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Abstract

We describe a novel framework for learning recommender models for recommen-
dation systems, which views user-system-item interactions as anopportunity give-
and-takeprocess, and encodes both “collaboration” and “competition” mechanisms
underlying the interaction. The proposed framework leverages the latent factor mod-
els of collaborative filtering to encode “collaboration” (via factor sharing); and in the
meanwhile, it utilizes a type of objectives that implieslocal optimality of user choices
to encode “competition”. Specifically, it takes into account both therevenueand the
opportunity costof each user decision; and, by optimizing a new objective that are
analogous to theeconomic profit, it encourages that every opportunity being taken by
a user be locally the best among the opportunities being offered to him/her. Such
competition among candidates opportunities imposes stronger supervision and in turn
leads to better generalization to unseen interactions. Empirical results indicates that
thecollaborative-competitive filtering(CCF) approaches improve dramatically recom-
mendation performance compared with traditional collaborative filtering models (e.g.,
nDCG score is boosted from 0.14 to 0.71 on Yahoo! Pulse data, which is a huge 400%
improvement).

We also discuss a Bayesian Generative model that enables joint learning of explore-
exploit strategy and factorization recommender models. Wecall for attentions from
recommendation industry to test this model on real recommendation system.

1 Introduction

Recommendation systems have become a core component for today’s personalized online
business. Instead of listing all the items1 in a massive menu as shown to the users in
traditional offline businesses, a recommendation system adapts the services according to
the interest of each individual user by presenting to the user with a small subset of items
that would potentially interest her. Such ability of interest targeting (i.e. match user with
interesting items and item with interested users) of recommendation system has contributed
to the success of many eCommerce companies (e.g. Amazon, Netflix, Pandora, Facebook)

1Example items in recommender systems: retailing products,local shops, movies, games, music, books,
video, News articles, advertisements, Web pages, friends,experts, etc.
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and is now the key to almost all kinds of long tail businesses (Brynjolfsson et al., 2003,
2007).

However, modeling such subtle aspect as user-to-item interest is not a trivial task – it
requires predicting the response of an user-item interaction before it actually happens. Ex-
isting systems resort unanimously to collaborative filtering (CF) techniques, which learn to
predict future interactions by collaboratively uncovering historical records of user-item re-
sponses in such a way that “related” items get similar responses from “related users”(Sarwar et al.,
2001; McLaughlin & Herlocker, 2004; Salakhutdinov & Mnih, 2008; Agarwal & Chen, 2009;
Chen et al., 2009; Koren et al., 2009). The rationale is as follows: usually the observed his-
torical interactions are extremely noisy and sparse (oftenless than 1%); by using the “col-
laboration”, among users or among items or both, CF greatly alleviates the issue of data
sparseness and in turn makes reliable prediction by aggregating the interaction evidences
across different items/users to discover meaningful interaction patterns.

The current state-of-art approaches to collaborative filtering rely on a regression-based
framework, either approximating the click-through-rate (CTR) by minimizing the mean-
square-error (MSE) loss or maximizing the likelihood of user-item interactions based on
the Bernoulli cross-entropy loss. Yet, the performance of such approaches has already
arrived at a limit and become the bottleneck for higher-quality recommendation systems.

In this paper, we argue that, besides “collaboration”, the “competition” among items
is another fundamental mechanism underlying user-item interactions that are worthwhile
exploiting for predictive recommendation. We describe a new perspective for user choice
in recommendation systems. In particular, we view the user-system-item interaction as an
opportunity give-and-takeprocess:

1) a user inquires the system (e.g. visits a movie recommendation website);
2) the system offers a set of (personalized) opportunities (e.g. recommends a small list

of movies that are potentially interesting to the user);
3) the user chooses one or more from these offers and takes actions accordingly (e.g.

click a link, rent a movie, view a News article, purchase a product).

We develop a theory of “local optimality” for user choices, which states that a user is most
likely to take the opportunity that is locally optimal amongthose opportunities being offered
to her. This theory imposes a “competition” over the items that the system offers to a user.

We establish a novel framework for recommender learning based on this thoery. The
proposedcollaborative competitive filtering(CCF) exploits both the “collaboration” and
“competition” mechanisms. In particular, it leverages themultiplicative latent factor model
of collaborative filtering to capture “collaboration” among users and items; but instead of
estimating CTR or likelihood by optimizing MSE or cross entropy as in CF, CCF takes into
account both therevenueand theopportunity costof each user decision; and, by optimizing
a new objective that are analogous to theeconomic profitin Microeconomics, it encourages
that every opportunity being taken by a user be locally the best among the opportunities
being offered to her. Such competition among opportunitiesimposes stronger supervision
and in turn leads to better generalization to unseen interactions.

From a machine learning viewpoint, our proposed framework is a hybrid oflocal and
global learning, where a global model (e.g., factorization model)is learned by optimizing
a local loss function (e.g., the profit loss function). In CCF, the global latent factor model
encodes collaboration among users and items (via factor sharing), whereas the local con-
textualized loss function captures the competition among items within each offer contexts.
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The local loss function imposes stronger supervision/constraint than global ones (e.g. MSE,
logistic) and in turn leads to more predictive latent factormodels.

Empirical results on Yahoo! Pulse data indicates that ourcollaborative-competitive fil-
tering (CCF) approaches improve dramatically the recommendationperformance compared
with traditional collaborative filtering models (e.g., nDCG score is boosted from 0.14 to
0.71, a huge 400% improvement).

We also propose a Bayesian model that allows joint learning of explore-exploit strat-
egy and collaborative-competitive filtering. We call for attentions from recommendation
industry to test this model on real recommender systems.

2 Problem formulation

Consider the interaction in a recommendation system: wherewe have a set of usersU =
{u = 1, 2, . . . , U} and a set of itemsI = {i = 1, 2, . . . , I}; for a given useru, the system
recommends a small subset of itemsO = {i1, . . . , il} to display to the user, andu in turn
chooses a subset (possibly empty)D ⊂ O from O and takes actions accordingly (e.g. buys
one of the recommended products). To assist building such ansystem, we have a trace of
historical user-system-item interactions in the form of{(ut,Ot,Dt)}, wheret is the index
of an interaction.

Hereafter, we refer toU asuser space, I as item (Opportunity) space, Ot asoffer
set, andDt asdecision set.

We consider the latent factor CF models for recommender learning. Latent factor mod-
els embeds both user and item into the same space (e.g., Euclidean, simplex) via latent
factors,θu for each useru andθi for each itemi, then recommendation for a new inquiry
from useru is done by ranking items based onf(θu, θi) and choosing the top-ranked ones.
Usually, a multiplicative ranking function is used:f(θu, θi) = θ⊤u θi.

3 The state-of-the-art of collaborative filtering

Existing CF approaches learn latent factors,θu andθi, in a regression based framework.

Bilinear Ridge Regression(Koren, 2008; Agarwal & Chen, 2009) The most popular learn-
ing formulation is to minimize the estimation error of click-through rate (CTR) in the sense
of least square error:

θu, θi = argmin ||ρui − θ⊤u θi||
2 + c||θ||2, (1)

where the CTRρui =
#{i∈Dt|ut=u}
#{i∈Ot|ut=u} , #{i ∈ Ot|ut = u} is the offer frequency (i.e., the

total frequency of itemi being recommended tou), and#{i ∈ Dt|ut = u} the decision
frequency (i.e., the frequencyi being chosen (i.e., clicked) byu).

Bilinear Logistic Regression(Miller et al., 2009; Agarwal & Chen, 2009) Another popular
formulation for CF is to optimize the Bernoulli cross-entropy loss function instead ofl2:

θu, θi = argmax

(

yui log
exp(θ⊤u θi)

exp(θ⊤u θi) + 1

)

+ c||θ||2 (2)

where the binary indicator variableyui = δ(i ∈ Du). This is essentially a logistic regression
model learned on one-class (i.e., positive only) examples.
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Problems with Regression-based ModelsThe regression based approaches have gained a
lot of success and become the current state-of-the-art of collaborative filtering. However,
such approaches are lacking in several aspects:

• Data sparseness (i.e. the interactions are highly incomplete such that a vast majority
of responses are not observed) is a key issue for recommenderlearning. To avoid
overfitting, stronger supervision or constraints than MSE or cross-entropy is needed
for more predictive recommender models.

• The ridge regression model is dominated by examples with large CTR-estimation
residues. It often performs poorly because the historic response data are extremely
sparse and noisy.

• The logistic regression model essentially approaches the task as binary classification.
However, with examples missing from one class, logistic regression classifiers gen-
erally perform terribly because the classifier is biased toward one class while being
uncurbed at the other.

• Both RR and LR only capture one aspect of the interactions, i.e., eitherO or D or
the ratio. And both are global learning methods (i.e., global factor model learned
globally with global loss), neglecting the contextual information (i.e., the contextOt

where the decision is made), which is invaluable for learning predictive recommender
models.

4 Collaborative competitive filtering

We argue that the contexts in which user’s decisions are madeshould be taken into account
in CF learning. The rationale is that, in practice, even the same useru could make different
decisions when facing different contextsO . For instance, an offer (e.g., item) would not
have been chosen if it were not presented to the user at the first place; likewise, user might
choose to accept another offer if the contextO changes such that a better offer (e.g., a more
interesting item) is presented to her.

We present thelocal optimality of user choice, which implies a mechanism of “compe-
tition” among items in each contextO such that each user choice is locally optimal in that
context. We propose two formulations forcollaborative competitive filtering(CCF) in this
section, which are justified in the next section.

LOCAL OPTIMALITY OF USER CHOICE Given a set of offers,O, a useru always chooses
the offer that is locally optimal in the context ofO, i.e.: i∗ = argmax{rui : i ∈ O}, where
rui is the revenue thatu earns by choosingi.

We assume a multiplicative model for revenue,rui = θ⊤u θi, in order to learn a latent
factor recommender model from user decision traces. The aforementioned theory induces
an local-optimality constraint which could be translated into an ideal loss function for latent
factor learning:

∀ i∗ ∈ D : θ⊤u θ
∗
i > max{θ⊤u θi|i ∈ O \ D}), (3)

This loss function is, however, computationally intractable as the optimization is prov-
ably NP-hard. To this end, we propose two formulations basedon two surrogate loss func-
tions.
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Contextualized Softmax ModelOur first formulation is to usesoftmaxfunction as a sur-
rogate ofmax. Particularly, we assume the following model for the probability of an offer
being taken by useru in the context of an offer setO:

p(i∗|u,O) =
exp(rui∗)

∑

i∈O exp(rui)
. (4)

We learn the latent factors by the following MLE estimation:

max
∑

t,i∗∈Dt

log

(

exp(θ⊤u θi∗)
∑

i∈Ot
exp(θ⊤u θi)

)

+ c||θ||2. (5)

This is a convex optimization problem and could be solved efficiently and globally: for
example, we could use stochastic gradient descent for sequentially learning when the data
set is large.

This model has an interesting connection with the logistic regression model. Essentially,
our model uses a local loss function, which could be seen as logistic regression with context-
aware local partitions:

θu, θi = argmax

(

yui log
exp(θ⊤u θi)

exp(θ⊤u θi) +
∑

i′∈Ot\i
exp(θ⊤u θi′)

)

+ c||θ||2. (6)

Note that, in contrast to the classical logistic regressionmodel Eqn(2) that uses a con-
stant 1 in the partition, our softmax model uses a local partition

∑

i′∈Ot\i
exp(θ⊤u θi′) that

is dependent on the contextOt. From another perspective, our model uses the context as
background and maximizes the probability that every choiceof the user is locally the winer
of the context set. Roughly speaking, it uses (implicitly) the non-choices in the context set
virtually as negative examples.

Contextualized Hinge ModelOur second formulation views the task as a pairwise prefer-
ence learning and uses the non-choices averagely as an negative example.

min
∑

t

∑

i

ξi + c||θ||2

subjectto : θ⊤u θi − θ⊤u θ−i > 1 + ξi, ∀ i ∈ Dt

(7)

whereθ⊤u θ−i = 1
l−1

∑

i′∈Ot\i
θ⊤u θi′ is the average revenue of the non-choices,l = |Ot|.

This formulation learn latent factors by maximizing the marginal utility between user choice
and the average of non-choices. This is essentially a contextualized bilinear RankSVM
model (Herbrich et al., 1999), and could be solved by existing RankSVM QP solvers.

5 The opportunity give-and-take (GAT) process

The user-system-item interaction in recommendation system can be viewed as an instance
of theopportunity give-and-take(GAT) process. In this section, we give brief definition to
the GAT process and draw justification to our proposed framework.

DEFINITION [GAT]: An opportunity give-and-take process is a process of interactions
among an agentu, a systemS and a set of opportunitiesI; at an interactiont:
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- u is given a set of opportunitiesOt ⊂ I byS; other opportunities that are not inOt

is unaccessible tou at interactiont.
- Because of resource restrictions (e.g., time, energy),u can only choose to take a

subset of the offered opportunities:Dt ⊂ Ot, |Dt| = lt.
- Each opportunityi ∈ Ot could potentially giveu a revenue ofrui if being taken.

We assume an agentu is a rational decision maker; for each decision,u considers
both revenue andopportunity cost, and decides which opportunity to take based on the
potentialprofit of each opportunity inO.

• Revenue: the revenuerui is the gross gain ofu from taking the opportunityi; We
consider a latent factor model in this paperrui ∼ θ⊤u θi.

• Opportunity Cost: the opportunity costcui is the potential loss ofu from taking an
opportunityi excluding her to take other opportunities.cui equals to the revenue of
the second best alternative:cui = max{rui′ : i

′ ∈ O \ i}

• Profit: the profitπui = rui − cui is the net gain of an decision.

PROPOSITION: A rational decision is a decision maximizing the profit: i =argmaxi∈O πui.
This proposition provide directly justification to our proposed framework: the probabil-

ity of observing an decisioni ∈ Dt depends on the profitπui = θ⊤u θi −maxi′∈O\D θ⊤u θi′ ,
rather than the revenuerui = θ⊤u θi

2; the more the profitπui is, the more likelyu will take i;
if the profits of all the opportunities are marginal,u will not invest her resource (e.g., time,
energy) and none of the opportunities will be taken.

6 Experiments

This section presents preliminary experiments. We test theproposed two CCF models in
comparison with CF models on a data set crawled from Yahoo! pulse social network. The
data consists of 386 Yahoo! approved applications, 124,792users, and 2,932,553 interac-
tions indicating which user installs which application. Because the contextual information
(the offer setOt for each interactiont) is missing, we manually create a fixed-size pseudo-
offer set for each interaction. Specifically, for every positive observation, e.g.yui = 1, we
randomly sample a handy set of missing (unobserved) entries{yui′}i′=1:m, and treat such
items{i′} as non-choices (e.g.yui′ = −1,). In our experiments, we choosem = 4 pseudo
non-choices; in other words, we assume the offer sizelt =5.

For comparison, we test the two CCF models (referred to asCCF.Softmax and
CCF.Hinge) against the two standard CF models (referred to asCF.L2 andCF.Logistic)
discussed in Section 3.

For recommendation, the latent factor recommender models lead to a ranking of items
according to the multiplicative score function. Hence it isnatural to use ranking metrics to
assess performance. We use the nDCG ornormalized Discounted Cumulative Gainscore,
which gives larger credit to top-ranked entities and is widely used in IR community.

For our evaluation, we use a cross-validation setting wherewe randomly partition the
data into two equally sized pieces and use one for training and the other for testing. The
nDCG scores are computed on testing data only, and they are averaged over five random
repeats.

2Both of the regression-based approaches are derived from revenue-maximizing decisions.
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Figure 1: nDCG comparison of CF and CCF models on Y! Pulse data.

The results are reported in Figure 1. The comparison is striking. Among the four
models, CF with MSE loss performs the worst, the mean nDCG@5 score is only 0.053. CF
with logistic loss is a little better, the average nDCG@5 is 0.14. In contrast, the two CCF
models boost the nDCG dramatically. The softmax model achieves ndCG@5 as high as
0.69, while the hinge model is even better, the nDCG@5 score is as high as 0.71, which is
a 400% improvement compared to logistic regression based CF.

Our experiments are limited due to lack of real contextual data (i.e. the offer setOt for
each interactiont). Because all the published recommendation data sets we areaware of
do not contain such contextual information, our comparisonis based on pseudo contextual
data. We believe that real contextual information containsmore useful information for
modeling and predicting user behavior. As such, we expect similar or even better results
on real recommendation data where real contextual information is available. We call for
industry attentions to test our CCF model on their recommender system.

7 The stochastic give-and-take (SGAT) process for joint CCF
and exploration strategy learning

In this section, we present a Bayesian generative models forthe opportunity give-and-take
process, which employs the exploit-explore scheme for opportunity generation and the pro-
posed CCF framework for decision making. This generative model, calledstochastic give-
and-take (SGAT), could be used for joint learning of latent factor models as well as explo-
ration strategies. We call for attentions from recommendation industry to test this model on
real recommender systems.

SGAT: Given user spaceU and opportunity spaceI, a generative OGAT process generates
an interactiont as follows:

User sampling: ut ∼Multinomial(β)
Offer sampling: the systemS employs an explore-exploit scheme to generate the
offer setOt, for example:

- sample offer size:lt ∼Poison(ǫ)
- for i = 1 to lt

· samplei ∼ p(i|θ⊤u θi, γ)
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Decision sampling: userut decidesDt according to her resource restriction and the
potential profit of each offer, e.g.:

- sample decision size:mt ∼Poison(ε)
- for i = 1 tomt

· samplep(i|ut,Ot) =
θ⊤u θi∑

i′∈Ot
θ⊤u θ

i′
, i ∈ Ot.

wherep(i|ri, γ) is an explore-exploit strategy with utility (payoff)ri and exploration prob-
ability γ3; β controls the frequency of user participation (e.g., some users visit the recom-
mender system more frequently),ε captures the bias of user decision (e.g., some users more
frequently take at least one of the recommender’s suggestions). In practice, the offer sizel
might be a fixed number (e.g., in news recommendation,l is usually set to 5).

This generative model provide a single unified model for learning both the exploration
strategy and the latent factor models simultaneously from the interaction data.

8 Conclusion

We have developed a theory oflocal optimality for user choicesin recommendation sys-
tem. We presented the framework ofcollaborative competitive filteringfor recommender
learning, which leverages latent factor models of CF to encode collaborations among items
and users, and in the meanwhile, it also encodes the competition among the items being
recommended to the users. CCF takes into account both the revenue and the opportunity
cost of each user decision, and by optimizing the profit loss function, CCF encourages that
each decision the user makes be locally the best among the opportunities being offered to
her. We established two models in this spirit. Preliminary experiments indicate that CCF
diamagnetically improves recommendation performance compared with standard CF ap-
proaches. We also presented a Bayesian model for joint learning of exploit-explore strategy
and CCF factorization model. We call for attentions from recommendation industry to test
our model on their recommender system.
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