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Automatic Hermiticity
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We study the Hamiltonian that is not at first hermitian. Requirement that a measurement shall
not change one Hamiltonian eigenstate into another one with a different eigenvalue imposes that
an inner product must be defined so as to make the Hamiltonian normal with regard to it. After
a long time development with the non-hermitian Hamiltonian, only a subspace of possible states
will effectively survive. On this subspace the effect of the anti-hermitian part of the Hamiltonian is
suppressed, and the Hamiltonian becomes hermitian. Thus hermiticity emerges automatically, and
we have no reason to maintain that at the fundamental level the Hamiltonian should be hermitian.
We also point out a possible misestimation of a past state by extrapolating back in time with the
hermitian Hamiltonian. It is a seeming past state, not a true one.

PACS numbers: 03.65.Ta, 03.65.-w, 01.55.+b

Introduction In quantum theory the action S is real
and thought to be more fundamental than the integrand
exp(iS) of the Feynman Path Integral. But if we as-
sume that the integrand is more fundamental than the
action in quantum theory, then it is naturally thought
that since the integrand is complex, the action also could
be complex. Based on this assumption and other related
works in some general relativity inspired backward causa-
tion developments [1] and the non-locality explanation of
fine-tuning problems [2], the complex action theory has
been studied intensively by one of the authors(H.B.N)
and Ninomiya[3]. Indeed, many interesting suggestions
have been made for Higgs mass[4], quantum mechanical
philosophy[5], some fine-tuning problems[6, 7] and black
holes[8]. In refs.[3–8] they studied a future-included ver-
sion, that is to say, the theory including not only a past
time but also a future time as an integration interval of
time. In contrast to the above references, in this letter
we consider a future-not-included version.

We shall study a system defined by the non-hermitian
Hamiltonian H , which is correlated to the complex ac-
tion, and look at the time-development of some state.
However, as we know, the time development operator de-
fined in terms of the non-hermitian Hamiltonian is non-
unitary, and thus the probability conservation is not held.
Furthermore, since the eigenstates of the Hamiltonian are
not orthogonal, a transition that should not be possible
could be measured. From these properties it does not
look a physically reasonable theory. But, contrary to our
naive expectation, we shall find that it could be a physi-
cally reasonable theory via two procedures.

The first procedure is to define a physically reasonable
inner product IQ such that the eigenstates of the Hamil-
tonian get orthogonal with regard to it, and thus it gives
us a true probability for a transition from some state to
another. As we shall see later, IQ makes the Hamiltonian
normal with regard to it. In other words IQ has to be
defined for consistency so that the Hamiltonian -even if
it cannot be made hermitian - at least be normal. We

explain how a reasonable physical assumption about the
probabilities leads to the proper inner product IQ, and
define a hermiticity with regard to IQ, Q-hermiticity.

The second procedure is to use a mechanism of sup-
pressing the effect of the anti-hermitian part of the
Hamiltonian H after a long time development. This is
speculated in ref.[9]. In this letter we shall explicitly show
the mechanism with the help of the proper inner product
IQ. For the states with high imaginary part of eigen-
values of H , the factor exp

(

− i
~
H(t− t0)

)

will exponen-
tially grow with t and faster the higher the eigenvalues
are. After a long time the states with the highest imagi-
nary part of eigenvalues of H get more favored to result
than others. That is to say, the effect of the imaginary
part, which shall be shown to correspond to the anti-
Q-hermitian part of H , gets attenuated. Utilizing this
effect to normalize the state, we can effectively obtain a
Q-hermitian Hamiltonian.

Physical significance of an inner product The
Born rule of quantum mechanics is well-known in the
form: When a quantum mechanical system prepared
in a state |i〉 at time ti time-develops into |i(tf )〉 =

e−
i
~
H(tf−ti)|i〉 at time tf , we will measure it in a state

|f〉 with the probability Pf from i = |〈f |i(tf )〉|2. We note
that the probability depends on how we define an in-
ner product of the Hilbert space. A usual inner prod-
uct is defined as a sesquilinear form. We denote it as
I(|f〉, |i(tf )〉) = 〈f |i(tf )〉. It is |I(|f〉, |i(tf )〉)|2 that we
measure by seeing how often we get |f〉 from |i(tf )〉. Mea-
suring the transition of superposition like c1|a〉+c2|b〉 re-
peatedly, we can extract the whole form of I(|f〉, |i(tf )〉)
of any two states by using the sesquilinearity.

To consider an inner product in our theory with the
non-hermitian Hamiltonian H , we first diagonalize H by
using a non-unitary operator P as H = PDP−1. We
introduce an orthonormal basis |ei〉(i = 1, . . .) satisfying
〈ei|ej〉 = δij by D|ei〉 = λi|ei〉, where λi(i = 1, . . .) are
generally complex. We also introduce the eigenstates |λi〉
of H by |λi〉 = P |ei〉, which obeys H |λi〉 = λi|λi〉. We
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note that |λi〉 are not orthogonal to each other in a usual
inner product I, 〈λi|λj〉 6= δij .
Since we are prepared, let us apply the usual inner

product I to our theory with the non-hermitian Hamil-
tonian H , and consider a transition from an eigenstate
|λi〉 to another |λj〉 (i 6= j) fast in time ∆t. Then, though
H cannot bring the system from one eigenstate |λi〉 to
another one |λj〉 (i 6= j), the transition can be measured,
that is to say, |I(|λj〉, exp

(

− i
~
H∆t

)

|λi〉)|2 6= 0, since
the two eigenstates are not orthogonal to each other. We
believe that such a transition should be prohibited in a
reasonable theory, based on the philosophy that a mea-
surement - even performed in a short time - is fundamen-
tally a physical development in time. Thus we think that
the eigenstates have to be orthogonal to each other.
Since we are physically entitled to require that a

truly functioning measurement procedure must necessar-
ily have reasonable probabilistic results, we attempt to
construct a proper inner product IQ(|f〉, |i〉) = 〈f |Q i〉
with the property that the eigenstates |λi〉 and |λj〉 get
orthogonal to each other,

IQ(|λi〉, |λj〉) = δij . (1)

We believe that the true probability is given by such a
proper inner product IQ, based on which the Hamilto-
nian is conserved even if it is not hermitian and typically
has complex eigenvalues. This condition applies to not
only the eigenstates of the Hamiltonian but also those of
any other conserved quantities. The transition from an
eigenstate of such a conserved quantity to another eigen-
state with a different eigenvalue should be prohibited in
a reasonable theory.
A proper inner product and hermitian conju-

gate Let us define a proper inner product IQ of some
states |ψ1〉 and |ψ2〉 by

IQ(|ψ2〉, |ψ1〉) = 〈ψ2|Qψ1〉 ≡ 〈ψ2|Q|ψ1〉, (2)

where Q is some operator chosen appropriately. Q has
to correspond to a unit operator if the non-hermitian
Hamiltonian is shifted to a hermitian one. In the usual
real action theory the usual inner product I is defined to
satisfy 〈ψ1(t)|ψ2(t)〉 = 〈ψ2(t)|ψ1(t)〉∗. Hence we impose
a similar relation on IQ as

〈ψ1(t)|Qψ2(t)〉 = 〈ψ2(t)|Qψ1(t)〉∗. (3)

Then we obtain a condition Q† = Q, namely, Q has to
be hermitian.
Via the inner product IQ, we define the corresponding

hermitian conjugate †Q for some operator A by

〈ψ2|QA|ψ1〉∗ = 〈ψ1|QÂ†Q |ψ2〉. (4)

Since the left-hand side can be expressed as
〈ψ2|QÂ|ψ1〉∗ = 〈ψ1|Â†Q†|ψ2〉, an explicit form of
the Q-hermitian conjugate of A is given by

A†Q = Q−1A†Q. (5)

†Q is introduced for operators, but we can formally define
†Q for kets and bras, too. We define †Q for kets and

bras as |ψ1〉†Q ≡ 〈ψ1|Q and (〈ψ2|Q)†Q ≡ |ψ2〉. Then we
can manipulate †Q like a usual hermitian conjugate †.
When A satisfies A†Q = A, we call A Q-hermitian. This
is the definition of the Q-hermiticity with regard to the
inner product IQ. Since this relation can be expressed as
QA = (QA)†, when A is Q-hermitian, QA is hermitian,
and vice versa.
If some operator A can be diagonalized as A =

PADAP
−1
A , then Q-hermitian conjugate of A is expressed

as A†Q = Q−1(P †
A)

−1D
†
AP

†
AQ. If we choose Q as

Q = (P †
A)

−1P−1
A , which satisfies Q† = Q, we have

A†Q = PAD
†
AP

−1
A . Therefore, if the diagonal compo-

nents of DA are real, namely, D†
A = DA, then A is shown

to be Q-hermitian. In the following we define Q by

Q = (P †)−1P−1 (6)

with the diagonalizing matrix P of the non-hermitian
Hamiltonian H . Thus the inner product IQ we shall use
from now on depends on H via Q.
The Hamiltonian is Q-normal. To prove that the

non-hermitian Hamiltonian H is Q-normal, i.e. normal
with regard to the inner product IQ, we first define

“P †Q” ≡







〈λ1|Q
〈λ2|Q

...






(7)

by using the diagonalizing operator P of H , which has
a structure as P = (|λ1〉, |λ2〉, . . .), where |λi〉 are eigen-
states of H . We note that “P †Q” is defined by using
the Q-hermitian conjugate of kets, so “P †Q” 6= Q−1P †Q.
Then we see that “P †Q”P = 1, namely, “P †Q” = P−1.
Hence we can say that P is Q-unitary.
Next we consider the relation “P †Q”HP = D. The

(i, j)-component of this relation in |λi〉 basis is writ-
ten as 〈λi|QH |λj〉 = λiδij . Taking the complex conju-
gate, we obtain 〈λj |QH†Q |λi〉 = λ∗i δij , that is to say,
〈λi|QH†Q |λj〉 = λ∗i δij . This is written in the operator
form as “P †Q”H†QP = D†. Therefore we obtain

[H,H†Q ] = P [D,D†]P−1 = 0. (8)

Thus we see that H is Q-normal. In other words we can
say that the inner product IQ is defined so that H is
normal with regard to it.
Furthermore for later convenience we decompose H as

H = HQh + HQa, where HQh = H+H†Q

2 and HQa =
H−H†Q

2 are Q-hermitian and anti-Q-hermitian parts of
H respectively. If we decompose D as D = DR + iDI ,
where the diagonal components of DR and DI are the
real and imaginary parts of the diagonal components of
D respectively, HQh and HQa can be expressed asHQh =
PDRP

−1 and HQa = iPDIP
−1.
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Normalization of |ψ〉 and expectation value We
consider some state |ψ(t)〉, which obeys the Schrödinger
equation i~ d

dt
|ψ(t)〉 = H |ψ(t)〉. Normalizing it as

|ψ(t)〉N ≡ 1√
〈ψ(t)|Q ψ(t)〉

|ψ(t)〉, we define the expectation

value of some operator O by

ŌQ(t) ≡ N 〈ψ(t)|QO|ψ(t)〉N
= N 〈ψ(t0)|QOQH (t− t0)|ψ(t0)〉N , (9)

where we have introduced the time-dependent op-
erator in the Heisenberg picture, OQH(t − t0) ≡
e

i
~
H

†Q (t−t0)Oe− i
~
H(t−t0). Since the normalization fac-

tor depends on time t, |ψ(t)〉N does not obeys the
Schrödinger equation, but

i~
d

dt
|ψ(t)〉N

= H |ψ(t)〉N − N 〈ψ(t)|QHQa|ψ(t)〉N |ψ(t)〉N . (10)

In addition OQH does not obey the Heisenberg equation,
but

d

dt
OQH =

i

~

(

H†QOQH −OQHH
)

=
1

i~
([OQH , HQh] + {OQH , HQa}) . (11)

In both of the equations we find the effect of HQa, the
anti-Q-hermitian part of the Hamiltonian H , though it
seems to disappear in the classical limit. But with the
second procedure we explain next, we shall find that in
both of the equations the effect of HQa disappears.
The mechanism for suppressing the anti-Q-

hermitian part of the Hamiltonian To show the
mechanism for suppressing the effect of HQa, we shall
see the time development of |ψ(t)〉 explicitly. We intro-
duce |ψ′(t)〉 by |ψ′(t)〉 = P−1|ψ(t)〉, and expand it as
|ψ′(t)〉 = ∑

i ai(t)|ei〉. Then |ψ(t)〉 can be written in an
expanded form as |ψ(t)〉 =

∑

i ai(t)|λi〉. Since |ψ′(t)〉
obeys i~ d

dt
|ψ′(t)〉 = D|ψ′(t)〉, the time development of

|ψ(t)〉 from some time t0 is calculated as

|ψ(t)〉 = Pe−
i
~
D(t−t0)|ψ′(t0)〉

=
∑

i

ai(t0)e
1

~
(Imλi−iReλi)(t−t0)|λi〉. (12)

Imλi corresponds to the anti-Q-hermitian part of the
Hamiltonian since HQa = iPDIP

−1. As for the anti-Q-
hermitian partHQa, we can crudely imagine that some of
Imλi take the maximum value B. We denote the corre-
sponding subset of {i} as A. Then we can Taylor-expand
HQa around its maximum and get a good approximation
to the practical outcome of the model. In the Taylor-
expansion we do not have the linear term because we
expand it near the maximum, so we get only non-trivial
terms of second order. In this way HQa gets a constant
in the first approximation, and thus it is not so impor-
tant observationally. Therefore, if a long time has passed,

namely for large t− t0, the states with Imλi|i∈A survive
and contribute most in the sum.
To show how |ψ(t)〉 is effectively described for large

t− t0, we introduce a diagonalized Hamiltonian D̃R as

〈ei|D̃R|ej〉 ≡
{

〈ei|DR|ej〉 = δijReλi for i ∈ A,

0 for i 6∈ A,
(13)

and define Heff by Heff ≡ PD̃RP
−1. Heff is Q-hermitian,

H
†Q
eff = Heff, and satisfies Heff|λi〉 = Reλi|λi〉. Further-

more, we introduce |ψ̃(t)〉 ≡ ∑

i∈A ai(t)|λi〉. Then |ψ(t)〉
is approximately estimated as

|ψ(t)〉 ≃ e
1

~
B(t−t0)

∑

i∈A

ai(t0)e
− i

~
Reλi(t−t0)|λi〉

= e
1

~
B(t−t0)e−

i
~
Heff(t−t0)|ψ̃(t0)〉

= |ψ̃(t)〉. (14)

The factor e
1

~
B(t−t0) included in |ψ̃(t)〉 can be dropped

out by normalization. Thus we have effectively obtained
a Q-hermitian Hamiltonian Heff after a long time de-
velopment though our theory is described by the non-
hermitian Hamiltonian H at first. Indeed the normal-
ized state |ψ(t)〉N ≃ 1√

〈ψ̃(t)|Q ψ̃(t)〉
|ψ̃(t)〉 ≡ |ψ̃(t)〉N time-

develops as |ψ̃(t)〉N = e−
i
~
Heff(t−t0)|ψ̃(t0)〉N . We see that

the time dependence of the normalization factor has dis-
appeared due to the Q-hermiticity of Heff. Thus |ψ̃(t)〉N ,
the normalized state by using the inner product IQ, obeys
the Schrödinger equation

i~
∂

∂t
|ψ̃(t)〉N = Heff|ψ̃(t)〉N . (15)

On the other hand, the expectation value is given
by ŌQ(t) ≃ N 〈ψ̃(t)|QO|ψ̃(t)〉N = N 〈ψ̃(t0)|QÕQH(t −
t0)|ψ̃(t0)〉N , where we have defined a time-dependent op-
erator ÕQH in the Heisenberg picture by ÕQH(t− t0) ≡
e

i
~
Heff(t−t0)Oe− i

~
Heff(t−t0). We see that ÕQH obeys the

Heisenberg equation

d

dt
ÕQH(t− t0) =

i

~
[Heff, ÕQH(t− t0)]. (16)

As we have seen above, the non-hermitian Hamilto-
nian H has become a hermitian one Heff automatically
with the proper inner product IQ and the mechanism
of suppressing the anti-hermitian part of H after a long
time development. If H is written in a local form like
H = 1

2mp
2 + V (q), does the locality remain even after

H becomes hermitian? It is not clear, but for the mo-
ment let us assume that the hermitian Hamiltonian Heff

has a local expression like Heff ≃ 1
2meff

p2eff + Veff(qeff),
and see probability conservation. Besides a usual qeff-
representation of the state |ψ̃(t)〉N , ψ̃(qeff) ≡ 〈qeff|ψ̃(t)〉N ,
we introduce ψ̃Q(qeff) ≡ 〈qeff|Qψ̃(t)〉N , and define a prob-
ability density by

ρeff = ψ̃Q(qeff)
∗ψ̃(qeff) = N 〈ψ̃(t)|Qqeff〉〈qeff|ψ̃(t)〉N . (17)
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Then, since we have i~ ∂
∂t
ψ̃(qeff) = Heffψ̃(qeff) and

i~ ∂
∂t
ψ̃Q(qeff) = H∗

effψ̃Q(qeff), we obtain a continuity

equation ∂ρeff
∂t

+ ∂
∂qeff

jeff(qeff, t) = 0, where jeff(qeff, t) is

a probability current density defined by jeff(qeff, t) =
i~

2meff

(

∂
∂qeff

ψ̃∗
Qψ̃ − ψ̃∗

Q
∂

∂qeff
ψ̃
)

. Thus we see that if Heff

has a local expression, we have the probability conserva-
tion d

dt

∫

ρeffdqeff = 0.
Discussion In this letter we have studied a system

described by the non-hermitian Hamiltonian H . For a
measurement to be physically reasonable, we have in-
troduced the proper inner product IQ so that H gets
normal with regard to it, and defined Q-hermiticity, i.e.
hermiticity with regard to IQ. Next we have explicitly
presented the mechanism for suppressing the effect of the
anti-Q-hermitian part of H after the long time develop-
ment, and thus effectively obtained the hermitian Hamil-
tonian Heff. This result suggests that we have no reason
to maintain that at the fundamental level the Hamilto-
nian should be hermitian. Furthermore we have seen that
if Heff is written in a local form, we obtain the continuity
equation leading to probability conservation.
Finally let us discuss an estimation of a state at an

early time t1. It is expressed as

|ψtrue(t1)〉N = e−
i
~
H(t1−t0)|ψ(t0)〉N . (18)

But if a historian who lives at a late time t was asked
about the state at t1, he would extrapolate back in
time from his own time t by using the phenomenological

Hamiltonian Heff = H
†Q
eff rather than the fundamental

one H , because at the late time he would only know the
hermitian Hamiltonian. Thus he would specify an early
state at time t1 as

|ψhistorian(t1)〉N = e−
i
~
Heff(t1−t)e−

i
~
H(t−t0)|ψ(t0)〉N .

(19)
This is a false picture and different from the true state
(18) because Heff 6= H . Actually, the seeming past state
|ψhistorian(t1)〉N will be mainly a superposition of the
eigenstates correlated to the subset A. Since the set of
the eigenstates correlated to the subset A is much smaller
than that of all the eigenstates of H , the seeming state
|ψhistorian(t1)〉N would look like necessarily having come
from a special rather tiny part of the full Hilbert space
in the fundamental theory. In other words, it would look
to the historian that the universe necessarily had begun
in a state inside the rather tiny subspace of the funda-
mental Hilbert space with the highest imaginary part of
the eigenvalues of the Hamiltonian. That is to say, the
fundamentally true initial state |ψ(t0)〉N tends to be hid-
den from the historian at the late time more and more

as the time t gets later and later. This story implies that
if our universe had begun with a non-hermitian Hamilto-
nian at first in some fundamental theory, then we could
misestimate the early state at the time t1 by using the
hermitian Hamiltonian to extrapolate back in time.
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