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Abstract. In the present study, we have characterized the
structure of a higher-molecular weight (MW) 358α- andβ-
pinene dimeric secondary organic aerosol (SOA) product that
received ample attention in previous molecular characteri-
zation studies and has been elusive. Based on mass spec-
trometric evidence for deprotonated molecules formed by
electrospray ionization in the negative ion mode and chem-
ical considerations, it is suggested that diaterpenylic acid
is a key monomeric intermediate for dimers of the ester
type. It is proposed thatcis-pinic acid is esterified with
the hydroxyl-containing diaterpenylic acid, which can be
explained through acid-catalyzed hydrolysis of the recently
elucidated lactone-containing terpenylic acid and/or diater-
penylic acid acetate, both first-generation oxidation products.
To a minor extent, higher-MW 358 and 344 diester products
are formed containing other terpenoic acids as monomeric
units, i.e., diaterpenylic acid instead ofcis-pinic acid, and
diaterebic acid instead of diaterpenylic acid. It is shown
that the MW 358 diester and related MW 344 compounds,
which can be regarded as processed SOA products, also oc-
cur in ambient fine (PM2.5) rural aerosol collected at night
during the warm period of the 2006 summer field campaign
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conducted at K-puszta, Hungary, a rural site with conif-
erous vegetation. This indicates that, under ambient con-
ditions, the higher-MW diesters are formed in the particle
phase over a longer time-scale than that required for gas-to-
particle partitioning of their monomeric precursors in labo-
ratoryα-/β-pinene ozonolysis experiments.

1 Introduction

The formation of higher-molecular weight (MW) products is
considered as a driving force for secondary organic aerosol
(SOA) formation and growth, because their formation leads
to products with a substantially decreased vapor pressure that
is several orders of magnitude lower than that of the precur-
sor hydrocarbons. Higher-MW products either correspond
to non-covalent dimers between monomeric carboxylic acids
that are held together by hydrogen bonds (e.g., Hoffmann et
al., 1998; Claeys et al., 2009) or to covalent dimers between
monomeric carboxylic acids that are connected through co-
valent bonds, such as, esters (e.g., Hamilton et al., 2006;
Szmigielski et al., 2007; M̈uller et al., 2008) and oligomers
formed through gem-diol intermediates (e.g., Gao et al.,
2004; Iinuma et al., 2004; Tolocka et al., 2004; Docherty
et al., 2005) or aldol condensation reactions (e.g., Tolocka
et al., 2004). These heterogeneous processes are consistent
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with the observation that sulfuric acid seed aerosol catalyzes
the formation of SOA (e.g., Jang et al., 2002, 2003; Czoschke
et al., 2003; Iinuma et al., 2004).

Structural proposals have been made in previous work for
higher-MW SOA products that participate in new particle
formation and growth, including dimers and oligomers. The
structural elucidation at the molecular level of such com-
pounds is a complex and analytically challenging task as it
is only readily feasible if the structures of the composing
monomers are known. Conversely, lack of knowledge about
the monomeric units has severely hampered structural char-
acterization efforts of higher-MW di- and oligomeric com-
pounds in previous studies.

Considerable attention has been given in previous work
to a higher-MW 358 SOA product fromα-pinene ozonoly-
sis (Hoffmann et al., 1998; Gao et al., 2004; Iinuma et al.,
2004), which was first detected by direct negative ion at-
mospheric pressure chemical ionization – mass spectrometry
and tentatively assigned to a stable adduct betweencis-pinic
(MW 186) andcis-norpinic acid (MW 172), both ozonol-
ysis products (Hoffmann et al., 1998). It was shown in
the latter study that the MW 358 compound remained in-
tact upon reversed-phase liquid chromatography; however,
a straightforward explanation for the formation of a sta-
ble dimer betweencis-pinic andcis-norpinic acid was not
presented. Following this initial study by Hoffmann et al.
(1998), other tentative structures have been proposed for
higher-MWα-pinene ozonolysis products (Gao et al., 2004;
Iinuma et al., 2004; Docherty et al., 2005). Gao et al. (2004)
attributed the MW 358α-pinene ozonolysis product to a de-
hydration product formed between the gem-diol forms of two
norpinonic acid molecules. Iinuma et al. (2004) reported
MW 354 and 370 dimeric products from the ozonolysis of
α-pinene that were enhanced in acidic conditions and tenta-
tively assigned the products to reaction products between the
gem-diol of pinonaldehyde and pinonaldehyde, and of pinon-
aldehyde and hydroxypinonaldehyde, respectively. Docherty
et al. (2005) proposed peroxycarboxylic acid dimers for the
structure of higher-MW SOA products from the ozonolysis
of α-pinene in which peroxypinic acid and the gem-diol of
a keto or aldehydic compound are connected via a peroxy
bridge. Furthermore, the MW 358 product was detected as a
major tracer in otherα-pinene as well asβ-pinene ozonoly-
sis SOA characterization studies (Iinuma et al., 2007; Müller
et al., 2008). In addition, Tolocka et al. (2004) character-
ized dimers inα-pinene ozonolysis SOA and suggested that
the dimers were most likely formed by aldol and/or gem-
diol formation. Müller et al. (2008) reported the presence of
abundant MW 358 and 368 products uponα-pinene ozonol-
ysis and provided evidence for esterification ofcis-pinic acid
with hydroxyl-containing terpenoic acids as a major forma-
tion pathway; the MW 370 product was attributed to a di-
ester formed betweencis-pinic acid and 10-hydroxypinonic
acid but the structure of the MW 358 product remained un-
resolved. In a more recent study by Müller et al. (2009),

the structure of the MW 358 dimer was readdressed and pro-
posed to contain acis-pinic acid residue and a hydroperoxy-
hemiacetal or peroxyhemiacetal function, thus involving per-
oxyradical chemistry. From all these studies it appears that
the structure of the MW 358 dimeric product formed upon
α-/β-pinene ozonolysis has been elusive.

Esterification together with anhydride formation were
shown to be important routes for dimer formation from the
ozonolysis of cyclohexene (Hamilton et al., 2006). In addi-
tion, esterification was shown to operate in the formation of
di-, tri-, and tetramers inα-pinene ozonolysis based on direct
mass spectrometric analysis of complex SOA mixtures and
accurate mass measurements that revealed repetitive struc-
tures and changes in O:C ratios (Reinhardt et al., 2007).
Esterification of small hydroxycarboxylic acids such as hy-
dracrylic, glycolic, lactic, and 2-methylglyceric acid was also
found to be a route resulting in isoprene SOA formation (Al-
tieri et al., 2006, 2008; Surratt et al., 2006; Szmigielski et al.,
2007; Perri et al., 2009). Furthermore, theoretical calcula-
tions by Barsanti and Pankow (2006) show that esterification
is a thermodynamically favorable route for SOA formation
under atmospheric conditions.

In the present study, we address the structure of a relatively
abundant MW 358 compound and related weak MW 344
and 358 compounds that are formed uponα- andβ-pinene
ozonolysis and are also present in ambient fine (PM2.5, par-
ticulate matter with aerodynamic diameter<2.5 µm) rural
continental aerosol. We propose that diaterpenylic acid, a hy-
drolysis product of terpenylic acid (MW 172) and/or diater-
penylic acid acetate (MW 232), recently reportedα-pinene
SOA tracers formed upon both photooxidation and ozonoly-
sis (Claeys et al., 2009), serves together withcis-pinic acid
as a monomeric building unit for the higher-MW 358 diester
products.

2 Experimental

2.1 Aerosol samples

α- and β-pinene SOA for structural characterization was
obtained from ozonolysis experiments carried out in the
19 m3 IfT smog chamber. Briefly, the ozonolysis ofα- and
β-pinene was carried out in the presence of acidic seed par-
ticles, which were generated by nebulizing a 0.03/0.06 M
(NH4)2SO4/H2SO4 solution. The relative humidity and tem-
perature of the chamber were approximately 50% and 23◦C
for all experiments. The initial concentrations ofα-pinene
and ozone were 100 ppb and 72 ppb, respectively. For
β-pinene ozonolysis, the initial concentrations were 300 ppb
for β-pinene and 108 ppb for ozone. No OH scavenger was
used in these chamber experiments. Aerosol samples were
collected on a 47 mm PTFE filter (Pall, Fiberfilm) and a vol-
ume of 2 m3 of the gaseous reaction mixture was sampled.
The filter samples were extracted with methanol (3× 20 mL),
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and the combined methanol extracts were concentrated by
rotary evaporation to about 1 mL. Subsequently, the concen-
trated extracts were filtered over a Teflon filter (0.45 µm),
then further evaporated under a nitrogen stream and reconsti-
tuted in 200 µL methanol. For liquid chromatography/mass
spectrometry (LC/MS) analysis a part of the samples was di-
luted with the same volume of water and an aliquot of 5 µL
was injected. With regard to extraction with methanol, it was
verified that this procedure could be applied in the present
work. Using a dicarboxylic acid as a model substance (i.e.,
1,4-cyclohexanedicarboxylic acid, Sigma-Aldrich, 100 ng),
we have examined in prior tests whether extraction with
methanol and further sample workup under our conditions
(i.e., solvent removal) results in artifacts such as methyl
ester formation; the results show that the mono-ester of
1,4-cyclohexanedicarboxylic acid was formed with a yield
of less than 5%. Since the present study was mainly qualita-
tive, possible artifact methyl ester formation due to extraction
with methanol was not considered.

The ambient aerosol samples used in this work were col-
lected from K-puszta, Hungary, during the BIOSOL (Forma-
tion mechanisms, marker compounds, and source apportion-
ment for biogenic atmospheric aerosols) campaign between
22 May and 29 June 2006. Information about the site and
the sampling campaign is given in the supplement (Sect. 1).
Day- and night-time samples were collected using a high-
volume dichotomous sampler providing two size fractions, a
fine (PM2.5) and a coarse size fraction (with aerodynamic di-
ameter>2.5 µm). A quarter or one eighth (depending on the
organic carbon amount) of the PM2.5 quartz fiber filter was
extracted with methanol (3× 20 mL), the residue was redis-
solved in 150 µL of a methanol:water (1:1, v/v) mixture, and
an aliquot of 5 µL (corresponding to 5.6 µg organic carbon in
the case of the selected nighttime sample of 19 June, Fig. 2)
was injected for LC/MS analysis.

2.2 Chemicals

The terpenoic acid standards used in this work were:
cis-pinic acid (purity>98%; Sigma-Aldrich, St. Louis, MI,
USA) and terebic acid (purity>98%; TCI Europe, Zwijn-
drecht, Belgium). Terpenylic acid and diaterpenylic acid
acetate were available from previous studies (Claeys et al.,
2009; Iinuma et al., 2009).

2.3 LC/MS analysis

The LC/MS system comprised a Surveyor Plus system
(pump and autosampler), a linear ion trap mass spectrometer
(LXQ) equipped with an electrospray ionization (ESI)
source, and a data system using Xcalibur version 2.0 soft-
ware (Thermo Scientific, San Jose, USA). A T3 Atlantis C18
column (3 µm; 2.1× 150 mm) (Waters, Milford, USA) was
employed. The mobile phases consisted of acetic acid 0.1%
(v/v) (A) and methanol (B). The applied 80-min gradient elu-

tion program was as follows: the concentration of eluent B
was kept at 3% for 2 min, then increased to 90% in 18 min,
kept at 90% for 43 min, then decreased to 3% in 5 min, and
kept at 3% for 12 min. The flow rate was 0.2 mL min−1.
The linear ion trap was operated under the following condi-
tions: sheath gas flow (nitrogen), 0.75 L min−1; auxiliary gas
flow (nitrogen), 1.5 L min−1; source voltage,−4.5 kV; capil-
lary temperature, 350◦C; and maximum ion injection time,
200 ms. For MSn (n = 2,3 and 4) experiments, an isolation
width of 2 m/zunits and a normalized collision energy level
of 35% were applied.

3 Results and discussion

3.1 Structural characterization of MW 172, 186,
and 232 terpenoic acids

In this section we deal with the structural characterization
of terpenoic acids that serve as monomeric precursors to the
dimeric MW 344 and 358 compounds, which will be ad-
dressed in the next sections, as well as with the structural
characterization of some weak monomeric/isobaric com-
pounds (i.e., compounds with the same elemental compo-
sition but a different structure, either a compound with a
positional isomeric structure or a non-isomeric compound
with different functional groups). Figure 1a and b present
chromatographic data (base peak chromatograms – BPCs –
and extracted ion chromatograms – EICs) for SOA from the
ozonolysis ofα- and β-pinene, respectively, while Fig. 2
presents chromatographic data for a nighttime PM2.5 aerosol
sample from K-puszta. It can be seen that the chromato-
graphic data forα- and β-pinene SOA are rather similar.
The major peak on them/z 171 EICs with RT 17.3 min is
assigned to the lactone-containing terpenylic acid, a novel
terpenoic acid which has only been recently reported (Claeys
et al., 2009), based on comparison of its chromatographic
and mass spectrometric behaviors with that of a synthesized
reference compound. It is noted that terpenylic acid is an
isobaric compound ofcis-norpinic acid (i.e., a non-isomeric
product with the same elemental composition but different
functional groups). For comparison reasons (see next sec-
tion), (−)ESI-MS data for terpenylic acid are presented in
Fig. 3a and Scheme 1a. It is noted that the product ions
at m/z 127 and 83 are also characteristic for diaterpenylic
acid acetate (Claeys et al., 2009) and are also expected to be
formed from diaterpenylic acid, produced through hydrolysis
of terpenylic acid and diaterpenylic acid acetate (see below).
(−)ESI-MS data for diaterpenylic acid acetate are presented
in Fig. 3b and Scheme 1b. It can be seen in Fig. 2 that there is
also a minor peak on them/z171 EIC with RT 19.8 min; this
peak is attributed tocis-norpinic acid based on detailed inter-
pretation of the (–)ESI-MS data and comparison with LC/MS
data reported in the literature (Glasius et al., 2000; Warnke et
al., 2006). (–)ESI-MS data for the latter MW 172 compound
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Fig. 1. LC/MS chromatographic data (base peak chromatograms –
BPCs – and extracted ion chromatograms – EICs) for(A) α-pinene
and (B) β-pinene ozonolysis SOA. Abbreviation: NL, normaliza-
tion level. EICs are presented form/z171 (terpenylic acid and iso-
baric compounds)m/z185 (cis-pinic acid and isobaric compounds),
m/z231 (diaterpenylic acid acetate and isobaric compounds),m/z
343 (MW 344 non-covalent and covalent dimeric compounds) and
m/z357 (MW 358 dimeric compounds).

are given in the supplement (Sect. 2: Fig. S1, Scheme S1). It
is likely that in previous work terpenylic acid has often been
misassigned tocis-norpinic acid, owing to the fact that the
mass spectrometric fragmentation of terpenylic acid shows
a double loss of 44 u (CO2), indicating the presence of two
carboxyl groups and thus rather misleading.

Them/z185 EIC obtained forα- andβ-pinene ozonolysis
SOA (Fig. 1) shows a prominent peak at RT 20.9 min, which
is assigned tocis-pinic acid, known to be formed through
both ozonolysis and OH radical-initiated reactions (e.g., Yu
et al., 1999; Glasius et al., 2000; Larsen et al., 2001; Winter-
halter et al., 2003; Ng et al., 2007). For comparison reasons
(see next section), (–)ESI-MS data forcis-pinic acid are pre-
sented in Fig. 3c and Scheme 1c. The secondm/z185 com-
pound present inβ-pinene ozonolysis SOA at RT 18.8 min
corresponds to a new and specificβ-pinene SOA tracer,
which is tentatively identified as a homolog of terpenylic
acid, i.e., homoterpenylic acid, based on detailed interpreta-
tion of (–)ESI-MS data. (–)ESI-MS data for homoterpenylic
acid are presented in Fig. 4 and Scheme 2. Comparison of
the MS data obtained forcis-pinic acid (Fig. 3c, Scheme 1c)
and homoterpenylic acid (Fig. 4, Scheme 2) show that the
isobaric compounds can be differentiated on the basis of the
m/z185 → m/z141 MS3 product ion spectrum; in the case

Fig. 2. LC/MS chromatographic data (BPC and EICs) for fine am-
bient aerosol (PM2.5) from K-puszta, Hungary, collected during the
night of 19 June 2006 of the warm period of the 2006 summer field
campaign. The peak at RT 22.1 min (not discussed in the main text)
on them/z185 EIC is tentatively assigned tocis-caronic acid, a po-
sitional isomer ofcis-pinic acid, based on comparison of its chro-
matographic properties with literature data (Larsen et al., 2001).

of cis-pinic acid fragmentation ofm/z 141 results inm/z
99 through loss of 42 u (propene), while in the case of ho-
moterpenylic acidm/z141 producesm/z97 through loss of
44 u (CO2). It can also be seen that the relative abundance of
m/z123 in them/z185 MS2 product ion spectrum is the high-
est in the case of homoterpenylic acid (i.e., 20% vs. 2% for
cis-pinic acid). A possible formation pathway of homoter-
penylic acid involving reaction ofβ-pinene with OH radi-
cals (which are also generated in the ozonolysis experiments
since no OH scavenger was used), similar to that proposed
for terpenylic acid (Claeys et al., 2009), is provided in the
supplement (Sect. 3: Scheme S2).

Them/z231 EIC contains four distinct peaks; the first two
peaks with RTs 17.3 and 19.8 min are interpreted as non-
covalent adducts formed between acetic acid (present in the
LC eluent) and the MW 172 compounds (i.e., terpenylic and
cis-norpinic acid), while the last two peaks with RTs 20.6 and
22.1 min correspond to isobaric MW 232 compounds. Of
these, the peak with RT 20.6 min is assigned to diaterpenylic
acid acetate, which has recently been reported as a SOA
tracer for the photooxidation of 1,8-cineole (Iinuma et al.,
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Fig. 3. (−)ESI-MS data for authentic reference compounds of(A) terpenylic acid,(B) diaterpenylic acid acetate,(C) cis-pinic acid, and
(D) terebic acid.

Fig. 4. (−)ESI-MS data for the SOA product formed upon ozonol-
ysis ofβ-pinene with RT 18.8 min (Fig. 1B), tentatively assigned to
homoterpenylic acid.

2009) and for the photooxidation and ozonolysis ofα-pinene
(Claeys et al., 2009). The last elutingm/z 231 compound
with RT 22.1 min corresponds to an isobaric compound of
diaterpenylic acid acetate, a new compound which still re-
mains to be elucidated. In this respect, it has been reported
by Iinuma et al. (2004, 2005) that three isomers of a MW 232

compound are detected inα-pinene ozonolysis SOA using
capillary electrophoresis/(–)ESI-MS. (–)ESI-MS data for the
isobaric MW 232 compound with RT 22.1 min are given in
the supplement (Sect. 4: Fig. S2).

Comparison of the chromatographic data forα- and β-
pinene SOA and ambient samples from K-puszta shows the
presence of all the terpenoic acids mentioned above in all
samples. The data obtained for a nighttime sample of the
warm period of the campaign are illustrated in Fig. 2. It is
noted that the relatively abundant MW 358 compound (m/z
357) is only detected in the nighttime samplings of the warm
period. Hence, an effort was done to structurally characterize
the MW 358 compound and related weak MW 358 and 344
compounds.

3.2 Structural characterization of MW 358
dimeric compounds

Figure 5 presents the (–)ESI-MS data for the relatively abun-
dant MW 358 compound that can be detected at RT 24.7 min
in α-pinene ozonolysis SOA. Exactly the same product ion
data were obtained for the MW 358 compound in the ambi-
ent nighttime sample (supplement; Sect. 5: Fig. S3), while
some differences were observed for the relatively abundant
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Scheme 1.Proposed (−)ESI-MS fragmentation pathways for deprotonated(a) terpenylic acid,(b) diaterpenylic acid acetate,(c) cis-pinic
acid,(d) terebic acid, and the(e) relatively abundant and(f) weak MW 358 compounds.

Scheme 2.Proposed (−)ESI-MS fragmentation pathways for deprotonated homoterpenylic acid.
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Fig. 5. (−)ESI-MS data for the relatively abundant MW 358 compound (RT 24.7 min; Fig. 1A) present inα-pinene ozonolysis SOA, assigned
to a covalent dimer of the ester type:(A) first-order mass spectrum;(B1) m/z357 MS2 spectrum;(B2) and(B3) m/z357→ m/z171 MSn

(n = 3,4) spectra; and,(C1) and(C2) m/z357→ m/z185 MSn (n = 3,4) spectra.

Fig. 6. (−)ESI-MS data for the relatively abundant MW 358 compound (RT 24.7 min; Fig. 1B) present inβ-pinene ozonolysis SOA,
assigned to a covalent dimer of the ester type:(A) first-order mass spectrum;(B1) m/z357 MS2 spectrum;(B2) and(B3) m/z357→ m/z
171 MSn (n = 3,4) spectra; and,(C1) and(C2) m/z357→ m/z185 MSn (n = 3,4) spectra.(D) m/z357 MS2 spectrum for the weak MW 358
compound at RT 23.0 min (Fig. 1B).

MW 358 compound inβ-pinene ozonolysis SOA (Fig. 6)
(see below). The relatively abundant higher-MW 358 com-
pound inα-pinene ozonolysis SOA is assigned to a covalent
dimer of the ester type containing diaterpenylic acid andcis-
pinic acid as monomeric building units, based on mass spec-
tral considerations. The first-order mass spectrum (Fig. 5a)
shows in addition to the deprotonated molecule [M–H]− (m/z
357) an ion atm/z377 which could not be assigned and an
ion at m/z343 due to co-elution of a homologous MW 344
species (see below). Them/z357 MS2 spectrum (Fig. 5b1)
shows two abundant product ions atm/z 185 and 171, of
which m/z185 upon further fragmentation reveals a pattern
(Fig. 5c) comparable to that observed for deprotonatedcis-

pinic acid (Fig. 3c). Further fragmentation ofm/z 171 re-
veals a pattern (Fig. 5b) similar to that observed for depro-
tonated terpenylic acid and for further fragmentation (MS2)

of m/z171 formed through loss of acetic acid from depro-
tonated diaterpenylic acid acetate (Fig. 3b). It is noted that
there are differences in the relative abundances of the prod-
uct ions, a feature that can be explained by a different internal
energy of the first- (MS2) and second-generation (MS3) pre-
cursor ions. Precursor ions with a higher internal energy will
namely result in more extensive fragmentation upon MS2 or
MS3 collisional activation experiments. Although (−)ESI-
MS data are not available for diaterpenylic acid, which is
proposed to serve as an intermediate in dimer formation (see
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Scheme 3.Proposed formation mechanism for the MW 358 and 344 compounds related to terpenylic acid and diaterpenylic acid acetate.

below), it is expected to result inm/z 171 through loss of
a molecule of water from the deprotonated molecule (sim-
ilar to the loss of acetic acid from protonated diaterpenylic
acid acetate).

The formation of the MW 358 compound can be explained
by esterification ofcis-pinic acid with diaterpenylic acid,
which can be generated as an intermediate by acid-catalyzed
hydrolysis of terpenylic acid and/or diaterpenylic acid acetate
(Scheme 3). In this respect, it has recently been demonstrated
that esterifcation is an important route to the formation of
higher-MW products inα-pinene ozonolysis SOA and that
cis-pinic acid is a key monomeric unit (M̈uller et al., 2008).

Since cis-pinic acid contains two carboxyl groups, two
isomeric diester structures are possible. In order to deter-
mine which positional isomeric structure belongs to the rel-
atively abundant MW 358 compound, we also recorded data
for the weak MW 358 compound present inβ-pinene ozonol-
ysis SOA at RT 23.0 min (Fig. 1b). Selected (–)ESI-MS data
(i.e., them/z357 MS2 spectrum) for the weak MW 358 com-
pound are given in Fig. 6d. The higher-order MSn spectra
were consistent with diaterpenylic andcis-pinic monomeric
units (not shown). Compared to them/z357 MS2 spectrum
of the relatively abundant MW 358 compound (Fig. 5b1) it
can be seen that the spectrum for the weak isomer (Fig. 6d)
contains an additional product ion atm/z189. The latter ion
is explained by a neutral loss of 188 u corresponding tocis-
pinic acid, which can only readily occur in the isomer where
the ester linkage is at the carboxylmethyl side (Scheme 3).
On the basis of these considerations structures a1 and a2
are tentatively attributed to the relatively abundant and weak
MW 358 compounds, respectively. A possible explanation
for the favorable ester formation at the carboxyl (attached to
the dimethylcyclobutane ring) instead of the carboxylmethyl
side ofcis-pinic acid is that there is a lower conformational
flexibility at this side, facilitating ester formation.

With respect to differences observed between the rel-
atively abundant MW 358 diester inα- and β-pinene
ozonolysis SOA, it can be seen that them/z357→ m/z185
→ m/z141 MS4 product ion spectrum in the case ofβ-pinene
shows an additionalm/z 97 product ion (Fig. 6c2), which
is typical for homoterpenylic acid (Fig. 4). It can also be
noted that them/z357→ m/z185 MS3 product ion spectrum
(Fig. 6c1) is more similar to them/z185 MS2 spectrum of ho-
moterpenylic acid (i.e., the relative abundance ofm/z123 is
20%). Hence, it cannot be ruled out that the relatively abun-
dant MW 358 diester inβ-ozonolysis SOA contains a major
contribution from a dimer formed between diaterpenylic and
homoterpenylic acid.

3.3 Structural characterization of MW 344
dimeric compounds

The m/z 343 EICs obtained forα- and β-pinene ozonoly-
sis SOA (Fig. 1) show two major peaks with RTs 17.3 and
24.7 min. The first one is attributed to strong non-covalent
dimer formation of terpenylic acid upon (−)ESI-MS, a phe-
nomenon that has been addressed in detail in Claeys et
al. (2009) and has been attributed to the presence of one free
carboxylic acid group that does not participate in intramolec-
ular hydrogen bonding interactions. It is worth noting that
such type of dimer formation is not observed forcis-norpinic
acid (RT 19.8 min), consistent with the strong non-covalent
dimer-forming properties of terpenylic acid. The second ma-
jor m/z343 compound is due to a MW 344 compound that
co-elutes with the relatively abundant MW 358 compound
(Fig. 5a). (−)ESI-MS data are presented in the supplement
(Sect. 6: Fig. S4). This MW 344 compound is attributed to
a homolog of the relatively abundant MW 358 compound,
which can be explained by reaction between diaterebic acid,
a homolog of diaterpenylic acid, andcis-pinic acid. A close
inspection of the (−)ESI-MS data indeed reveals that the
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precursor of diaterebic acid, terebic acid, is detected atm/z
157 (RT 15.8 min) with an abundance of about 21%, 13.9%,
and 85% of that of terpenylic acid forα- andβ-pinene SOA,
and the ambient sample, respectively. (−)ESI-MS data for
terebic acid are presented in Fig. 3d and Scheme 1d. Terebic
acid can be regarded as a processed derivative of terpenylic
acid; its possible formation route through further reaction of
terpenylic acid with OH radicals (aging) is presented in the
supplement (Sect. 7: Scheme S3). Similar to terpenylic acid,
terebic acid was found to exhibit strong non-covalent dimer-
forming properties in (−)ESI-MS (not shown). Furthermore,
this MW 344 compound could also be detected in the am-
bient samples of the warm period of the 2006 summer field
campaign conducted at K-puszta (not shown).

It can also be seen that them/z 343 EICs forα- and β-
pinene ozonolysis SOA (Fig. 1) show minor signals at RTs
23.0 and 23.6 min. The data obtained for the peak at RT
23.0 min were similar to those for the major peak at RT
24.7 min (not shown); on the basis of these data this mi-
nor peak is attributed to a homolog of the weak MW 358
compound (i.e., the dimer where the diaterebic acid residue
is at the carboxylmethyl side ofcis-pinic acid). The weak
MW 344 compound eluting at RT 23.6 min is assigned to a
dimer of the ester type containing solely terpenylic and di-
aterpenylic acid units (Scheme 3; structure a3). (−)ESI-MS
data for the latter compound are presented in the supplement
(Sect. 8: Fig. S5). Similar data were also recorded for the
ambient samples of the warm period of the 2006 summer
field campaign conducted at K-puszta (not shown).

In addition, we evaluated whether the higher-MW 368
product reported by M̈uller et al. (2008), which corre-
sponds to a diester formed betweencis-pinic acid and
10-hydroxypinonic acid, was present in our samples. We
also compared its abundance with that of the relatively abun-
dant 358 compound. The MW 368 compound could be de-
tected at RT 25.9 min forα- andβ-pinene ozonolysis SOA,
and the ambient sample, with an abundance of about 54%,
1.5%, and 54% of that of the relatively abundant MW 358
compound, respectively. Furthermore, we evaluated whether
higher-MW dimers (MW 372) formed betweencis-pinic acid
and the hydrolysis product of homoterpenylic acid (i.e., dia-
homoterpenylic acid) could be detected inβ-pinene ozonol-
ysis SOA and the ambient samples considering that homoter-
penylic acid is present in these samples, but no evidence
could be found for them.

4 Conclusions

The results of this study are consistent with terpenylic
acid and related terpenoic acids (i.e., diaterpenylic acetate
and terebic acid) serving together withcis-pinic acid as
monomeric precursors for a relatively abundant MW 358
dimeric compound as well as for structurally related weak
MW 358 and 344 compounds inα-/β-pinene ozonolysis

SOA. Our study is in line with previous studies (Hamilton
et al., 2006; M̈uller et al., 2008) that provided evidence for
esterification being an important route to dimer formation
in ozonolysis SOA. Moreover, our study demonstrates that
esterification reactions are important to generate higher-MW
compounds in ambient aerosol. It is shown that the dimeric
α-/β-pinene SOA tracers with MWs 358 and 344 could only
be detected in the nighttime samplings of the warm period
of the 2006 K-puszta summer field campaign. This sug-
gests that their formation in the ambient atmosphere occurs
at a relatively high temperature (daily maximum temperature
>24◦C) and a long time-scale. This behavior contrasts with
the fast formation of the MW 358 diester inα- andβ-pinene
ozonolysis experiments, where it is formed concurrently with
the corresponding monomeric precursors (Hoffmann et al.,
1998; Müller et al., 2008; Gao et al., 2010). A possible rea-
son for this discrepancy could be related to the observation
thatcis-pinic acid, a monomeric building unit of the higher-
MW dimers, shows a strong diel variation at the K-puszta
forest site and is only present at substantial concentrations in
ambient fine nighttime aerosol (Kourtchev et al., 2009). Fur-
ther work is warranted to define the ambient conditions un-
der which the monoterpene SOA diester products are formed,
and to assess their occurrence in other forested environments
and their usefulness as SOA tracers.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/10/9383/2010/
acp-10-9383-2010-supplement.pdf.
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