
g1D
∆x

α2
i βi −

κ

N2
x2
iαi, (20)

Ai+M = iΥjiβj + i
g1D
∆x

β2
i αi −

κ

N2
x2
i βi.

The diffusion matrix can be divided into two parts cor-
responding to different noise sources effecting the atoms.
One of these sources may be attributed to the atom-atom
interactions. It is described by the diagonal matrix

Bint =

√

g1D
∆x

diag{(1− i)α1, . . . , (1 + i)β1, . . .}. (21)

The other noise source is the measurement back action.
This noise is represented by the matrix Bmeas with only
one (first) non-zero column. This matrix is written as

Bmeas = −
√
2κ

N













x1α1 0 . . . 0
...

...
. . .

...
x1β1 0 . . . 0
...

...
. . .

...













. (22)

It is easy to check that the total diffusion matrix is given
by D = BmeasB

T
meas + BintB

T
int. Assuming that the

noise sources discussed above are represented by indepen-

dent Wiener processes one can show that the FPE (19)

is equivalent to the set of Itô stochastic differential equa-
tions

da = A(a, t)dt+Bint(a, t)dWint(t)

+ Bmeas(a, t)dWmeas(t). (23)

For the numerical simulations it is instructive to obtain
a set of equations for real functions instead of Eq. (23).
To do so we following, for example, Ref. [18] decom-
pose the drift vector and the noise matrices into real and
imaginary parts as B = B

′+ iB′′ and A = A
′+ iA′′.

Since Λ̂(a) is an analytic function the derivatives ∂α
and ∂α can be evaluated in either real or imaginary di-
rections so that the resulting drift and diffusion terms
can always be made real. Taking this into account
one can define the new 4M -dimensional real drift vec-
tor A

¯
={A′

1, . . . , A
′
M+1, . . . , A

′′
1 , . . . , A

′′
M+1, . . .} with the

elements

A′
i = Υijα

′′
j +

g1D
∆x

(n′′
i α

′
i + n′

iα
′′
i )−

κ

N2
x2
iα

′
i, (24)

A′′
i = −Υijα

′
j −

g1D
∆x

(n′
iα

′
i − n′′

i α
′′
i )−

κ

N2
x2
iα

′′
i ,

A′
i+M = −Υjiβ

′′
j − g1D

∆x
(n′′

i β
′
i + n′

iβ
′′
i )−

κ

N2
x2
i β

′
i,

A′′
i+M = Υjiβ

′
j +

g1D
∆x

(n′
iβ

′
i − n′′

i β
′′
i )−

κ

N2
x2
i β

′′
i .

Here, n′
i=α′

iβ
′
i−α′′

i β
′′
i and n′′

i =α′
iβ

′′
i +α′′

i β
′
i are real and

imaginary parts of the complex atom number ni=n′
i+in

′′
i .

The new stochastic matrices B
¯
int and B

¯
meas are

B
¯
int =

(

Ø B
′
int

Ø B
′′
int

)

, (25)

with

B
′
int =

√

g1D
∆x

diag{α′
1 + α′′

1 , . . . , β
′
1 − β′′

1 , . . .},

B
′′
int =

√

g1D
∆x

diag{−α′
1 + α′′

1 , . . . , β
′
1 + β′′

1 , . . .},(26)

and

B
¯
meas =

(

Ø B
′
meas

Ø B
′′
meas

)

, (27)

with

B
′
meas =

√
2κ

N













−xiα
′′
i 0 . . . 0

...
...

. . .
...

xiβ
′′
i 0 . . . 0

...
...

. . .
...













(28)

and

B
′′
meas =

√
2κ

N













xiα
′
i 0 . . . 0

...
...

. . .
...

−xiβ
′
i 0 . . . 0

...
...

. . .
...













. (29)
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The matrixØ in Eqs. (25) and (27) denotes the 2M×2M
matrix with zero elements.
The SDE (23) is then cast into the following form con-

taining new real 4M -dimensional Wiener noise vectors
W
¯

int and W
¯

meas:

da
¯

= A
¯
(a
¯
, t)dt+B

¯
int(a

¯
, t)dW

¯
int(t)

+ B
¯
meas(a

¯
, t)dW

¯
meas(t). (30)

The 4M dimensional real vector a
¯
is formed of real and

imaginary parts of α and β. The elements of noise vec-
tors dW

¯
int and dW

¯
meas with the elements denoted by

dW
¯

(int)
i and dW

¯
(meas)
i obey the following properties

〈dW
¯

(meas)
i 〉 = 〈dW

¯
(int)
i 〉 = 0,

〈dW
¯

(int)
i dW

¯
(int)
j 〉 = δijdt,

〈dW
¯

(meas)
i dW

¯
(meas)
j 〉 = δijdt,

〈dW
¯

(int)
i dW

¯
(meas)
j 〉 = 0, ∀ i, j. (31)

Note that the measurement noise matrix B
¯
meas consists

of a single non-zero column. This means that all the
modes (space points) of the trapped gas are affected by
the same measurement-induced noise. This is expectable
since the considered noise acts on the collective (CM)
degree of freedom of the system. The noise matrix B

¯
int

that originates from the atomic interactions is diagonal,
which means that each space point of the gas is driven
by the corresponding Wiener noise. Noise sources act-
ing on different coordinates of the gas are statistically
independent.
Taking into account the limited applicability of the ap-

proach, as discussed above, there is no need in imple-
menting numerical schemes with higher order approxi-
mation. Thus the simplest explicit Euler-Maruyama al-
gorithm has been used to numerically solve SDE (30).

B. Results of numerical simulation

As has been discussed in Ref. [11], numerical solution
of SDE based on positive P-representation might have a
problem of ”exploding” trajectories, which is the result
of incorrectly ignored boundary term. The problem ad-
dressed in this article due to interaction-induced nonlin-
earity belongs to the class of problems suffering from the
”exploding” trajectories. This can be seen from the terms
proportional to interaction constants in Eq. (23). As soon
as the system evolves to a quantum state with α∗ 6= β

these terms may acquire a real part responsible for expo-
nential growth. Thus considerable (in some sense) devia-
tion of the β from α∗ indicates the limits of applicability
of the approach. In a series of numerical experiments
performed for different values of the interaction constant
the evolution time has been determined during that the
dynamics demonstrates no sign of ”exploding” trajecto-
ries. This ”secure” time interval is about quarter of the

FIG. 3: Atom density profiles for different coupling constants.
The curves shown by empty and filled symbols correspond
to the situations with and without the measurement, respec-
tively.

trap oscillation period. Thus the numerical simulation
results presented below correspond to T0/4.
For the initial state of the system it is convenient to

take BEC broken-symmetry coherent state. This state
for the lattice model reads

|Ψ〉 = |ϕx1
〉 ⊗ . . .⊗ |ϕxM

〉, (32)

where ϕxi
is the value of the solution of the time-

independent Gross-Pitaevskii equation in the space point
xi. The state gives the following initial values for the
phase-space variables

α′
i(0) = Re(ϕxi

), β′
i(0) = α′

i(0),

α′′
i (0) = Im(ϕxi

), β′′
i (0) = α′′

i (0). (33)

The results of numerical calculations of the atom den-
sity profile for different values of the interaction strength
g1DN are shown in Fig. 3. The curves shown by empty
and filled symbols correspond to the situations with
and without the measurement, respectively. For small
interaction strength the density profiles corresponding
to these cases differ substantially (circles). The differ-
ence becomes less essential with the increase of g1DN
(squares). For yet stronger interaction the effect of
the measurement becomes practically negligible, compare
curves plotted with filled and empty triangles.
Figure 4 compares the relative spreading of the atoms

η (13) as a function of the interaction strength for nu-
merical simulation (filled symbols) and the mean-field
approach of Sec. III (empty symbols). Curves shown by
squares (blue) and circles (red) correspond to different
values of κ/N2. It is seen that both methods predict
similar qualitative behavior of the relative atomic spread-
ing. That is the numerical simulations confirm predicted
earlier decrease of spreading η with increasing of atom-
atom interaction strength. However, some quantitative
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FIG. 4: Relative spreading of the cloud (η) as a function of
the interaction strength. The solid lines are the results of
the numerical simulation and the dashed lines are the results
of the mean-field approximation. Squares (blue) and circle
(red) curves correspond to different values of the measurement
resolution.

discrepancy is observed, which is found to be more pro-
nounced for larger g1DN . This is not surprising since
in deriving the mean-field approach a couple of not-well-
justified assumptions have been made. One of them is
the assumption that the density-density type correlations
are small. This is exactly the case for the chosen initial
state (32) but may become wrong after some time of the
system evolution. The other assumption that is certainly
violated for a strongly interacting gas is the gaussian den-
sity profile approximation. These poor approximations of
the mean-field approach result in quantitative difference
between the results of the two methods. Nevertheless, the
essential feature of interacting gas dynamics subjected to
the CM position measurement can be grasped within the
mean-field approximation as derived above.
The qualitative arguments presented at the end of

Sec. III indicate the possibility of generating bunched
states. These states are also characterized by squeezed
compared with the unperturbed BEC ground state den-
sity profile. Clearly the discussed bunching effect should
manifest itself in the second-order correlation function,
which can be defined as

g2(x) =
〈Φ̂†(0)Φ̂†(x)Φ̂(x)Φ̂(0)〉
〈Φ̂†(0)Φ̂(0)〉〈Φ̂†(x)Φ̂(x)〉

. (34)

This quantity characterizes density-density correlations
between the trap center and the point with the coordi-
nate x. In case of independent densities in these points
g2(x) = 1, increased (decreased) likelihood to detect
atoms separated by x means g2(x) > 1 (g2(x) < 1).
Figure 5 shows these density-density correlations for

κ/N2=5 and different values of atom-atom interactions.
It is seen that for small coupling strength g1DN the mea-
surement of the collective coordinate leads to the well

FIG. 5: Second-order correlation functions for κ/N2=5

and various values of the atom-atom interaction strength
g1DN .

observed bunching of the atoms (the curve shown with
circles). This indicates that inside the space region oc-
cupied by the atoms they are distributed non-uniformly,
that is the atoms are grouped in a bunch with the size
smaller than that of the occupation region. This is a
natural result taking into account that the measurement
back-action noise acts on the collective observable result-
ing in the overall delocalization of the atoms while keep-
ing the initial instant density distribution.
For larger coupling strength, the curve shown with

squares in Fig. 5, the value of the second-order corre-
lation function g2(x) is smaller for the small separations,
x → 0, than in the previous case. This indicates the
smaller degree of bunching that is the result of increased
atom-atom repulsion. For yet stronger repulsive inter-
action (the curve shown with triangles in Fig. 5) the
value of the second-order correlation function g2(0) is
only slightly larger than one (cannot be seen on the plot).
Thus, the atom density in different locations becomes in-
dependent. This is in contrast with the closed strongly
interacting gas which exhibits anti-bunching [19].
Thus, as the numerical analysis shows, the bunching

or at least the absence of anti-bunching takes place for
weakly and strongly interacting gases under the CM po-
sition measurement. Moreover as discussed at the end
of Sec. III for strongly interacting gas this type of cor-
relations may result in the formation of atomic bunches
with the size smaller than that of the initial unperturbed
cloud. Detailed investigation of this squeezing effect is
the subject of our future work.

V. SUMMARY

The CM position measurement of trapped ultra-cold
gases can become an important ingredient of various
technologies based on ultra-cold atoms. The effect of
such a measurement performed on quasi 1D harmoni-
cally trapped interacting Bose-gas has been studied in
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this article. The CM measurement back action disturbs
the momentum, which due to the oscillations in the trap
results in atomic delocalization. It has been shown that
the interaction-induced nonlinearity can to some extent
stabilize the gas decreasing the rate of atomic delocal-
ization caused by the CM measurement back action.
This means that the domain of atomic localization grows
slowly for the stronger interacting gas. This result has
been first obtained using a semi-analytical mean-field
approach with certain density-density type correlations
neglected. Then qualitatively the same conclusion has
been obtained performing numerical simulations based
on positive P-representation of the many-atom density
operator. For these simulations continuous density dis-
tribution of the trapped gas has been approximated by a
lattice model.
The numerical approach has allowed to calculate

second-order correlation functions in the presence of the
CM position measurement. The value of this correlation
function for zero atomic separation has been found to
be greater than one for weakly and strongly interacting
gases. This indicates that atoms group together forming

a bunch with the size smaller than the atomic localization
domain. Due to atom-atom repulsion the bunching effect
is smaller for the strongly interacting gas. However, for
the strongly interacting gas the size of the atomic bunch
might become smaller than the initial distribution in the
beginning of the evolution. The reason for this is the fact
that the interaction-induced stabilization does not influ-
ence the CM delocalization that grows in spite of stabi-
lized overall atomic localization region. This is possible
only if the instant atomic distribution (bunch) is smaller
than the localization region. This conclusion is of merely
qualitative character and will be further investigated.
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