
STOCHASTIC SWITCHING GAMES AND DUOPOLISTIC COMPETITION IN

EMISSIONS MARKETS

MICHAEL LUDKOVSKI

Abstract. We study optimal behavior of energy producers under a CO2 emission abatement pro-

gram. We focus on a two-player discrete-time model where each producer is sequentially optimizing

her emission and production schedules. The game-theoretic aspect is captured through a reduced-

form price-impact model for the CO2 allowance price. Such duopolistic competition results in a

new type of a non-zero-sum stochastic switching game on finite horizon. Existence of game Nash

equilibria is established through generalization to randomized switching strategies. No uniqueness

is possible and we therefore consider a variety of correlated equilibrium mechanisms. We prove

existence of correlated equilibrium points in switching games and give a recursive description of

equilibrium game values. A simulation-based algorithm to solve for the game values is constructed

and a numerical example is presented.

1. Introduction

In this paper we study a new class of non-zero-sum stochastic switching games with continuous

state-space. Such games have natural applications in economics and finance, in particular for

describing oligopolistic competition between large commodity producers. Our analysis is motivated

by the CO2 cap-and-trade markets and provides new quantitative insight into the game-theoretic

aspects of these schemes.

Switching game are a special class of dynamic non-zero-sum state-space games. They are char-

acterized by a finite number of system states ~u, jointly selected by the players. The players dy-

namically react to actions of other players and the evolution of state variables, represented as

controlled stochastic processes, by strategically modifying the system state. Our contribution is a

first rigorous probabilistic analysis of switching games. Because multiple game Nash equilibria are

possible in our model, we propose to apply the wider concept of correlated equilibria. Correlated

equilibria give a clear financial mechanism for stepwise equilibrium selection. Our key result is

the construction of correlated equilibria in switching games in Section 3.3. The resulting repre-

sentation in Theorem 3.4 of switching games in terms of a recursive sequence of stopping games

leads to a constructive characterization of equilibrium strategies. Namely, we prove the analogue of

the dynamic programming equation for the game values which enables numerical solution through

backward recursion. Thus, the complexity of switching games is only slightly higher than of regular

optimal switching problems.
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In terms of existing literature this paper extends two separate strands of research. Work on

stochastic zero-sum stopping games dates back to Dynkin [14]. Such Dynkin games were progres-

sively generalized in [1, 11, 16, 19, 40]. Later extensions also treated special cases of non-zero-sum

stopping games, especially the so-called monotone type [23, 32, 33]. The key tool of correlated equi-

libria in stochastic dynamic games was studied by [31, 35, 36, 37, 38, 39]. We augment these results

by explicitly characterizing correlated equilibria in repeated stopping games using the methods of

Ramsey and Szajowski [35]. Contemporaneously, the theory of optimal switching for a single agent

was developed and extensively studied in the past decade, see [8, 12, 20, 34]. In Section 3.3 we

extend these results to a game setting by showing that at switching game equilibrium each player

faces a optimal switching problem with randomized controls.

Another contribution of this work is a construction of numerical schemes to compute game-values

and equilibrium strategies of switching games. This is achieved by combining backward recursion

together with sequential solution of local 2 × 2 games. We suggest two approaches, one based

on the Markov chain approximation method and a second algorithm that relies on least squares

Monte Carlo. The latter is a novel extension of our previous work in [8, 28] and borrows ideas

from standard optimal stopping theory to implement the analogue of the dynamic programming

recursion on a set of Monte Carlo simulations.

A significant portion of the paper is dedicated to the application of our model to emissions

trading. With imminent ramping up of CO2-emissions markets around the world (see e.g. the

Western Climate Initiative in the US and the EU ETS Phase III in Europe both set to start in

2012), it is crucial to understand energy producer behavior under the new frameworks. By design,

the carbon allowances will be scarce and market participants will be competing for finite permit

resources. Our analysis is a first pass at oligopolistic competition in CO2 markets using game-

theoretic methods. We hope it can serve as a stepping-stone to more sophisticated modeling that

addresses market design and comparative statics of our framework.

The rest of the paper is organized as follows. In Section 2 we define the precise stochastic model

representing oligopolistic competition in CO2 markets. Section 3 constructs the representation of

switching games in terms of repeated stopping games and culminates with Theorem 3.4 that estab-

lishes the dynamic programming equations. Section 4 describes our numerical solution algorithms

and presents a computational example. Finally, Section 5 discusses extensions of the model and

points directions for future work.

2. Competitive Equilibrium among Oligopolistic Producers

In this section we formally define a model for the competitive dynamic equilibrium between

producers with market power.

2.1. Price Dynamics under Cap-and-Trade Emission Schemes. The carbon allowance mar-

kets are intrinsically linked to other energy markets, notably electricity whose production accounts

for the bulk of regulated emissions. Furthermore, due to their size, major electricity producers often
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have the ability to dramatically move carbon prices based on their emission schedules. Hence, to

understand equilibria in CO2-markets it is useful to consider them from the point of view of large

traders. The model proposed below captures this phenomenon for a joint electricity-carbon market.

To fix ideas, start with a filtered probability space (Ω,H, (Ft),P), t ∈ T , {0, 1, . . . , T}. The

terminal time T is the expiration date of the current vintage of permits. We consider two het-

erogenous producers (henceforth termed players) who each produce commodity P (electricity) and

consume commodity X (carbon allowances). These two producers generate “dirty” electricity from

e.g. coal or gas and can be viewed as representative agents of a park of power plants with identical

engineering characteristics. All the other participants in the electricity and CO2 markets are not

modeled explicitly; rather we postulate that their collective actions induce stochastic fluctuations

in the prices of P and X. We assume that the two players are large traders in the carbon market,

but small players on the electricity market. This reflects the fact that the other “green” producers

(who use nuclear, hydroelectric, renewable, etc. sources) create a competitive electricity market

while remaining passive in the CO2-permits arena.

The electricity price is given by the exogenous discrete-time stochastic process (Pt), for simplicity

taken to be one-dimensional,

Pt+1 = G(Pt, ε
P
t ),

where the innovations (εPt ) are i.i.d. standard Gaussian. Our canonical example is the logarithmic

Ornstein-Uhlenbeck process which is a log-normal stationary Gaussian process with

Pt+1 = Pt · exp
(
κP (P̄ − logPt) + σP ε

P
t

)
, εPt ∼ N (0, 1),(1)

for some positive constants κP , P̄ , σP .

The objective of the producers is to maximize their expected net profits over the planning horizon

T . The producers’ profit is given by their clean dark spread [17] which is defined as the difference

between electricity price and the carbon-adjusted production cost. We assume that input fuel costs

are fixed, as is often the case for power generators with long-term supply contracts. The strategy of

each player is described by a repeated start-up/shut-down option. Namely, if the market conditions

are unfavorable, a player can stop production, eliminate CO2 emissions and avoid losses; she can

then restart production when the profit spread improves. As a first approximation we assume that

these choices of production regimes are binary and denoted as “off” (0) and “on” (1). Formally, the

production schedule of each producer is described by a stochastic process ui, ui(t) ∈ {0, 1}, t ∈ T.

In a single-player model, such timing optionality is known as a real option and has been thoroughly

investigated since the seminal work of [4, 13]. Repeated real options have attracted considerable

attention recently, see [8, 20, 28], and others.

Remark 2.1. An alternative formulation is to take ui to be continuous, so that the producers

can choose emissions levels smoothly. This would lead to a non-zero-sum stochastic dynamic

game. Such models have been extensively studied both in discrete and continuous time, see [22,

30] and references therein. While presenting other formidable technical challenges, the problem

of equilibrium selection is less severe with continuous controls thanks to the convexity of value
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functions. In this work we focus on the timing flexibility and therefore maintain the discrete

control space.

Let Xt be the permit price at date t. Based on above discussion, the actions of each player

influence the dynamics of Xt. Namely, conditional on player actions u1(t), u2(t), we model Xt as

another mean-reverting process with a policy-dependent mean and log-Gaussian increments,{
Xt+1 = Xt · exp

(
κX(f(u1(t), u2(t))− logXt) + σXε

X
t

)
with

f(u1, u2) = log(X̄ + g1u1 + g2u2).
(2)

The sequence (εXt ) is again Gaussian, with correlation parameter ρ to (εPt ), i.e. εXt = ρεPt +√
1− ρ2ε⊥t with ε⊥t ∼ N (0, 1) independent of εPt . Rising electricity prices are likely to increase

the overall CO2 emission rates and therefore we expect that P and X are positively correlated,

ρ > 0.

Remark 2.2. To motivate (2), we recall from [18] that in a carbon market “Xt = xP̄{CT > c̄|Ft},”
where CT is the cumulative total CO2 emissions on [0, T ], x̄ is the penalty for going over the

allowance limit, c̄ is the total amount of allowances allocated and P̄ is the equilibrium pricing

measure. We postulate that CT =
∑T−1

s=0 {b1u1(s) + b2u2(s) + ũ(s)}, where biui(s) are the emissions

of producer i in period s and ũ(s) are the emissions by all other market participants. Assuming

independent increments (due to external shocks such as weather effects, etc.) in ũ(s), the dynamics

(2) follow, with some complicated and time-dependent functions f(t, ·) and volatility σX(t). In (2)

we give a simplified or reduced-form version of this description to capture the temporal feedback

between ui’s and Xt. If the supply curve for the CO2 allowances is convex, then the price impact

f(u1, u2) in (2) would be nonlinear and further magnify the competitive effects.

2.2. Optimization Objective. We assume that the producers have zero allowance allocations

and cannot bank allowances; therefore they must purchase the requisite allowances at each stage

of the game. The total P&L of the players then consists of (i) revenue from selling electricity,

minus the (ii) cost of buying emission allowances, as well as (iii) operational costs due to adopted

strategy ui. An important case of operational costs are fixed switching costs K{i,j1,j2} that are

paid each time the production regime of agent i is changed from j1 to j2 and corresponding to

the ramping-up/winding-down costs associated with the electricity turbines [8, 17]. We postulate

K{i,j1,j1} = 0 ∀j1 and the triangle inequality K{i,j,`} ≤ K{i,j,k} +K{i,k,`} for all j, k, `.

Let P~u be the law of (Pt, Xt) given a strategy pair ~u ≡ (u1(t), u2(t))Tt=0. The expected cumulative

net profit of producer i starting with Ps = p, Xs = x and initial production regime ~ζ ∈ {0, 1}2 is

Vi(s, p, x, ~ζ; ~u) , E~u
[
T−1∑
t=s

{
(aiPt − biXt − ci)ui(t) −K{i,ui(t−),ui(t)}

} ∣∣∣Ps = p,Xs = x, ~u(s−) = ~ζ

]
.

(3)

The constants ai, bi, ci,K{i,j1,j2}, i = 1, 2, represent the maximum quantity of electricity produced

by the facility in one period, the amount of corresponding CO2 allowances needed, fixed production

costs and switching costs, respectively. Due to switching costs, current production regime is also a



STOCHASTIC SWITCHING GAMES 5

state variable. Below, the theorems on existence of equilibria in stochastic games require bounded

payoffs; therefore we assume that profits are truncated from above at some large positive level.

In the duopoly setting, while each player aims to maximize her own profits, the competitor

actions will also affect her decisions. Indeed, emissions today shrink remaining permit supplies and

tend to increase future CO2 prices. Therefore, if player 1 is emitting, player’s 2 expected future

profits are reduced. Overall, the producers are facing a stochastic game where actions correspond

to the latest choice of production regime by each player and payoffs are a function of the exogenous

Pt and the partly controlled Xt. Since the game is stochastic and multi-period with Markov state

variables, we restrict our attention to Markovian (feedback) equilibria. Our main task for the

remainder of the paper is to characterize such game equilibria and then compute the corresponding

game value functions (i.e. expected profits) Vi and equilibrium emission schedules (u∗1, u
∗
2).

2.3. Randomized Emission Schedules. The strategies ui may be mixed or randomized, i.e. ui(t)

is not necessarily adapted to the market filtration F . However, we also assume a full-information

setting, whereby the emission schedules of each agent are publicly known after the fact. Accordingly,

the market observables are Ft = σ(X0, P0, u1(0), u2(0), . . . , u1(t−1), u2(t−1), Xt, Pt), the filtration

generated by the price histories and past actions. An F-randomized emission strategy is a pair

(ui(t),Gi(t)) where Gi is an independent enlargement of the filtration F (i.e. P(A|Ft) = P(A|G̃it)
for all A ∈ Ft) and ui is Gi-adapted. Let

pi(t) , P(ui(t) = 1|Ft)(4)

denote the stage-t probability that the control will be ‘on’, given observable information so far. If

pi(t) ∈ {0, 1} then the strategy is pure at stage t, otherwise it is mixed and can be represented via

a randomization parameter ηi(t) as

ui(t) = 1{ηi(t)≤pi(t)}, ηi(t) ∼ Unif(0, 1), ηi(t) ⊥ Ft.(5)

The full mixed strategy is the vector ~πi(t) ≡ (1 − pi(t), pi(t)) belonging to the 2-simplex ~πi(t) ∈
∆2 , {(π0, π1) : πj ≥ 0, π0 + π1 = 1}. The joint action is given by the strategy profile ~π(t), with

πji (t) denoting the probability that player i emits at level j.

The set Ui of admissible production schedules for player i consists of F-randomized {0, 1}-valued

processes and can be canonically identified with an F-adapted process (pi(t)), 0 ≤ pi(t) ≤ 1 and

independent sequence ηi(t) as in (5). Let Di(t) denote the set of Gi-stopping times bigger than t.

Because ui(t) ∈ {0, 1}, we have a one-to-one correspondence between admissible ui’s and sequences

(τuk )∞k=1 satisfying τuk+1 ∈ Di(τuk ),

ui(t) =

T∑
k=0

ui(0)1[τu2k,τ
u
2k+1) + (1− ui(0))1[τu2k+1,τ

u
2k+2), τu0 = 0.(6)

The switching times τuk encode the times of production regime shifts defined by ui. The represen-

tation (6) holds because at most one regime switch can be made by each player at any given stage.

Indeed, multiple simultaneous regime switches by the same producer are strongly sub-optimal if

K{i,j1,j2} > 0 and weakly suboptimal otherwise. A Gi-adapted stopping time τ can also be viewed as
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a randomized F-stopping time, via its conditional stopping probabilities pt = P(τ = t|τ > t−1,Ft),
namely

τ(p) , inf{t : ηt ≤ pt}, ηt ∼ Unif(0, 1) ⊥ Ft.(7)

When pt ∈ {0, 1} for all t, we are back in the case of regular F-stopping times.

If G1
t ∩ G2

t = Ft then the randomizations of the two players are independent. Alternatively,

correlated decision making can be introduced by making the ηi’s in (5) dependent. Let γ be an F-

adapted stochastic process taking values in ∆4. Following [35] we interpret γ(t) as a weak (stepwise)

communication device, with γij(t) specifying the probability that player 1 takes action i ∈ {0, 1}
and player 2 applies action j ∈ {0, 1},

γij(t) , P(u1(t) = i, u2(t) = j|Ft).

The correlation is implemented via a third party that directs the players to implement a particular

action pair through private signals. Namely, the players receive signals

µ1(t, γ) = 1{γ10(t)+γ11(t)<η(t)} and µ2(t, γ) = 1{γ01(t)+γ11(t)<η(t)},(8)

where η ∼ Unif(0, 1) is only observed by the third party. Setting ui(t) = µi(t, γ), the resulting

strategy profile is denoted ~u(t, γ) = (~π1(t, γ), ~π2(t, γ)) and has dependent marginals and joint

distribution γ. Conditional on the signal at date t, an agent can impute the strategy of the

other player by e.g. ~π2(t, γ)
∣∣
µ1(t,γ)=0

=
( γ00(t)
γ00(t)+γ01(t) ,

γ01(t)
γ00(t)+γ01(t)

)
. With γ in place, the space of

randomized strategies is now adjusted to Ui(γ) = {(ui,Gi) ∈ Ui such that Git ⊇ Ft ∨ σ(µi(t)).

2.4. Correlated Equilibria in CO2 markets. The introduced correlation mechanism γ can be

used to define correlated equilibrium points (CEP) in the CO2 emissions duopoly game. To motivate

the need for such mechanisms, we observe that intuitively the dynamic switching game is a sequence

of one-period bimatrix games. At each stage t, the control ui(t) ∈ {0, 1} of each player i ∈ {1, 2} is

simply “on/off”, leading to the classic 2×2 game. From a dynamic point of view, the relevant payoff

to the players at stage t is then the sum of the current clean spread and the continuation value that

corresponds to the game value that can be realized in the future by the respective player contingent

on current state of the world. In our repeated game setting, the players must a priori agree on

how to implement future equilibria, otherwise the computation of continuation values would not

be possible. Hence, to have a well-defined switching game value, we need existence-uniqueness of

equilibria in the one-period sub-games.

Accordingly, we briefly recall the structure of 2-by-2 one-shot game. Consider the 2× 2 game H

with normal form

H =

(
(z00

1 , z
00
2 ) (z01

1 , z
01
2 )

(z10
1 , z

10
2 ) (z11

1 , z
11
2 )

)
,(9)
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where the rows of H are chosen by player 1, and the columns by player 2. A strategy profile (~π∗1, ~π
∗
2)

is a Nash equilibrium point (NEP) of H if we have∑
j,k

π∗,j1 π∗,k2 zjk1 = sup
~π1∈∆2

∑
j,k

πj1π
∗,k
2 zjk1 , and

∑
j,k

π∗,j1 π∗,k2 zjk2 = sup
~π2∈∆2

∑
j,k

π∗,j1 πk2z
jk
2 .

Hence, ~π∗i is a best-response for player i, given that the other player uses ~π∗−i. While the classical

theorem of Nash shows that a mixed NEP is always available, H may have zero (strictly competitive

case), one (standard case) or two (coordination case) pure NEP’s [5].

Thus, to establish existence of NEP in a multi-period game, one must consider mixed strategies.

Furthermore, since multiple equilibria are possible, an equilibrium selection rule is needed. In the

context of the CO2 emission game, because the (P,X)-prices are stochastic, it is impossible to a

priori rule out some of the above scenarios for all possible state variable realizations. In particular,

the case of the anti-coordination “battle-of-the-sexes” or “chicken” game is likely to appear when

the electricity-carbon spread is slightly positive. In such a situation, each of the players will have

an incentive to emit; however, if the price impact is strong enough, it is not profitable for both of

them to consume permits. As a result, two pure Nash equilibria are possible whereby one producer

yields the market to the other.

The communication device γ, introduced in one-shot games by [2, 29], provides a general method

for describing such coordination while maintaining the non-cooperative game setting.

Definition 2.1. A Markovian correlated equilibrium point for the switching game is a Markov

communication device γ : (s, p, x, ~ζ) → ∆4 inducing admissible stage strategy profiles ~u∗(t; γ) =

(µ1(t, γ), µ2(t, γ)) such that ∀(s, p0, x0, ~ζ) (recall definition of Vi in (3))V1(s, p0, x0, ~ζ;u∗1, u
∗
2) ≥ V1(s, p0, x0, ~ζ;u1, u

∗
2) ∀u1 ∈ U1,

V2(s, p0, x0, ~ζ;u∗1, u
∗
2) ≥ V2(s, p0, x0, ~ζ;u∗1, u2) ∀u2 ∈ U2.

(10)

The resulting game values are denoted as Vi(s, p0, x0, ~ζ; γ).

The meaning of the correlated equilibrium in (10) is that conditional on the private signal

sequence, neither player has an incentive to deviate from the prescribed action. Therefore, given

µi(t, γ) and market information Ft, it is optimal to take ui(t) = µi(t, γ). Note that in (10), even if

a player chooses to deviate from the recommendation µi(t, γ) she continues to receive future signals

µi(s, γ), s > t and therefore information about the implied strategy of the other player. Existence

of CEP of switching games will be established in Theorem 3.4. We will also provide a recursive

construction of Vi(t, ·) in terms of conditional expectations of Vi(t+ 1, ·) and one-shot 2× 2 games.

This allows for a solution method, detailed in Section 4, analogous to the dynamic programming

paradigm for ordinary stochastic control problems. Finally, we will show that CEP of switching

game induces rational behavior at each stage, i.e. matches with a CEP of a one-stage sub-game.

Remark 2.3. A related concept of competitive equilibrium in the industrial organization literature

is that of a stage Stackelberg game [3]. In a Stackelberg game, at each stage one player is the leader
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and has priority in making decisions; the second player then follows. This description corresponds

closely to the preferential mechanism of equilibrium selection which always favors the leader.

Economically, the third party implementing the correlation could be a government regulator,

market watchdog, or just a proxy for market frictions that make one equilibrium most preferable.

Thus, no inherent collusion is required and the game is still non-cooperative. If a regulator is

involved, a socially beneficial correlation can be selected. For instance, a “utilitarian” communica-

tion device maximizes the (weighted) sum of the firms continuation values so that the producers

as a whole have best economic health. Alternatively, a “green” device minimizes CO2 emissions.

Finally, a “preferential” communication mechanism can endogenously emerge without a third party

due to extra advantages available to a given player (e.g. due to preferential regulatory treatment

or other externalities).

Remark 2.4. A variety of correlated decision-making is possible in sequential games [29]. Here

we focus on the stepwise weak communication device whereby the players and the regulator com-

municate before each stage; such a formulation allows the most flexibility and fits our economic

description. However, in practice much weaker correlation could suffice. For instance, players can

agree at date 0 to use the preferential-i correlation law which means that in any “tie-break” case,

player i “wins”. Once this rule is fixed, no further communication would be necessary. Similarly,

if γ is such that the implied strategy ~π−i(t, γ)|µi(t, γ) of the other player is always pure, then a

public randomization is sufficient at each step and no private signals are needed. Any mixture of

NEP’s is also a CEP and therefore except for the strictly-competitive games, one may always find

correlation devices that correspond to pure Nash equilibria, obviating the need for randomization

(either by players or regulator).

3. Sequential Stopping Game

Our analysis of the switching game will consist of building up the solution in several steps. We

begin with analyzing the single-agent objective. Next, in Section 3.2 we move on to the one-shot

non-zero-sum stopping game that is built iteratively from the one-period 2×2 games, following the

methods of [35]. Finally, in Section 3.3 we describe the sequential stopping game that in the limit

is shown in Section 3 to coincide with our original model in (3).

3.1. Single Producer Problem. Before tackling the stochastic duopoly game, let us briefly re-

view the solution of the single-player model. Since the control ui(t) takes on a finite number of

values, we have an optimal switching model that can be viewed as a sequence of optimal stopping

problems. Such models (including price impact) were studied in [8, 28].

Let us consider the optimization for producer 1. For the remainder of this section we fix a

production schedule u2 of the second producer, as well as a communication device γ that sends

private signals µ1(t, γ) to player 1. In the single-producer problem, the objective is to maximize
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the expected profit

sup
(u(t))∈U1(γ)

E(u,u2,γ)

[
T−1∑
t=0

{
(a1Pt − b1Xt − c1)u(t) −K{1,u(t−),u(t)}

}]
.(11)

Consider initial conditions Ps = p,Xs = x, u2(s) = ζ2 and let V (s, p, x, ζ2) be the value function

corresponding to (11) conditional on starting in the “on”-production regime, and W (s, p, x, ζ2) the

value function starting offline. Furthermore, using same initial conditions define recursively



V 0(s, p, x, ζ2) = E(1,u2,γ)

[
T−1∑
t=s

(a1Pt − b1Xt − c1)

]
, as well as W 0(s, p, x, ζ2) = 0;

V n(s, p, x, ζ2) = sup
τ∈D1(s)

E(1,u2,γ)

[
τ−1∑
t=s

(a1Pt − b1Xt − c1) + (Wn−1(τ, Pτ , Xτ , u2(τ))−K{1,1,0})

]
;

Wn(s, p, x, ζ2) = sup
τ∈D1(s)

E(0,u2,γ)
[
V n−1(τ, Pτ , Xτ , u2(τ))−K{1,0,1}

]
, n ≥ 1

(12)

where under P(i,u2,γ) the drift of the carbon allowance price is f(i, u2(t)).

Proposition 3.1. Let Un1 , {u ∈ U1 : u has at most n switches}. Then,

V n(s, p, x, ζ2) = sup
(u(t))∈Un

1 ,u(s−)=1
E(u,u2,γ)

[
T−1∑
t=s

{
(a1Pt − b1Xt − c1)u(t) −K{1,u(t−),u(t)}

}]
,

and as n → ∞, V n(s, p, x, ζ2) → V (s, p, x, ζ2), Wn(s, p, x, ζ2) → W (s, p, x, ζ2) uniformly on com-

pacts.

Proof. This is an analogue of [8, Theorem 1]. Compared to our earlier work, the only new feature

is that the payoffs to producer 1 are randomized. Indeed, from her perspective, the strategy of

player 2 (implied through the private signal µ1(t, γ)) may be mixed. Consequently, her continuation

value is unknown at decision time, depending as it is on the action of player 2. Formally, allowing

for a relaxed switching control p1
s at date s (representing probability of being on) the dynamic

programming principle implies that in (12)

V n(s, p, x, ζ2) = Eγ(s)

[
sup

p1s∈[0,1]

{
p1
s(a1p− b1x− c1)− (1− p1

s)K{1,1,0}

+ Eµ1(s,γ)
[
p1
sp

2
sV

n(s+ 1, Ps+1, X
(0,1)
s+1 , 1) + p1

s(1− p2
s)V

n(s+ 1, Ps+1, X
(0,0)
s+1 , 0)

+ (1− p1
s)p

2
sW

n−1(s+ 1, Ps+1, X
(0,1)
s+1 , 1) + (1− p1

s)(1− p2
s)W

n−1(s+ 1, Ps+1, X
(0,0)
s+1 , 0)

]}]
.

The outer expectation is averaging over the signal µ1 whose law is specified by the communication

device γ; however the decision-maker has access to µ1(t, γ) and therefore makes the switching

decision p1
s based on the conditional strategy (p2

s)|µ1(s, γ) of player 2. The inner optimization is

linear in p1
s and therefore the optimizer must be an endpoint of [0, 1]. Thus, as expected, given the
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signal we can work with pure controls, u1(t) ∈ Ft ∨ σ(µ1(t, γ)). Note that from the perspective of

an observer who has access only to F , the strategy of both players appears randomized.

The rest of the proof proceeds exactly as in [8] by iterating over the control decisions of producer

1 using the strong Markov property of (P,X) and the Snell envelope characterization of optimal

stopping problems. �

Proposition 3.1 shows that the solution to (11) can be represented in terms of the sequence

(V n,Wn) which correspond to optimal stopping problems defined in (12). Taking the limit n→∞
we obtain

Corollary 3.1. (V,W ) satisfy the coupled dynamic programming equation:
V (s, p, x, ζ2) = sup

τ∈D1(s)

E(1,u2,γ)

[
τ−1∑
t=s

(a1Pt − b1Xt − c1) + (W (τ, Pτ , Xτ , u2(τ))−K{1,1,0})

]
,

W (s, p, x, ζ2) = sup
τ∈D1(s)

E(0,u2,γ)
[
V (τ, Pτ , Xτ , u2(τ))−K{1,0,1}

]
.

Moreover, an optimal strategy u∗1 ∈ U1 exists.

3.2. Correlated Equilibria in Non-Zero-Sum Stopping Games. In this section we recall

existing results on two-player non-zero sum stopping games in discrete time and finite horizon. Let

Z ≡ (Zjki (t)), i ∈ {1, 2}, j, k ∈ {0, 1} be a octuple of bounded (Ft)-adapted stochastic processes.

Player i ∈ {1, 2} optimizes the reward

J̃i(s, τ1, τ2) ,

τi∧τ−i−1∑
t=s

Z00
i (t)

+ Z10
i (τi)1{τi<τ−i} + Z01

i (τ−i)1{τ−i<τi} + Z11
i (τi)1{τi=τ−i},(13)

by choosing the (randomized) (Ft)-stopping time τi ≤ T . In words, Z00
i is the ongoing reward for

staying in the game, Z10
i is the reward if the player stops first; Z01

i is the reward if the other player

stops first and Z11
i is the reward if both players stop simultaneously. Thus, continuing is associated

with action ‘0’ and stopping with action ‘1’.

The Dynkin zero-sum stopping game corresponds to Z10
1 = −Z01

2 , Z01
1 = −Z10

2 , Z11
1 = −Z11

2 and

was recently fully analyzed by [16]. Also, the monotone cases Z01
i ≤ Z11

i ≤ Z10
i P̄-a.s. (where both

players prefer to stop late) and Z01
i ≥ Z11

i ≥ Z10
i were considered by Ohtsubo [32]. In these special

cases, a unique pure Markov NEP exists. The fundamental result of [32, 33] characterizes game

value functions (V1, V2) for Z as a pair of F-adapted processes satisfying E[sup0≤t≤T Vi(t)] < ∞,

Vi(T ) = Z11
i (T ) and for all 0 ≤ t ≤ T

(V1(t), V2(t)) ∈ E

(
(E[V1(t+ 1)|Ft] + Z00

1 (t),E[V2(t+ 1)|Ft] + Z00
2 (t)) (Z01

1 (t), Z01
2 (t))

(Z10
1 (t), Z10

2 (t)) (Z11
1 (t), Z11

2 (t))

)
,(14)

where E(H) is the set of game values corresponding to NEPs of H. This reduces computation of

game values to iterative solution of one-shot 2×2 games, in complete analogy to standard dynamic

programming. We seek a similar result for the switching game, see (23) below.
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Without any assumptions on the structure of Z appearing in (13), the existence of a pure NEP

is not guaranteed. However, as shown by [19] (see also [37] and references therein) a two-person

stopping game always admits a mixed NEP. Again, there is no uniqueness and we might need

equilibrium selection. Let γ be an (Ft)-adapted stochastic process taking values in ∆4. Define the

dependent randomized stopping rules (cf. (8)){
τ1(γ) , inf{t : η′(t) ≤ γ10(t) + γ11(t)},

τ2(γ) , inf{t : η′(t) ≤ γ01(t) + γ11(t)},
η′(t) ∼ Unif [0, 1] i.i.d..

Thus, conditional on the game still continuing, the stage-t payoff to player i is
∑

j,k γjk(t)Z
jk
i (t)

and total expected payoff is

Eγ
[
J̃i(s, τ1(γ), τ2(γ))

]
= E

T−1∑
t=s

∑
j,k

{(t−1∏
r=s

γ00(r)
)
γjk(t)Z

jk
i (t)

} .(15)

As before, correlation is implemented through private signals µi(t, γ) and a correlated equilibrium

of Z is a communication device γ inducing a stopping strategy profile ~τ(γ) , (τ1(γ), τ2(γ)) ∈
D1 ×D2 such that for i = 1, 2 and all 0 ≤ t < T

Vi(t; γ,Z) , Eγ [J̃i(t, ~τ(γ))|Ft] ≥ Eγ [J̃i(t, τ̃i, τ−i(γ))|Ft], ∀τ̃i ∈ Di(t).(16)

Observe that given a device γ leading to a CEP, it must be that

(17) Vi(t; γ,Z) = sup
τ∈Di(t)

Eγ
[(τ∧τ−i(γ))−1∑

s=t

Z00
i (s)

+ Z10
i (τ)1{τ<τ−i}

+ Z01
i (τ−i)1{τ−i<τ} + Z11

i (τ)1{τ=τ−i}
∣∣Ft]

which is a standard optimal stopping problem for player i in the enlarged filtration Gi.

Lemma 3.2. [35, Theorem 2.3] Consider a CEP with communication device γ of a stopping game

Z. Then for all t ∈ {0, 1, . . . , T − 1} we have



γ00(t)(E[V1(t+ 1)|Ft] + Z00
1 (t)) + γ01(t)Z01

1 (t) ≥ γ00(t)Z10
1 (t) + γ01(t)Z11

1 (t));

γ00(t)(E[V2(t+ 1)|Ft] + Z00
2 (t)) + γ10(t)Z10

2 (t) ≥ γ00(t)Z01
2 (t) + γ10(t)Z11

2 (t);

γ10(t)Z10
1 (t) + γ11(t)Z11

1 (t) ≥ γ10(t)(E[V1(t+ 1)|Ft] + Z00
1 (t)) + γ11(t)Z01

1 (t);

γ01(t)Z01
2 (t) + γ11(t)pZ11

2 (t) ≥ γ01(t)(E[V2(t+ 1)|Ft] + Z00
2 (t)) + γ11(t)Z10

2 (t).

(18)

Lemma 1 shows that a CEP of the stopping game is rational at each stage. For instance,

the first inequality in (18) means that conditional on player 1 signal being ‘continue’, the ex-

pected payoff to player 1 from continuing (the right-hand-side) is better than the expected payoff

from stopping. In either scenario, player 2 implements the conditional strategy ~π2(t, γ)|µ1(t,γ)=0 =( γ00(t)
γ00(t)+γ01(t) ,

γ01(t)
γ00(t)+γ01(t)

)
.

As shown by [35, Theorem 2.4], any finite-horizon stopping game with bounded payoffs admits

a CEP; in fact outside the zero-sum and monotone cases we expect that a large number of CEPs
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are possible. It is convenient to think of communication device γ leading to a CEP in (16) as a

measurable selector of local correlated equilibrium points in the one-shot 2 × 2 games. Thus, let

Γ : T × Ω × R2×2×2 → ∆4 be a measurable map such that for any 2 × 2 game H, Γ(t, ω,H) is a

CEP of H. Then using Γ, one may construct a communication device γ by inductively using the

CEP Γ(t, ω,H(t, ω)), where H(t, ω) is the right-hand-side in (14), and proceeding back in time.

Observe that for most H’s, Γ(·, H) is simply the unique NEP available, so that the selection feature

is “silent”, and the device is only really activated when considering the coordination game. With

this perspective in mind, we call a correlation law Γ a communication device which is based on

the same local criterion (for instance “minimize today’s emissions” or “maximize today’s value of

player 1”).

3.3. Recursive Construction. We return to the emissions market duopoly setup. The emission

schedules of the two agents are interpreted as a sequence of regime-changes. Thus, the single-

stopping game in the previous section is viewed as the sub-game for making the next regime-switch.

The stopping game in Section 3.2 is accordingly denoted as a (1, 1)-fold switching game and we

now will consider (n,m)-fold switching games with game value functions V n,m. These games have

a restricted set of possible production strategies; namely the total number of regime switches over

the game horizon is bounded by n and m, respectively. Using the Markov property of the game

state and actions it is not surprising that these various switching games are related to each other.

In terms of the notation of Section 3.2, we identify the running profit with Z00
i (t) = (aiPt −

biXt−ci)ui(t) and the other Zjki ’s with various game continuation-values. For the remainder of the

section, we make a standing assumption that a communication device γ is chosen and fixed. Let

us fix an initial state Ps = p,Xs = x and initial production regime ~ζ = (ζ1, ζ2). Define a double

cascade of stopping games indexed by n and m via

V n,m
i (s, p, x, ~ζ) , Vi(s; γ, Z̃n,m(~ζ)), n,m ≥ 1(19)

which uses the notation of (16) based on the recursive payoff structure

(Z̃n,m)00
i (t, ~ζ) = (aiPt − biXt − ci)ζi;

(Z̃n,m)01
i (t, ~ζ) = V n,m−1

i (t, Pt, Xt, ζ1, 1− ζ2)− 1{i=2}K{2,ζ2,1−ζ2};

(Z̃n,m)10
i (t, ~ζ) = V n−1,m

i (t, Pt, Xt, 1− ζ1, ζ2)− 1{i=1}K{1,ζ1,1−ζ1};

(Z̃n,m)11
i (t, ~ζ) = V n−1,m−1

i (t, Pt, Xt, 1− ζ1, 1− ζ2)−K{i,ζi,1−ζi}.

(20)

The boundary cases are first

V 0,0
i (s, p, x, ~ζ) , E~ζ

[
T−1∑
t=s

(aiPt − biXt − ci)ζi

]
;

next, V n,0
1 (s, p, x, ~ζ) and V 0,m

2 (s, p, x, ~ζ) are identified with the single-player optimization problems

as in (12) (keeping the emission regime of the other player fixed at ζ−i). Finally, we take

V n,0
2 (s, p, x, ~ζ) = E(un,∗

1 ,ζ2,γ)

[
T−1∑
t=s

(a2Pt − b2Xt − c2)ζ2

]
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where un,∗1 is an optimal control for the problem defining V n,0
1 , and similarly for V 0,m

1 (s, p, x, ~ζ).

3.4. Switching Game Equilibrium as Sequential Stopping Game Equilibrium. We now

proceed to glue the sequential stopping games of V n,m
i and re-interpret the latter as value functions

of a switching game. For n ≥ 0 denote by Uni ⊂ Ui the set of all production strategies for player i

with at most n switches. Consider the restricted repeated game with payoffs (3) where we require

u1 ∈ Un1 and u2 ∈ Um2 , so that the first producer may change her production regime at most n

times, and the second producer at most m times.

Our first task is to obtain a switching-game CEP that matches the definition of V n,m. To do

so we pick a correlation law Γ; Γ gives rise to a CEP of any stopping game, in particular it leads

to well-defined game values V n,m
i in (19). We now construct a communication device γn,m for the

(n,m)-switching game. Let ki(t) be the number of production switches used by player i by stage t.

The device γn,m(t) at stage t is taken to be Γ
(
t, ω, Z̃n−k1(t),m−k2(t)(~u(t))

)
defined in terms of (20)

and the latest regime ~u(t). Note that the overall γn,m is no longer Markovian since it has memory

of the number of switches made by each player, which is necessary in the constrained game. The

above construction is well-defined for all paths of (P,X, ~u), even outside equilibrium.

Using γn,m we proceed to construct switching controls un,mi for the (n,m)-switching game. To

simplify notation we write τn,m = τ1(γn,m) ∧ τ2(γn,m) which is interpreted as the equilibrium

first stopping time for the game defined by (19) under the correlation law Γ. Given the starting

production regime ~ζ = (ζ1, ζ2), let us define the switching controls un,mi (s) for this game by

un,m1 (s) = ζ1 for s < τn,m;

un,m1 (s) =


1− ζ1 for τn,m ≤ s < τn−1,m when τn,m1 < τn,m2 ;

ζ1 for τn,m ≤ s < τn,m−1 when τn,m2 < τn,m1 ;

1− ζ1 for τn,m ≤ s < τn−1,m−1 when τn,m1 = τn,m2 ,

(21)

... and so on,

and similarly for un,m2 (t). In words, un,mi keeps track of the production regime of the i-th agent

following the decision rules defined sequentially by descending through the family of the V n,m-stop-

ping subgames (one stopping game at a time). Then by definition of (19) we have un,m1 ∈ Un1 and

un,m2 ∈ Um2 . It can also be seen through an easy induction argument that

V n,m
i (s, p, x, ~ζ) = Vi(s, p, x, ~ζ; ~un,m),(22)

so that the switching control ~un,m of (21) allows to achieve the game values V n,m defined recur-

sively in (19). Moreover, the next theorem shows that the pair (un,m1 , un,m2 ) is in fact a correlated

equilibrium (using correlation device γn,m) for the game (3) over the control set Un1 × Um2 .

Theorem 3.3. For all n > 0 and u1 ∈ Un1 we have V1(t, ·;un,m1 , un,m2 ) ≥ V1(t, ·;u1, u
n,m
2 ). Similarly

for all m > 0 and u2 ∈ Um2 we have V2(t, ·;un,m1 , un,m2 ) ≥ V2(t, ·;un,m1 , u2).
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Proof. The idea of the proof is to make use of the Markov structure of our problem and apply

induction. The other key tool is that given γn,m, we can look at one player at a time which

essentially reduces to a single-player problem studied before, see (17).

Due to symmetry, it suffices to prove the result for player 1. When m = 0 the other player

cannot act, the game becomes trivial and Theorem 3.3 is just a re-statement of Proposition 3.1.

Conversely, when n = 0, the first player cannot act and there is nothing to prove. Using induction

we assume that the theorem has been shown for the pairs (n− 1,m− 1), (n,m− 1) and (n− 1,m);

let us show it for the case (n,m). Given an arbitrary u1 ∈ Un1 , write it as u1 = (τ1, û1) where

û1 ∈ Un−1
1 denotes the remainder of u1 after the first switch time τ1. Let τ2,∗ ≡ τ2(γn,m) be the

first switch for the second player dictated through γn,m. Define τ = τ1 ∧ τ2,∗. Also for notational

convenience we omit all the arguments of V n,m except for the time variable. Then the strong

Markov property of (P,X) and the way un,m2 (t) was constructed show that

E(u1,u
n,m
2 ,γn,m)

[
T−1∑
s=τ

(a1Ps − b1Xs − c1)û1(s)

]
= E(u1,u

n,m
2 ,γn,m)

[
V1(τ ; û1, u

n−1,m
2 )1{τ1<τ2,∗}

+ V1(τ ; û1, u
n,m−1
2 )1{τ1>τ2,∗} + V1(τ ; û1, u

n−1,m−1
2 )1{τ1=τ2,∗}

]
.

Conditioning on τ1 and τ2,∗ we therefore have V1(t;u1, u
n,m
2 ) =

E(u1,u
n,m
2 ,γn,m)

[(τ−1∑
s=t

(a1Ps − b1Xs − c1)u1(t)

)
+

(
T−1∑
s=τ1

(a1Ps − b1Xs − c1)û1(s)

)
1{τ1<τ2,∗}

+
( T−1∑
s=τ2,∗

(a1Ps − b1Xs − c1)û1(s)
)

1{τ1>τ2,∗} +

(
T−1∑
s=τ1

(a1Ps − b1Xs − c1)û1(s)

)
1{τ1=τ2,∗}

]

=E(u1,u
n,m
2 ,γn,m)

[(τ−1∑
s=t

(a1Ps − b1Xs − c1)u1(t)

)
+ V1(τ ; û1, u

n−1,m
2 )1{τ1<τ2,∗}

+ V1(τ ; û1, u
n,m−1
2 )1{τ1>τ2,∗} + V1(τ ; û1, u

n−1,m−1
2 )1{τ1=τ2,∗}

]
by induction hypothesis we have the inequality

≤E(u1,u
n,m
2 ,γn,m)

[(τ−1∑
s=t

(a1Ps − b1Xs − c1)u1(t)

)
+ V1(τ1;un−1,m

1 , un−1,m
2 )1{τ1<τ2,∗}

+ V1(τ2,∗;un,m−1
1 , un,m−1

2 )1{τ1>τ2,∗} + V1(τ1;un−1,m−1
1 , un−1,m−1

2 )1{τ1=τ2,∗}

]
≤ sup
τ1∈D1(t)

E(u1(t),un,m
2 ,γn,m)

[(τ−1∑
s=t

(a1Ps − b1Xs − c1)u1(t)

)
+ V1(τ1; ~un−1,m)1{τ1<τ2,∗}

+ V1(τ2,∗; ~un,m−1)1{τ1>τ2,∗} + V1(τ1; ~un−1,m−1)1{τ1=τ2,∗}

]
=V1(t; ~un,m1 ),

where the last line uses the relationship (22), the construction of the stopping game defining V n,m

in (20), and property (17). �
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The above construction leads to the key result of this section that characterizes CEP of switch-

ing games, establishes their existence, and gives a recursive formula for the resulting game value

functions. For a 2 × 2 game H defined in (9) and correlation device γ we denote the respective

game values as

Theorem 3.4. Fix a correlation law Γ. Then Γ gives rise to a CEP of the switching game (3).

Moreover, the corresponding value functions Vi(t, Pt, Xt, ~ζ; Γ) solve



V1(t, Pt, Xt, ~ζ) = γ00(t)Y1(ζ1, ζ2) + γ01(t)Y1(ζ1, 1− ζ2)

+ γ10(t)(Y1(1− ζ1, ζ2)−K1,ζ1,1−ζ1) + γ11(t)(Y1(1− ζ1, 1− ζ2)−K1,ζ1,1−ζ1)

V2(t, Pt, Xt, ~ζ) = γ00(t)Y2(ζ1, ζ2) + γ01(t)(Y2(ζ1, 1− ζ2)−K2,ζ2,1−ζ2)

+ γ10(t)Y2(1− ζ1, ζ2) + γ11(t)(Y2(1− ζ1, 1− ζ2)−K2,ζ2,1−ζ2)

(23)

where Yi(t, ~ζ) , E~ζ [Vi(t+ 1, ~ζ)|Ft] + (aiPt − biXt − ci)ζi and we have omitted the dependence on t.

The equilibrium controls can be taken as u∗i ≡ u
T,T
i , as defined in (21).

Proof. We wish to take n,m→∞ in Theorem 3.3. Because for n > m, Um ⊆ Un, it follows that for

a fixed m, V n,m
1 is increasing in n (and for a fixed n, V n,m

2 is increasing in m). For our discrete-time

game, at most T regime switches are possible for each player. Therefore u∗i ∈ UTi and it follows

that V n,n
i ≡ Vi for all n > T . In particular, a switching CEP based on Γ results by using γT,T .

Moreover, at equilibrium at most one switch is made at any given stage due to the triangle

condition on Ki,j,k. Therefore, if it is optimal to switch at stage t from ~ζ to ~u, then already

starting at regime ~u at t and same state variables it is optimal to make no changes, so that

Vi(t, ~u) = E~u[Vi(t+1, ~u)|Ft]+(aiPt− biXt− ci)ui for that scenario. Combining these facts with the

form of (14) and dropping the constraints on the number of switches, we may express all payoffs in

terms of next-stage game values. The recursion (23) is now obtained by making this substitution

in (14). �

4. Numerical Implementation

Theorem 3.4 shows that a game value and equilibrium strategy profile can be obtained recursively

by solving the 1-period 2-by-2 games in (23). The payoffs of those games are given in terms of

conditional expectations of next-stage game values. Therefore, a numerical implementation hinges

on accurate evaluation of these expectations. Since our state-space in (P,X) is continuous, it

is impossible to make this computation exactly. Below we present two possible approximation

approaches.

4.1. Markov Chain Approximation Algorithm. Our model would be simplified if the contin-

uous state space of (P,X) is discretized. Let (P̃ , X̃) be an approximating discrete-state process

with (P̃t, X̃t) living on a finite subset Dt ⊂ R2
+. If the pair (P̃ , X̃) is furthermore chosen to be again

Markov, this is known as the Markov Chain Approximation (MCA) method of [25]. With such
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(P̃ , X̃), a conditional expectation E[f(Pt+1, Xt+1)|Pt = p,Xt = x] ' E[f(P̃t+1, X̃t+1)|P̃t = p, X̃t =

x] for any measurable function f is just a weighted sum based on the transition probability matrix

of (P̃ , X̃). The backward recursion in (23) for Ṽi, the corresponding approximation of Vi, can now

be implemented directly for each stage t and each possible state of (P̃t, X̃t) ∈ Dt. A well-known

procedure constructs (P̃ , X̃) by taking Dt to be a 2-dimensional regular grid or lattice and allowing

state transitions only between neighboring grid points. Moreover, the transition probabilities of

(P̃ , X̃) are chosen so as to have local consistency in the first two moments with the 1-step transition

densities of (P,X); see [25, Chapter 5].

To use this approach in our model, one must take into account the price impact. Therefore, we

construct four approximations (P̃ , X̃
~ζ) indexed by the possible joint production regimes ~ζ ∈ {0, 1}2

that induce different local dynamics of X̃
~ζ , see (2). In other words, our effective state variables

are (P̃ , X̃, ~ζ). For every possible combination (t, p̃, x̃, ~ζ) ∈ T × Dt × {0, 1}2 the relation (23) is

then solved through backward recursion. A generic convergence proof (as the grid spacing tends to

zero) of this procedure for finite-horizon non-zero-sum stochastic games was obtained in [24]. Note

that in our model the controls ~u(t) are discrete and finite-valued and therefore all the compactness

conditions in [24] for the control space are automatically satisfied.

4.2. Least Squares Monte Carlo Approach. Like classical dynamic programming, the MCA

method above suffers from the curse of dimensionality. Indeed, the size of the approximating grid

grows exponentially in the dimension of the state variables. In our basic model (P,X) are two-

dimensional; however realistic implementations are likely to take multi-dimensional factor models

for P and (possibly) X. Thus, it is helpful to seek a more robust algorithm.

A seminal idea due to [9, 15, 27] is to use a cross-sectional regression combined with a Monte Carlo

simulation to compute the relevant conditional expectations. The key step is a global approximation

of the maps (t, p, x, ~ζ) 7→ Vi(t, p, x, ~ζ) and equilibrium one-step strategies (t, p, x, ~ζ) 7→ ~u(t, p, x, ~ζ)

(based on a fixed correlation law Γ) via a random sample of (Pt, Xt). The construction is iterative

and backward in time.

Suppose that the current date is t and we already know all the approximations vi(s, p, x, ~ζ) '
Vi(s, p, x, ~ζ) for s > t and the corresponding equilibrium strategy profiles. Given a collection of

initial points (pnt , x
n
t ), for n = 1, . . . , N , and an arbitrary starting emission regime ~ζ = ~un(t) we first

simulate the future cashflows on [t+ 1, T ] for each scenario n. This is done by iteratively updating

(pns+1, x
n
s+1) through an independent draw from the conditional law P~un(s) and then computing

the equilibrium actions uni (s) of each player for s = t + 1, . . . , T based on the estimated future

game values vi(s, p
n
s , x

n
s , ~u

n(s)) and the chosen communication device Γ. If Γ leads to randomized

strategies, such a randomization is naturally implemented as part of this simulation. The realized

pathwise cashflow ϑni (t+ 1, ~ζ) represents an empirical draw from Vi(t+ 1, Pt+1, X
~ζ
t+1,

~ζ) conditional

on Pt = pnt , Xt = xnt . We now perform a cross-sectional regression of (ϑni (t + 1, ~ζ))Nn=1 against

(pnt , x
n
t )Nn=1 by using a collection of basis functions B`(t, p, x), ` = 1, · · · , r. The regression yields
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the predicted continuation values

v̂i(t, p
n
t , x

n
t ,
~ζ) ' E~ζ

[
Vi(t+ 1, Pt+1, Xt+1, ~ζ)

∣∣ Pt = pnt , Xt = xnt

]
.

Finally, using v̂i together with the current payoffs and switching costs and the correlation law Γ

we solve for the equilibrium game values vi(t, p
n
t , x

n
t , ~u) for each production regime ~u by applying

the stage-t sub-game of Theorem 3.4. The computed game equilibrium also provides the map

(t, pnt , x
n
t , ~u) 7→ ~u∗(t) for the equilibrium strategies. The regression results allow to further extend

this to arbitrary initial condition (t, p, x, ~u). Working back to t = 0, the final answer (which is a

random variable depending on the Monte Carlo sample) is simply the average Vi(0, p0, x0, ~ζ0) '
1
N

∑
n vi(0, p

n
0 , x

n
0 , ~u0).

The initial collection (pnt , x
n
t )Tt=1 is obtained by simulation. Since, X is affected by the price

impact of ~u, to simulate (pnt , x
n
t ) we need to select some anterior auxiliary strategy profile ~u0.

While in theory ~u0 can be arbitrary, in practice it should be close to the equilibrium ~u∗. Indeed,

the collection (vi(t, p
n
t , x

n
t ,
~ζ))Nn=1 is supposed to approximate Vi(t, Pt, X

∗
t , ~u(t)) where X∗t is the

equilibrium CO2 allowance price. Because vi’s are computed by employing regression, the resulting

approximation cannot be uniformly good on R2
+. From the point of view of accurate solutions, it

needs to be good around the region of interest for X∗t . Thus, we need most of the xnt ’s to be in

that (a priori unknown) neighborhood. To overcome this difficulty, as the algorithm works back

through time, the future paths (pns , x
n
s ), s > t are re-computed using the now-available (approx-

imately) equilibrium strategies u∗(s). To further mitigate the problem, we iteratively re-do the

whole simulation and subsequent backward recursion a few times (in practice three iterations suf-

fice), using the computed ~u∗ from one iteration as the anterior ~u0 in the next one. The Appendix

summarizes the above scheme in pseudo-code.

Selection of basis functions should reflect the expected shape of (p, x) 7→ Vi(t, p, x, ~ζ). A typical

choice is to use low-degree polynomial basis functions, such as p, p2, x, x2, etc. In practice, r = 5−7

basis functions and N = 32000−50000 paths suffice. A large degree of customization, such as time-

varying bases, constrained least-squares regression, variance reduction methods, etc., is possible

to speed up the computations. The Appendix summarizes the above scheme in pseudo-code in

Algorithm 2. It calls as a sub-routine Algorithm 1 that carries out the forward simulations of ϑni .

The cost of simulations in Algorithm 2 is O(N · T 2) which consists of re-simulating N paths on

[t, T ] as t goes from T − 1 to zero (see Algorithm 1). The cost of doing regression against r basis

functions on each path and for each stage is O(N · T · r3) and the cost of computing continuation

values is O(N ·T 2 ·r). The memory requirements from storing all the simulation paths are O(N ·T ).

4.3. Numerical Examples. In this section we illustrate our analysis with a numerical case-study.

The selected model parameters are listed in Table 1. The example represents emission scheduling

of two producers over one calendar year; all the parameters of (P,X) are in annualized units and

we use bi-weekly periods T ′ = 26 to model the scheduling flexibility. Note that the electricity price

Pt is more volatile than the CO2 allowance price Xt; also the mean-reversion parameter κX of X

is quite large, implying a significant price impact. In (2) we take f(ζ1, ζ2) = log(12 + 8ζ1 + 4ζ2),
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κX 3 σX 0.25

κP 2 σP 0.4

T 1 ρ 0.6

P̄ 45 X̄ 12

P0 45 X0 15

Producer 1 Producer 2

a1 1 a2 2

b1 2 b2 1

c1 10 c2 80

g1 8 g2 4

K1 0.2 K2 0.2

Table 1. Model Parameters for the Examples in Section 4.3.

Correlation Law V1(0, P0, X0) V2(0, P0, X0)

Utilitarian 5.30 4.14

Egalitarian 5.33 4.20

Preferential 1 5.39 4.11

Preferential 2 5.02 4.24

Table 2. Comparison of equilibrium game values for different correlation laws Γ.

Standard errors of the Monte Carlo scheme are about 1%. Parameters are as given

in Table 1.

so that the mean-reversion level of logX is linear in the production regimes of producers 1 and 2,

with producer 1 having more influence due to emitting twice as much carbon, b1 = 2b2 ⇒ g1 = 2g2.

The stylized production/emission parameters represent a dirty “coal” producer 1 who has low

input costs but needs lots of allowances, and a clean “natural gas” producer 2 who has high

fixed costs but small sensitivity to allowance prices (and can generate twice as much electricity).

Observe that if both producers emit simultaneously for a long period of time, then we expect

Pt ∼ P̄ = 45, Xt ∼ f(1, 1) = 24 meaning that everyone will be losing money. Therefore, extended

joint emissions are not sustainable.

A large variety of CEPs are possible in our model; Table 2 shows the game values corresponding to

four representative correlation laws. These values were obtained by running Algorithm 2 discussed

in Section 4.2 using N = 40000 paths, and the basis functions {1, p, x, x2, (2p − x − 80)+, (p −
2x− 10)+}. We find that different correlation laws modify the expected profit of the producers by

3%−5%. As expected, individual producer values are maximized by the preferential equilibria that

always favor the respective player. Counter-intuitively, the egalitarian CEP (which maximizes at

each stage the minimum continuation value) produces larger game values to both producers than

the utilitarian CEP (which maximizes the sum of continuation values). This occurs because the

correlation law is applied stage-wise and optimizes a local criterion; there is no guarantee that the

corresponding global criterion is respected. A similar phenomenon was observed in [35, Section

5.4].

To illustrate the equilibrium strategy profiles, Figure 1 shows the empirical regions in the (P,X)-

space corresponding to different equilibrium strategies at a fixed date t = 7 (i.e. about three
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months into the year) using the Preferential-1 correlation law that always favors producer 1. As

expected, when the current P&L of both producers is strongly negative (upper-left corner), the

equilibrium action is ~u∗(t) = (0, 0); when it is strongly positive (large Pt) the equilibrium is to

generate electricity ~u∗(t) = (1, 1). Because of the differing carbon-efficiencies of the producers,

there are also large regions where exactly one producer can generate profit (e.g. around {Pt ∈
[40, 45], X∗t ∈ [10, 12]} only producer 2 is profitable). However at the border regions, the price

impact and competition create new effects. In Figure 1, we observe the emergence of a local

anti-coordination game around {(Pt, X∗t ) = (50, 15)}, and a competitive game around {(Pt, X∗t ) =

(50, 12)}. We cannot analytically verify whether a particular type of game may emerge locally; thus

the competitive game region in Figure 1 could be either a true phenomenon or an aberration due

to numerical errors (e.g. poor regression fit in that region). Note that most simulated equilibrium

paths for X∗t stay above x = 13, so the competitive game scenario at t = 7 is very unlikely to be

realized (i.e. very few paths hit that region).

Figure 1. Equilibrium game strategy ~u∗(t) as a function of (Pt, X
∗
t ) for t = 7 and

~ζ = (0, 0). The green region denotes the anti-coordination game-type where the

Preferential-1 correlation law is used, and the red region denotes the competitive

game-type where the unique mixed NEP is chosen. Elsewhere, we label the regions

according to the unique pure NEP implemented.

To better illustrate the optimal strategy over time, Figure 2 shows a sample path of the equi-

librium price (X∗t ) for one ω. Analogously to single-player problems, the CO2 allowance price

undergoes hysteresis cycles [13]. Thus, when (X∗t ) is low, production becomes profitable. This

leads to increased emissions and X∗t tends to rise through the price impact mechanism. In turn,

the ensuing higher emission costs eventually curtail production and X∗t falls back. The presence of

switching costs Ki lowers the scheduling flexibility of the producers and further amplifies this cycle

through inertia.
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Figure 2. Sample equilibrium path of the emissions game. Top left panel: cu-

mulative realized P&L of the players as a function of t. Bottom left panel: the

electricity-carbon spread of each producer for the current time step. Right panel:

evolution of the controlled equilibrium allowance price X∗t , as well as the imple-

mented strategy ~u∗(t) ∈ {00, 01, 10, 11} ≡ {1, . . . , 4}. The panels were generated

using Algorithm 1 given in the Appendix.

5. Conclusion

In this paper we studied a new type of stochastic games which were motivated by dynamic emis-

sion schedules of energy producers under cap-and-trade schemes. Because multiple game equilibria

can emerge, we explored various correlated equilibria. It is an interesting economic policy question

which equilibrium is likely/desirable to be implemented and how the regulator can steer market

participants towards that choice. For example, putting a price on emissions is supposed to partially

drive out “dirty” producers. It would be an intriguing exercise to study how much these effects

depend on equilibrium selection and whether blockading of inefficient polluters is possible under

some equilibria.

In our simplified model, the producers only made binary emission decisions at each stage. On

a practical level, much finer granularity is available. It would be straightforward to extend our

problem and allow a more general finite-state control set of size |A|. The only modification would

be to replace the 2× 2 bimatrix games with a more general A×A bimatrix. The theory for more

than two producers is incomplete and it is an open problem to establish existence of CEP/NEP for

multi-player stopping games (see [38] for current state-of-the-art).

5.1. Further Extensions. Several aspects of our model merit further analysis. The dynamics for

CO2 allowance prices in (2) were selected to capture succinctly the price impact of each producer,

leaving out other important features. As described in the introduction, as the permit expiration date

T approaches, the CO2 price should converge either to zero (if excess permits remain) or to a fixed

upper bound x (the penalty for emitting without an allowance). New (time-dependent) stochastic
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models are needed to mimic this property, see [7, 18]. Also, some cap-and-trade proposals will

allow trading of allowances by financial participants whence no-arbitrage restrictions might have to

be imposed on the dynamics of X. All these possibilities can be handled straightforwardly, since

the main construction is for arbitrary X-dynamics. Ideally, a fully endogenous model is desired

for allowance prices; namely Xt should be a function of total expected emissions until T compared

to total current supply, i.e. have a characterization in terms of conditional expectations of future

equilibrium emission schedules. See [6, 7, 10] for such price-formation models and related general

equilibrium frameworks. These extensions will be considered in forthcoming papers.

Our formulation was in discrete-time; while this is sufficient for practical purposes, it is of great

theoretical interest to construct a continuous-time model counterpart. The overall structure of a

switching game as a sequence of stopping games straightforwardly carries over to continuous-time.

However, description of correlated stopping equilibria in continuous time has not been attempted so

far. In fact, the only reference dealing with randomized continuous-time stopping games is [40] (see

also [26] for the latest results on general continuous timing games). Note that in continuous-time

one must work with Nash ε-equilibria since all stopping strategies are defined only in the almost-

sure sense. Second, to ensure the representation of Vi as iterative stopping games through V n,m
i , it

is necessary to a priori show that each player makes finitely many regime switches. At this point

we are not able to state any conditions to guarantee this, except requiring mandatory “cool-off”

periods between each emission regime switch.

In our Markovian setting, solutions of continuous-time single-player switching problems have

representations in terms of reflected backward stochastic differential equations (BSDE) [20]. This

representation should continue to hold in a game setting and will be explored in a separate paper.

Related results have already been obtained for stochastic differential game analogues of our setup,

whence ~u(t) has continuous state-space, see [21, 22].
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Appendix: Numerical Algorithms

(M. Ludkovski) Department of Statistics and Applied Probability, University of California, Santa

Barbara, CA 93106-3110, USA

E-mail address: ludkovski@pstat.ucsb.edu, www.pstat.ucsb.edu/faculty/ludkovski

Algorithm 1 Simulating one realized cashflow path ϑi(s), 0 ≤ s ≤ T

input: Basis functions B`(p, x), ` = 1, . . . , r, regression coefficients ~αi(t, ~ζ); correlation law Γ

input: Initial condition (p0, x0, ~u(0)); horizon T

Initialize ϑi(0)← 0 // Realized cashflows

for t = 0, . . . , T − 1 do

for each ~ζ ∈ {0, 1}2 do

// Evaluate the predicted continuation values from taking action ~ζ

Set q̂i(t, ~ζ)←
∑r

`=1 α
`
i(t,

~ζ)B`(pt, xt)−K{i,ui(t),ζi} + (aipt − bixt − ci)ζi
end for

Compute the stage-t game values based on q̂i(t, ·), i = 1, 2 and Γ, see (23)

Obtain the correlated equilibrium strategy ũ(t).

if ũ(t) is mixed then

Perform randomization to obtain the realized action pair ~u(t+ 1)

else

Set ~u(t+ 1)← ũ(t) // ũ(t) is pure

end if

Update ϑi(t+ 1)← ϑi(t)−K{i,ui(t),ui(t+1)} + (aipt − bixt − ci)ui(t+ 1), i = 1, 2

Make an independent draw (pt+1, xt+1) ∼ P~u(t+1)(·|pt, xt)
end for
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Algorithm 2 Computing Correlated Equilibrium Game Values

input: N > 0 (number of paths); B`(p, x), ` = 1, . . . , r (r regression basis functions)

input: Correlation law Γ

Select anterior strategy profile ~u0

for each regime ~ζ ∈ {0, 1}2 do

Simulate N i.i.d. paths (pnt , x
~ζ,n
t )Nn=1 under P~u0 using Algorithm 1 and pn0 = p0, x

~ζ,n
0 = x0

end for

Initialize ϑni (T, ~ζ)← 0, n = 1, . . . , N

for t = (T − 1), . . . , 1, 0 do

for each regime ~ζ do

Evaluate B`(p
n
t , x

~ζ,n
t ) for ` = 1, . . . , r and n = 1, . . . , N

Regress

~αi(t, ~ζ)← arg min
~α∈Rr

N∑
n=1

∣∣∣ϑni (t+ 1, ~ζ)−
r∑
`=1

α`B`(p
n
t , x

~ζ,n
t )
∣∣∣2

end for

for each current regime ~u do

for each ~ζ ∈ {0, 1}2, and each n = 1, . . . , N do

// Compute the predicted continuation value for each player from taking action ~ζ

Set q̂ni (t, ~u, ~ζ)←
∑r

`=1 α
`
i(t,

~ζ)B`(p
n
t , x

~u,n
t )−K{i,ui,ζi} + (aip

n
t − bix

~u,n
t − ci)ζi.

end for

for each path n = 1, . . . , N do

Compute the stage-t game values based on q̂n· (t, ~u, ·) and Γ, see (23)

Obtain the equilibrium policy ~un,∗(t, ~u)

Recompute ϑni (t, ~u) using ~un,∗(t, ~u) at stage-t and Algorithm 1 for future stages

end for

end for

end for

return Vi(0, p0, x0, ~ζ) ' 1
N

∑N
n=1 ϑ

n
i (0, ~ζ)

return Regression coefficients ~αi(t, ~ζ) summarizing equilibrium strategies
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