arXiv:1010.0621v1 [stat.ML] 4 Oct 2010

Local Optimality of User Choices and
Collaborative Competitive Filtering

Shuang Hong Yang
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332
shy@at ech. edu

October 5, 2010

Abstract

We describe a novel framework for learning recommender isdderecommen-
dation systems, which views user-system-item interast@s anopportunity give-
and-takeprocess, and encodes both “collaboration” and “competitmechanisms
underlying the interaction. The proposed framework legesahe latent factor mod-
els of collaborative filtering to encode “collaboration’ig\factor sharing); and in the
meanwhile, it utilizes a type of objectives that impliesal optimality of user choices
to encode “competition”. Specifically, it takes into accbhoth therevenueand the
opportunity costof each user decision; and, by optimizing a new objective dna
analogous to theconomic profitit encourages that every opportunity being taken by
a user be locally the best among the opportunities beingesffeo him/her. Such
competition among candidates opportunities imposes@#osupervision and in turn
leads to better generalization to unseen interactions. ilirapresults indicates that
thecollaborative-competitive filterinCCF) approaches improve dramatically recom-
mendation performance compared with traditional collabee filtering models (e.g.,
nDCG score is boosted from 0.14 to 0.71 on Yahoo! Pulse ddtizhvis a huge 400%
improvement).

We also discuss a Bayesian Generative model that enalbiébsaining of explore-
exploit strategy and factorization recommender models.ceefor attentions from
recommendation industry to test this model on real reconataiéon system.

1 Introduction

Recommendation systems have become a core component &gtst@ersonalized online
business. Instead of listing all the itefisn a massive menu as shown to the users in
traditional offline businesses, a recommendation systemptadhe services according to
the interest of each individual user by presenting to the wsi a small subset of items
that would potentially interest her. Such ability of intstréargeting (i.e. match user with
interesting items and item with interested users) of recemhation system has contributed
to the success of many eCommerce companies (e.g. AmazdtixNedandora, Facebook)

1Example items in recommender systems: retailing prodimts] shops, movies, games, music, books,
video, News articles, advertisements, Web pages, friengi®rts, etc.
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and is now the key to almost all kinds of long tail busines&yrijolfsson et al., 2003,
2007).

However, modeling such subtle aspect as user-to-itemeisités not a trivial task — it
requires predicting the response of an user-item intenadtefore it actually happens. Ex-
isting systems resort unanimously to collaborative filttg{CF) techniques, which learn to
predict future interactions by collaboratively uncoverimistorical records of user-item re-
sponses in such a way that “related” items get similar resg®from “related users”(Sarwar et al.,
2001; McLaughlin & Herlocker, 2004; Salakhutdinov & Mnil0@8; Agarwal & Chein, 2009;
Chen et all, 2009; Koren etlal., 2009). The rationale is dsvisl usually the observed his-
torical interactions are extremely noisy and sparse (dées than 1%); by using the “col-
laboration”, among users or among items or both, CF gredityiates the issue of data
sparseness and in turn makes reliable prediction by agingghe interaction evidences
across different items/users to discover meaningful &uion patterns.

The current state-of-art approaches to collaborativeifigerely on a regression-based
framework, either approximating the click-through-ra@TR) by minimizing the mean-
square-error (MSE) loss or maximizing the likelihood of migem interactions based on
the Bernoulli cross-entropy loss. Yet, the performance ushsapproaches has already
arrived at a limit and become the bottleneck for higher-ifpatcommendation systems.

In this paper, we argue that, besides “collaboration”, tb@mipetition” among items
is another fundamental mechanism underlying user-itegractions that are worthwhile
exploiting for predictive recommendation. We describe & perspective for user choice
in recommendation systems. In particular, we view the ggstem-item interaction as an
opportunity give-and-takprocess:

1) auser inquires the system (e.g. visits a movie recomntiemdaebsite);

2) the system offers a set of (personalized) opportuniBas. fecommends a small list
of movies that are potentially interesting to the user);

3) the user chooses one or more from these offers and takeasaetcordingly (e.qg.
click a link, rent a movie, view a News article, purchase adpuat).

We develop a theory of “local optimality” for user choicedhioh states that a user is most
likely to take the opportunity that is locally optimal amatihgse opportunities being offered
to her. This theory imposes a “competition” over the itenat the system offers to a user.

We establish a novel framework for recommender learningdas this thoery. The
proposedcollaborative competitive filteringCCF) exploits both the “collaboration” and
“competition” mechanisms. In particular, it leverages thatiplicative latent factor model
of collaborative filtering to capture “collaboration” anwusers and items; but instead of
estimating CTR or likelihood by optimizing MSE or cross eply as in CF, CCF takes into
account both theevenueand theopportunity cosbf each user decision; and, by optimizing
a new objective that are analogous to #oenomic profitn Microeconomics, it encourages
that every opportunity being taken by a user be locally the& benong the opportunities
being offered to her. Such competition among opportunitigzoses stronger supervision
and in turn leads to better generalization to unseen irierac

From a machine learning viewpoint, our proposed framewst& hybrid oflocal and
global learning, where a global model (e.qg., factorization modelearned by optimizing
a local loss function (e.g., the profit loss function). In C@fe global latent factor model
encodes collaboration among users and items (via factomghawhereas the local con-
textualized loss function captures the competition ambergs within each offer contexts.



The local loss function imposes stronger supervisionizaimg than global ones (e.g. MSE,
logistic) and in turn leads to more predictive latent factardels.

Empirical results on Yahoo! Pulse data indicates thatomliaborative-competitive fil-
tering (CCF) approaches improve dramatically the recommendatoformance compared
with traditional collaborative filtering models (e.g., nBGscore is boosted from 0.14 to
0.71, a huge 400% improvement).

We also propose a Bayesian model that allows joint learnfrgxplore-exploit strat-
egy and collaborative-competitive filtering. We call fotesitions from recommendation
industry to test this model on real recommender systems.

2 Problem formulation

Consider the interaction in a recommendation system: wiverbave a set of useté =
{u=1,2,...,U} and asetof itemd = {i = 1,2,...,I}; for a given usew, the system
recommends a small subset of ite@s= {iy,...,4;} to display to the user, andin turn
chooses a subset (possibly em@By/)c O from O and takes actions accordingly (e.g. buys
one of the recommended products). To assist building sudystem, we have a trace of
historical user-system-item interactions in the form{ @i, O,, D;)}, wheret is the index
of an interaction.

Hereafter, we refer t&f asuser space, Z asitem (Opportunity) space, O, asoffer
set, andD; asdecision set.

We consider the latent factor CF models for recommendenilegr Latent factor mod-
els embeds both user and item into the same space (e.g.déarglisimplex) via latent
factors, 8, for each usew and#g; for each itemi, then recommendation for a new inquiry
from useru is done by ranking items based ¢(¥,,, 6;) and choosing the top-ranked ones.
Usually, a multiplicative ranking function is used(é.,, 6;) = 6, 6..

3 The state-of-the-art of collaborative filtering

Existing CF approaches learn latent fact@sandd;, in a regression based framework.

Bilinear Ridge Regression|Koren,/2008[; Agarwal & Chen, 2009) The most popular learn-
ing formulation is to minimize the estimation error of clithrough rate (CTR) in the sense
of least square error:

0u,0; = argmin||pu; — 60, 65| + c|l6]|, (1)

where the CTRp,; = %, #{i € O¢uy = u} is the offer frequency (i.e., the
total frequency of item being recommended t@), and#{i € D;|u; = u} the decision

frequency (i.e., the frequenegybeing chosen (i.e., clicked) hy).

Bilinear Logistic Regression(Miller et al/,[2009; Agarwal & Chen, 2009) Another popular
formulation for CF is to optimize the Bernoulli cross-emydoss function instead @ :

exp(0, 6;
HH,HZ- = arg max (yuz IOg (MF—H)L> +C||9||2 (2)

where the binary indicator variablg; = §(i € D,,). This is essentially a logistic regression
model learned on one-class (i.e., positive only) examples.



Problems with Regression-based Model§he regression based approaches have gained a
lot of success and become the current state-of-the-artllatbooative filtering. However,
such approaches are lacking in several aspects:

e Data sparseness (i.e. the interactions are highly incamplech that a vast majority
of responses are not observed) is a key issue for recomméataing. To avoid
overfitting, stronger supervision or constraints than M$Eross-entropy is needed
for more predictive recommender models.

e The ridge regression model is dominated by examples withel&@TR-estimation
residues. It often performs poorly because the historipaese data are extremely
sparse and noisy.

e The logistic regression model essentially approachesasieds binary classification.
However, with examples missing from one class, logisticasgion classifiers gen-
erally perform terribly because the classifier is biasedatomone class while being
uncurbed at the other.

e Both RR and LR only capture one aspect of the interactiors, eitherO or D or
the ratio. And both are global learning methods (i.e., dldaetor model learned
globally with global loss), neglecting the contextual imf@tion (i.e., the contex®,
where the decision is made), which is invaluable for leaymiredictive recommender
models.

4 Collaborative competitive filtering

We argue that the contexts in which user’s decisions are staoldd be taken into account
in CF learning. The rationale is that, in practice, even #mae user: could make different
decisions when facing different contexfs. For instance, an offer (e.g., item) would not
have been chosen if it were not presented to the user at thpléice; likewise, user might
choose to accept another offer if the contéxthanges such that a better offer (e.g., a more
interesting item) is presented to her.

We present théocal optimality of user choigewhich implies a mechanism of “compe-
tition” among items in each conte? such that each user choice is locally optimal in that
context. We propose two formulations foollaborative competitive filteringCCF) in this
section, which are justified in the next section.

LocaL OPTIMALITY OF USER CHOICE Given a set of offers), a useru always chooses
the offer that is locally optimal in the context ©f i.e.: i* = argmax{r,; : ¢ € O}, where
ry; 1S the revenue that earns by choosing

We assume a multiplicative model for revenug, = HJHZ-, in order to learn a latent
factor recommender model from user decision traces. Themfentioned theory induces
an local-optimality constraint which could be translateid ian ideal loss function for latent
factor learning:

ViteD: 6]67 >max{0]06;li € O\ D}), (3)

This loss function is, however, computationally intradtads the optimization is prov-
ably NP-hard. To this end, we propose two formulations basetivo surrogate loss func-
tions.



Contextualized Softmax ModelOur first formulation is to useoftmaxfunction as a sur-
rogate ofmax Particularly, we assume the following model for the praligtof an offer
being taken by user in the context of an offer seb:

» exp(Tyi*)
p(*u,0) = =————- (4)
> ico €xp(ru;)
We learn the latent factors by the following MLE estimation:
max Y log ( xp (0, 0) > + cl6]|? 5)
> ico, exp (0, 0;) '

t,i*€Dy

This is a convex optimization problem and could be solvediefiitly and globally: for
example, we could use stochastic gradient descent for seglle learning when the data
setis large.

This model has an interesting connection with the logigiggession model. Essentially,
our model uses a local loss function, which could be seergstioregression with context-
aware local partitions:

exp(0, 0;)
exp(0,; 6;) + zi’eot\i exp(0,; 0ir)

0.,0; = argmax(ymlog >—|—c||9||2. (6)

Note that, in contrast to the classical logistic regressmmtel Eqn(2) that uses a con-
stant 1 in the partition, our softmax model uses a local @t _; ), \; exp(6,, 0;) that
is dependent on the conte&. From another perspective, our model uses the context as
background and maximizes the probability that every chof¢be user is locally the winer
of the context set. Roughly speaking, it uses (implicithy® hon-choices in the context set
virtually as negative examples.

Contextualized Hinge ModelOur second formulation views the task as a pairwise prefer-
ence learning and uses the non-choices averagely as aiveegatmple.

minzz&' + ¢[|0]?
t

subjectto : HUTHZ- — HuTH_i >1+4¢&,VieDy

(7)

wherefd, 0_; = 21 > ico,; b i i the average revenue of the non-choides; |O;|.
This formulation learn latent factors by maximizing the giaal utility between user choice
and the average of non-choices. This is essentially a coatézed bilinear RankSVM
model (Herbrich et all, 1999), and could be solved by exisRankSVM QP solvers.

5 The opportunity give-and-take (GAT) process

The user-system-item interaction in recommendation systn be viewed as an instance
of the opportunity give-and-tak@GAT) process. In this section, we give brief definition to
the GAT process and draw justification to our proposed fraonkew

DEFINITION [GAT]: An opportunity give-and-take process is a process of icteyas
among an agent, a systent’ and a set of opportunitie®; at an interactiont:
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- u is given a set of opportunitie®; C Z by S; other opportunities that are not i@,
is unaccessible ta at interactiont.

- Because of resource restrictions (e.g., time, energyan only choose to take a
subset of the offered opportunitie®; C Oy, |D| = I;.

- Each opportunityi € O, could potentially give: a revenue of-; if being taken.

We assume an agentis a rational decision maker; for each decisianconsiders
both revenue andopportunity cost, and decides which opportunity to take based on the
potentialprofit of each opportunity ir0.

e Revenue: the revenue-,; is the gross gain ofi from taking the opportunity; We
consider a latent factor model in this papgf ~ HIHZ-.

e Opportunity Cost: the opportunity cost,,; is the potential loss of from taking an
opportunity: excluding her to take other opportunities,; equals to the revenue of
the second best alternative;; = max{r,; : ' € O\ i}

e Profit: the profitr,; = ry; — cy; IS the net gain of an decision.

PROPOSITION: Arational decision is a decision maximizing the profit: ams max;c my;-
This proposition provide directly justification to our praged framework: the probabil-

ity of observing an decision € D; depends on the profit,; = 6,/ §; — max; e o\p 0, 0,

rather than the revenug; = HJHE; the more the profit,; is, the more likelyu will take ¢;

if the profits of all the opportunities are marginalwill not invest her resource (e.g., time,

energy) and none of the opportunities will be taken.

6 Experiments

This section presents preliminary experiments. We tesptbposed two CCF models in
comparison with CF models on a data set crawled from Yaholskpsocial network. The
data consists of 386 Yahoo! approved applications, 1241ig@?s, and 2,932,553 interac-
tions indicating which user installs which application.cBase the contextual information
(the offer set), for each interaction) is missing, we manually create a fixed-size pseudo-
offer set for each interaction. Specifically, for every figsi observation, e.gy,; = 1, we
randomly sample a handy set of missing (unobserved) ertrigs} —1.,, and treat such
items{i’'} as non-choices (e.g,;; = —1,). In our experiments, we choose = 4 pseudo
non-choices; in other words, we assume the offer kiz®.

For comparison, we test the two CCF models (referred t@’'&s.Softmax and
CCF.Hinge) against the two standard CF models (referred 0 Bs.2 andC F’. Logistic)
discussed in Sectidd 3.

For recommendation, the latent factor recommender modatsto a ranking of items
according to the multiplicative score function. Hence iaural to use ranking metrics to
assess performance. We use the nDC@amalized Discounted Cumulative Gaoore,
which gives larger credit to top-ranked entities and is Widsed in IR community.

For our evaluation, we use a cross-validation setting whareandomly partition the
data into two equally sized pieces and use one for trainimtla@ other for testing. The
nDCG scores are computed on testing data only, and they aragad over five random
repeats.

%Both of the regression-based approaches are derived fr@mue-maximizing decisions.
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Figure 1: nDCG comparison of CF and CCF models on Y! Pulse data

The results are reported in Figure 1. The comparison isistyik Among the four
models, CF with MSE loss performs the worst, the mean nDCG@#ss only 0.053. CF
with logistic loss is a little better, the average nDCG@5.140 In contrast, the two CCF
models boost the nDCG dramatically. The softmax model aekiadCG@5 as high as
0.69, while the hinge model is even better, the nDCG@5 seoas high as 0.71, which is
a 400% improvement compared to logistic regression based CF

Our experiments are limited due to lack of real contextug diee. the offer se©; for
each interactiont). Because all the published recommendation data sets wanae of
do not contain such contextual information, our comparisdmsed on pseudo contextual
data. We believe that real contextual information contaimse useful information for
modeling and predicting user behavior. As such, we expetilasi or even better results
on real recommendation data where real contextual infoomas available. We call for
industry attentions to test our CCF model on their recomraeagstem.

7 The stochastic give-and-take (SGAT) process for joint CCF
and exploration strategy learning

In this section, we present a Bayesian generative modettdéoppportunity give-and-take
process, which employs the exploit-explore scheme for dppity generation and the pro-
posed CCF framework for decision making. This generativelehaalledstochastic give-
and-take (SGAT)ould be used for joint learning of latent factor models &l as explo-
ration strategies. We call for attentions from recommeindatndustry to test this model on
real recommender systems.

SGAT: Given user spack and opportunity spacg, a generative OGAT process generates
an interactiort as follows:

User sampling u; ~Multinomial(5)
Offer sampling: the systemS employs an explore-exploit scheme to generate the
offer setQ;, for example:

- sample offer sizel; ~Poison¢)
-fori=1tol;
- samplei ~ p(il6,, 6;,7)



Decision sampling useru; decidesD, according to her resource restriction and the
potential profit of each offer, e.qg.:

- sample decision sizen; ~Poison§)
- fori=1tom;

- samplep(iug, Oy) = u0:

= 721-/6@,5 Q,Ilgi/ AS Ot.

wherep(i|r;, ) is an explore-exploit strategy with utility (payoff) and exploration prob-
ability ~3; 8 controls the frequency of user participation (e.g., soneusisit the recom-
mender system more frequently)captures the bias of user decision (e.g., some users more
frequently take at least one of the recommender’s suggedtidon practice, the offer size
might be a fixed number (e.g., in news recommendati@usually set to 5).

This generative model provide a single unified model forriewy both the exploration
strategy and the latent factor models simultaneously fiwgririteraction data.

8 Conclusion

We have developed a theory loical optimality for user choices recommendation sys-
tem. We presented the framework aifllaborative competitive filterinor recommender
learning, which leverages latent factor models of CF to daamllaborations among items
and users, and in the meanwhile, it also encodes the coiopedinong the items being
recommended to the users. CCF takes into account both thauewand the opportunity
cost of each user decision, and by optimizing the profit lasstion, CCF encourages that
each decision the user makes be locally the best among tluetopjies being offered to
her. We established two models in this spirit. Preliminaxpeziments indicate that CCF
diamagnetically improves recommendation performancepesed with standard CF ap-
proaches. We also presented a Bayesian model for jointitepof exploit-explore strategy
and CCF factorization model. We call for attentions fromoraemendation industry to test
our model on their recommender system.
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