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Abstract. Lineshaped contrails were detected with the re-
search aircraft Falcon during the CONCERT – CONtrail
and Cirrus ExpeRimenT – campaign in October/November
2008. The Falcon was equipped with a set of instruments to
measure the particle size distribution, shape, extinction and
chemical composition as well as trace gas mixing ratios of
sulfur dioxide (SO2), reactive nitrogen and halogen species
(NO, NOy, HNO3, HONO, HCl), ozone (O3) and carbon
monoxide (CO). During 12 mission flights over Europe, nu-
merous contrails, cirrus clouds and a volcanic aerosol layer
were probed at altitudes between 8.5 and 11.6 km and at tem-
peratures above 213 K. 22 contrails from 11 different aircraft
were observed near and below ice saturation. The observed
NO mixing ratios, ice crystal and soot number densities are
compared to a process based contrail model. On 19 Novem-
ber 2008 the contrail from a CRJ-2 aircraft was penetrated in
10.1 km altitude at a temperature of 221 K. The contrail had
mean ice crystal number densities of 125 cm−3 with effective
radii reff of 2.6 µm. The presence of particles withr>50 µm
in the less than 2 min old contrail suggests that natural cir-
rus crystals were entrained in the contrail. Mean HONO/NO
(HONO/NOy) ratios of 0.037 (0.024) and the fuel sulfur con-
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version efficiency to H2SO4 (εS↓) of 2.9 % observed in the
CRJ-2 contrail are in the range of previous measurements in
the gaseous aircraft exhaust. On 31 October 2010 aviation
NO emissions could have contributed by more than 40% to
the regional scale NO levels in the mid-latitude lowest strato-
sphere. The CONCERT observations help to better quantify
the climate impact from contrails and will be used to investi-
gate the chemical processing of trace gases on contrails.

1 Introduction

While aircraft induced cloudiness potentially has the largest
aviation impact on climate, the exact magnitude of its contri-
bution to the anthropogenic radiative forcing remains highly
uncertain (Lee et al., 2009). Aircraft induced cloudiness
plays a role for the climate by reflecting solar radiation and
trapping outgoing terrestrial longwave radiation. Latter ef-
fect is expected to dominate for contrails and thin cirrus,
which results in a net positive radiative forcing (Penner et al.,
1999).

Contrails form when the relative humidity in the young
exhaust increases due to mixing of the hot and humid ex-
haust with the colder and less humid ambient air (Schumann,
1996; Kärcher, 1996). When saturation with respect to water
is reached, water condenses on soot and sulfate aerosol and
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forms liquid droplets. Thereby the aerosol originates from
the combustion process or was entrained in the exhaust with
the ambient air (Jensen et al., 1998). When the exhaust fur-
ther cools down through mixing with ambient air, ice satura-
tion may be reached and ice nucleates in the liquid droplets
(Kärcher and Yu, 2009). Hence contrail formation and prop-
erties of young contrails may depend on the combustion pro-
cess and on properties of the contrail-forming aircraft (Schu-
mann, 1996; Schumann et al., 2000; Sussmann and Gierens,
1999). When the ambient air remains supersaturated with re-
spect to ice, the contrail ice crystals can grow by condensa-
tion of entrained water vapor (Schr̈oder et al., 2000). Contrail
dimensions and contrail coverage increase in ice supersatu-
rated air due to particle sedimentation and contrail spreading
in an atmospheric environment with wind shear, while con-
trail extinction and ice crystal concentrations decrease due to
dilution (Freudenthaler et al., 1995).

Observations of the microphysical properties of young
contrails are rare. Mean effective radii of contrail ice crystals
derived from in situ data show values below 2 µm initially
(Heymsfield et al., 1998; Baumgardner and Gandrud, 1998),
increasing due to condensation to values of up to 5 µm at
30 min contrail age (Schr̈oder et al., 2000). Initial ice crys-
tal concentrations larger than 1000 cm−3 have been detected
in a few seconds old contrails (Heymsfield et al., 1998) de-
creasing by dilution to concentrations of less than 100 cm−3

within the first minutes (Poellot et al., 1999; Febvre et al.,
2009). In persistent contrails with ages of few hours, ice
crystal concentrations of less than 20 cm−3 have been ob-
served (Lawson et al., 1998; Scḧauble et al., 2009). Contrail
widths of 100–300 m have been derived from in situ mea-
surements (Poellot et al., 1999) for less than 15 minutes old
contrails increasing to 1–3 km for less than 30 min old con-
trails (Freudenthaler et al., 1995).

Little is known on chemical contrail properties and the
uptake of HNO3 in contrails. Gaseous HNO3 has been de-
tected in aircraft exhaust at cruise (Arnold et al., 1992; Trem-
mel et al., 1998). High levels of HNO3 are expected in the
young aircraft exhaust, which can be rapidly taken up by air-
craft aerosol and contrails (Kärcher, 1996). At temperatures
below 205 K, the gas phase HNO3 is significantly reduced
due to uptake in contrail ice crystals as detected for the con-
trail of a WB-57 at 14 km altitude (Popp et al., 2004). Ni-
tric acid in the ice crystals at these temperatures might be
present in the form of NAT (Gao et al., 2004; Voigt et al.,
2008). Scḧauble et al.(2009) show first quantitative mea-
surements of the HNO3 content in contrails. They report
enhanced ice phase HNO3 fractions in persistent contrails
compared to natural cirrus clouds (Voigt et al., 2006, 2007;
Kärcher and Voigt, 2006; Krämer et al., 2008). When the age
of the contrail is known, the contrail ice crystals can serve as
atmospheric laboratory for the study of the temporal evolu-
tion of trace gas uptake in ice crystals (Scḧauble et al., 2009;
Kärcher et al., 2009b).

Given the sparsity of in-situ measurements of young con-
trails, measurements of chemical and optical contrail prop-
erties are of importance to better quantify their chemical
and radiative impact on the atmosphere. Hence we re-
port here on a new set of contrail observations above Eu-
rope. The measurements have been performed with the
DLR research aircraft Falcon during the CONCERT (CON-
trail and Cirrus ExperRimenT) campaign from 22 October
to 20 November 2008. The first two weeks of the cam-
paign (CONCERT-CHEMISTRY) were focussed on hetero-
geneous chemistry on contrails, cirrus and aerosol, while the
second part (CONCERT-2-CONTRAIL) concentrated on mi-
crophysical and optical contrail properties. During the CON-
CERT campaign, cirrus clouds were encountered during 10
mission and 2 instrument test flights for almost 2 hours. 22
contrails from 11 different aircraft were sampled in total for
1.7 hours at temperatures from 213 to 229 K (27 and 28 Oc-
tober and 2, 17, 19 and 20 November 2008). Here we use the
contrail observations for model validation. Further, we in-
vestigate in detail the microphysical properties from a CRJ-2
contrail and analyze the chemical processing of SO2 and NO
in the engine and the young contrail. Large scale aircraft NO
emissions were predicted from global model simulations and
measured during two mission flights on 31 October 2008.

In addition, a sulfate aerosol layer was detected in the
lowermost stratosphere at altitudes between 8.6 and 11.6 km
(28 and 31 October 2008). The layer most likely originated
from the eruption of the Aleutian volcano Mt. Kasatochi on
7/8 August 2008, injecting 1.5 Mt SO2 into the high latitude
stratosphere. We discuss the chemical processing of sulfur
and halogens species in the aged volcanic plume and derive
the e-folding lifetime of SO2 in the northern latitude lowest
stratosphere.

2 Aircraft instrumentation

During the CONCERT campaign, the DLR research aircraft
Falcon was equipped with a set of instruments to detect mi-
crophysical particle properties and trace gas composition in
the UTLS.

2.1 The Forward Scattering Spectrometer Probe
FSSP300

Particle size distribution and number density were detected
with a forward scattering spectrometer probe (Schr̈oder et al.,
2000). The FSSP300 detects light scattered by particles
in the diameter range 0.45–17.7 µm. The particles were
grouped into size channels according to T-matrix calculations
by Borrmann et al.(2000) assuming aspherical particles with
an aspect ratio of 1:2 composed of pure ice with a refractive
index of 1.31. Adjustments of the mean channel size were
made to account for instrumental manufacturing differences.
Further, FSSP channels 8+9, 10+11, 12+13+14+15, 16+17,
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18+19, 20+21+22+23+24, 25+26, 29+30 were grouped to in-
crease the counting statistics particularly in channels with a
small channel widths. This data evaluation method proved to
achieve best agreement between the FSSP data and the par-
ticle scattering phase function detected with the Polar Neph-
elometer.

2.2 The 2D-C Probe, the Polar Nephelometer (PN) and
the Cloud Particle Imager (CPI)

The particle size distribution of large particles (100 µm to
1 mm) was measured with a 2D-C probe, the particle shape
(2.3 µm pixel size) with a cloud particle imager (CPI) and the
scattering phase function of cloud particles (3 µm to 1 mm)
with a Polar Nephelometer (PN). The method of data pro-
cessing, the reliability of the instruments and the uncertain-
ties of the derived microphysical and optical parameters have
been described in detail byGayet et al.(2009).

The 2D-C probe provides information on crystal size and
shape for the size range 100 to 800 µm. The method of data
processing used in this study has been described in detail
by Febvre et al.(2009). The “reconstructed” method us-
ing partial images, was considered for the calculations and
the sampling surfaces were derived according toHeyms-
field and Parrish(1978). In order to improve the statistical
significance of low particle concentrations, a 5-second run-
ning mean was applied. Irregular ice particles were the most
predominant crystals sampled during the CONCERT experi-
ment. Therefore, the bulk parameters were calculated assum-
ing the surface-equivalent diameter relationships (Heyms-
field, 1972; Locatelli and Hobbs, 1974). As the sensitivity
of the probe to small particles decreases with airspeed (Law-
son et al., 2006), particles smaller than about 100 µm may not
be detectable with the 2D-C at a Falcon airspeed of 200 m/s.

The CPI records very high resolution (2.3 µm) digital im-
ages of cloud particles as they pass through the sample tube
of the instrument. It casts an image of the particle on a solid-
state CCD camera by freezing the motion of the particle us-
ing a 25 ns pulsed, high-power laser diode. Upstream lasers
precisely define the depth-of-field so that at least one particle
in the image is almost always in the focus. This eliminates
out-of-focus sizing errors that have plagued the conventional
2D imaging probes. The method of data processing leads
to derive the particle size distribution, shape and extinction
coefficient.

The PN is designed to measure the optical and microphys-
ical parameters of clouds containing either water droplets or
ice crystals or a mixture of both over a size range from a few
micrometers to about 800 microns diameter. The probe mea-
sures the scattering phase function of an ensemble of cloud
particles which intersect a collimated laser beam near the fo-
cal point of a paraboloidal mirror. The light scattered from
polar angles from±3.49 to±169◦ is reflected onto a circular
array of 54 photodiodes. The signal processing electronics
and computer storage can provide one measurement of the

scattering phase function every 10 ms. The optical proper-
ties (extinction coefficient, asymmetry factor, backscattering
coefficient) are derived from the measured scattering phase
functions. The particle size spectra and subsequent derived
quantities such bulk and size parameters are retrieved using
an inversion technique. The particle phase discrimination
(water droplet/ice particles) can be derived from the shape
of the scattering phase function.

2.3 The Cloud Imaging Probe (CIP)

During the last flight the 2D-C has been exchanged with
a Cloud Imaging Probe (CIP), which is a new version of
the 2D-C. The CIP measures the size and shape of particles
passing through its collimated laser beam, from 125 µm to
1600 µm with a resolution of 25 µm. It is capable to detect
particle concentrations up to 100 cm−3 at airspeeds up to
200 m/s. It uses a fast 64-element photodiode array to gener-
ate 2-dimensional images of the particles. The uncertainty in
the CIP particle number concentration is mainly determined
by the uncertainty in the sample volume of 20%. At low par-
ticle concentrations also counting statistics have to be taken
into account. The uncertainty in the particle size decreases
with particle size and is±25 µm for particles>125 µm in
diameter (De Reus et al., 2009).

2.4 The Spectral Modular Airborne Radiation
measurement sysTem (SMART)-Albedometer

Spectral upwelling radiances and irradiances were measured
with the Spectral Modular Airborne Radiation measurement
sysTem (SMART)-Albedometer (Wendisch et al., 2001).
During the CONCERT campaign, an optical inlet with a
viewing angle of 1.5◦ designed to measure radiances as well
as an irradiance optical inlet (half-dome shape) were each
connected to two plain-grated spectrometers, respectively.
The optical inlets were placed in the back part of the fuselage
of the aircraft. The spectrometers operate in the wavelength
ranges 350 to 1050 nm and 900 to 2200 nm with spectral res-
olutions (Full Width at Half Maximum, FWHM) of 2 to 3 nm
and 9 to 16 nm, respectively. The temporal resolution of the
measurements is in the order of 0.5 to 3 s, corresponding to
a spatial resolution of 100 to 600 m at an aircraft velocity of
200 m/s.

2.5 The Aerosol Mass Spectrometer (AMS)

The chemical composition and size distribution of submicron
aerosol particles were determined by an Aerodyne Compact
Time-of-Flight Mass Spectrometer (C-ToF-AMS). The in-
strument samples aerosol through an aerodynamic lens sys-
tem which focuses the particle beam onto a vaporizer oper-
ated at 600◦C. Before reaching the vaporizer, the particles
pass through a time-of-flight region in a vacuum chamber
that allows for particle size determination. The vapor is ion-
ized by 70 eV electrons, and the generated ions are analyzed
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in a time-of-flight mass spectrometer. A detailed description
of the C-ToF-AMS is given inDrewnick et al.(2005) and
Canagaratna et al.(2007). During CONCERT-CHEMISTRY
particulate sulfate, ammonium, nitrate, chloride and carbona-
ceous matter were determined for STP conditions with a time
resolution of 10 s. The respective detection limits were 0.02,
0.13, 0.02, 0.03, and 0.11 µg m−3 (STP) on campaign av-
erage. To compensate for the decreasing mass flow into the
instrument with altitude, a pressure controlled inlet (PCI) has
been installed in front of the standard AMS inlet system, also
guaranteeing isokinetic sampling from the aircraft′s aerosol
inlet. A thorough description of the inlet system is given in
Schmale et al.(2010). This Falcon-specific set-up allowed
for sampling of particles in the size range between 84 and
735 nm vacuum aerodynamic diameter.

2.6 The Ion Trap Chemical Ionization Mass
Spectrometer (ITCIMS)

An ion trap chemical ionization mass spectrometer
(ITCIMS) (Fiedler et al., 2005; Speidel et al., 2007; Fiedler
et al., 2009) was for the first time operated with SF−

5 reagent
ions for the detection of HCl, HNO3, SO2 and HONO in
the UTLS. A detailed description of the instrument is given
in Jurkat et al.(2010). In the flow reactor SF−5 reacts with
the four trace gases via a fluoride transfer, here exemplarily
shown for reactions with SO2 and with HONO:

SF−

5 (H2O)+SO2 → FSO−

2 (H2O)+SF4 (1)

SF−

5 (H2O)+HONO→ FHONO−(H2O)+SF4 (2)

The water clusters are removed through collision with he-
lium injected into the ion trap. Mass spectra from 15 to
170 atomic mass units (amu) with a resolution of 0.3 amu
were sampled during a trapping time of 200 ms and averaged
over five spectra resulting in an overall time resolution of
1.6 s. This allowed for the fast and sensitive detection of
SO2 and HONO in young exhaust plumes of commercial
airliners and for measurements of SO2, HCl and HNO3 in
an aged stratospheric plume of volcanic origin. Detection
limits for HONO and SO2 for 1.6 s time resolution were 72
and 67 pmol/mol (pptv). Detection limits for HCl and HNO3
were 22 and 36 pmol/mol respectively with a running mean
over 20 spectra (approx. 32 s). A HNO3 in-flight calibration
was performed with a nitric acid permeation source, while
HCl, SO2 and HONO were calibrated in the laboratory. The
HONO calibration of the ion trap mass spectrometer was car-
ried out with a LOPAP instrument (Heland et al., 2001) prov-
ing the pseudo first order kinetic reaction (2) given above.
The calibration factor accounting for the rate coefficient, the
ion molecule reaction time, the dilution and possible wall ef-
fects for SO2 and HONO were 20 and 10 nmol/mol (ppbv)
with an instrumental error of± 25% and 40%, respectively.

2.7 The NOy instrument

The NOy instrument is described in detail byZiereis
et al. (2004) and Voigt et al. (2005). During the
first two weeks of the campaign, it was config-
ured to detect mainly gas phase reactive nitrogen
NOy,g(=NO+NO2+HONO+HNO3+2N2O5+PAN+...)
with a backward facing inlet and total
NOy,t(=NOy,g+NOy,part) with a forward facing inlet.
Thereafter it monitored mainly gaseous NOy,g and nitric
oxide (NO) with two rear facing inlets.

In the rear facing inlets, particles larger than the cut-off
size of d50 = 0.3 µm are inertially stripped from the sam-
pled air, so that predominantly gas phase NOy,g is measured
(Voigt et al., 2007). Particles are evaporated in the forward
facing inlet releasing gaseous NOy,g. NOy,g is reduced to NO
with CO in a heated gold converter and the chemilumines-
cence reaction of NO with ozone in the infrared is detected
with a photo detector. The NOy instrument has a detection
limit of 1 and 5 pmol/mol for NO and NOy respectively and
an accuracy of±8 %.

2.8 The Fast In Situ Hygrometer (FISH)

Water vapor has been measured with the closed path Fast
In situ Stratospheric Hygrometer (FISH) (Zöger et al., 1999;
Schiller et al., 2008) using the Lyman-α photofragment flu-
orescence technique. H2O mixing ratios between 0.5 and
1000 ppmv have been detected with FISH with a time resolu-
tion of 1 s and an overall accuracy of 6% or at least 0.3 ppmv.
FISH is calibrated regularly before, during and after the field
campaign using calibration bench including a frost point hy-
grometer (MBW DP30) as reference. During CONCERT, air
is probed by a backward facing inlet tube, i.e. FISH measured
gas phase water (H2Og). Including the uncertainty of 0.5 K
for the temperature measurements, the relative humidity with
respect to ice (RHI ) can be determined with an uncertainty
of ±15%.

2.9 The frost point hygrometer

In addition, water vapor has been detected with the cryo-
genic frost point hygrometer CR-2 (Buck Research Instru-
ments, LLC). The instrument measures the temperature of a
mirror carrying a thin frost layer that is maintained in equi-
librium with the ambient water vapor. The bulk reflectivity
of the mirror is measured with an optical detector. It initial-
izes a control circuit to regulate the mirror temperature such
that the bulk reflectivity and hence the condensate layer re-
main constant. The mirror temperature is then equal to the
ambient frost point temperature and the water vapor mixing
ratio can be calculated using the inverse Clausius-Clapeyron
equation.

Atmos. Chem. Phys., 10, 9039–9056, 2010 www.atmos-chem-phys.net/10/9039/2010/



C. Voigt et al.: In situ observations of young contrails 9043

16 C. Voigt et al.: In situ observations of young contrails

Fig. 1. Correlation of water vapor mixing ratios detected with the
frost point hygrometer CR-2 and the Lyman α hygrometer FISH
on 20 November 2008 above Germany. The 1:1 line and the linear
regression are shown.

Fig. 1. Correlation of water vapor mixing ratios detected with the
frost point hygrometer CR-2 and the Lymanα hygrometer FISH
on 20 November 2008 above Germany. The 1:1 line and the linear
regression are shown.

The frost point hygrometer has been calibrated to a high
accuracy laboratory frost point hygrometer (MBW373 Cali-
bration) during and after the campaign.

The uncertainty of the water vapor mixing ratio is be-
tween±3% and±5% for water vapor mixing ratios between
340 µmol/mol and 40 µ mol/mol. This uncertainty does not
include time-dependent oscillations of the mirror tempera-
ture induced by the control circuit after steep gradients in
water vapor. Hence the response time of the frost point hy-
grometer is on the order of several seconds to one minute de-
pending on the water vapor gradient. The CR-2 instrument
has been operated for the first time on the Falcon during the
CONCERT mission, therefore we show a comparison of the
water vapor mixing ratios detected with the CR-2 instrument
and Lyman-α hygrometer.

Figure1 shows the correlation of the water vapor mixing
ratios detected with the CR-2 and the FISH instrument during
a flight on 20 November 2008 above Germany. The mean
water vapor mixing ratio measured by the frost point mirror
was 4% higher than the mixing ratio observed by the Lyman
α instrument and lies within the errors of both instruments.
The standard deviation of the ratio of the water vapor mixing
ratios (CR-2/FISH) is±7%.

3 Flight planning and meteorological forecasts

Research flight planning was based on deterministic meteo-
rological forecasts from the European Centre for Medium-
Range Weather Forecasts (ECMWF) and on chemical fore-
casts computed by the MATCH-MPIC model (Lawrence
et al., 2003). In addition to the forecast quantities pro-
vided by ECMWF, we derived several campaign-specific
forecast quantities, for instance, the Schmidt-Appleman cri-

Fig. 2. 36 hour forecast of the Schmidt-Appleman criterion at 250
hPa, valid on 19 November 12 UTC. Shown is the difference be-
tween the ambient temperature(K) as forecasted by the ECMWF
and the threshold temperature for contrail formation as computed
from the Schmidt-Appleman theory. Values are only plotted in re-
gions where the relative humidity is larger than 80%, that is con-
trails that form in such a region have a high probability to be persis-
tent. Red contours show the geopotential height(m).

terion (Schumann, 1996) to predict regions with a high likeli-
hood of contrail occurrence. Furthermore, the trajectory code
LAGRANTO (Wernli et al., 1997) was run on-demand on the
ECMWF predicted wind fields in order to estimate how con-
trails in the flight target regions would be advected.

ECMWF forecasts were visualized with the Metview sys-
tem (Bonifacio, 1999) and made available to the campaign
scientists through a web-based user interface. For fast on-
demand LAGRANTO computations, a Python-based user in-
terface was developed. With the information given by the
forecast system, we were able to identify target regions with
atmospheric conditions well suited to fulfil the mission ob-
jectives. Figure2 shows a plot of the 36 h forecast of the
Schmidt-Appleman criterion combined with regions of high
relative humidity, valid on 19 November 2008, 12:00 UTC, at
250 hPa. The predictions indicated good conditions for con-
trail occurrence over Germany and the North Sea. The day
was subsequently chosen for targeted contrail observations.

4 Flight survey

During the CONCERT campaign, the Falcon performed 12
mission flights on 27, 28, 29 and 31 October and on 2, 7,
17, 19 and 20 November 2008 including 3 return flights on
31 October and on 17 and 19 November. The flight paths
from all flights are shown in Fig.3. Extensive contrail mea-
surements were performed on 2, 17, 19 and 20 November
and contrails were also observed on 28 and 29 October, but
without FSSP data. The flights on 27 October and on 7 and
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Fig. 3. Trajectories of 12 mission flights performed during the
CONCERT (CONtrail and Cirrus ExpeRimenT) campaign in Oc-
tober/November 2008 over Western Europe. The flight dates are
given in the legend.

Fig. 3. Trajectories of 12 mission flights performed during the
CONCERT (CONtrail and Cirrus ExpeRimenT) campaign in Oc-
tober/November 2008 over Western Europe. The flight dates are
given in the legend.

20 November also concentrated on the detection of cirrus
clouds. The 31 October return flight from Oberpfaffenhofen
to Shannon had the aim to detect regional aircraft emissions
from the Northern Atlantic flight corridor. Sampling a strato-
spheric intrusion was the main goal for the flights on 28 and
31 October.

5 Detection of young contrails

Microphysical and optical properties of 22 young contrails
were detected by the instruments aboard the Falcon on 8 mis-
sion flights. Contrails from 11 different aircraft types were
detected, including an A380, several A340s and B767s and
B737s, an A319, a CRJ-2 and a Fokker20. The contrails were
probed at altitudes between 8.5 to 11.6 km and at tempera-
tures between 213 and 229 K (Fig.4). Contrails were identi-
fied from a simultaneous increase in the extinction>0 km−1

and the NO mixing ratio>0.2 nmol/mol, latter represent-
ing the upper limit for the upper tropospheric NO levels.
Further the threshold temperatureT <240 K was used to ex-
clude lower tropospheric cloud observations. In total 1.7 h of
contrail measurements were achieved. The RHI in the con-
trails ranged between 122 and 55%, with 80% of the obser-
vations concentrating between 105 and 75% RHI . Figure 4
(bottom panel) shows that the clear sky RHI is also mostly
below 100% with the most frequent observations between
70% and 100%. Since air from the environment is continu-
ously entrained into the contrails, the slightly sub-saturated
conditions in the contrails might portray the clear sky condi-
tions. Including the error in the temperature measurements,
the RHI has an accuracy of±15%.

C. Voigt et al.: In situ observations of young contrails 19

Fig. 4. Frequencies of occurrence of relative humidities over ice
versus temperature in contrails (upper panel), cirrus clouds (middle
panel) and clear sky (lower panel) observed during the CONCERT
campaign. The thin solid line represents the homogeneous freezing
threshold, the dotted line refers to water saturation. The data are
sorted in 1 K temperature bins. In each 1 K bin the sum of all data
is 100%.

Fig. 4. Frequencies of occurrence of relative humidities over ice
versus temperature in contrails (upper panel), cirrus clouds (middle
panel) and clear sky (lower panel) observed during the CONCERT
campaign. The thin solid line represents the homogeneous freezing
threshold, the dotted line refers to water saturation. The data are
sorted in 1 K temperature bins. In each 1 K bin the sum of all data
is 100%.

Contrails were mainly probed in the top region or above
visible cirrus clouds, as this sampling strategy was found to
be very effective. The contrail sampling strategy was the fol-
lowing: Predictions of the IWC from the ECMWF were used
to send the aircraft into the top of a cirrus cloud. The Falcon
further ascended above the cloud till contrails were observed
by the pilots. The contrail formation altitude was communi-
cated to German Air Traffic Control (DFS), and commercial
airliners crossing that region were asked to change their flight
altitude to contrail formation altitudes. Thereafter the Falcon
was directed behind the airliners and contrails were probed
at 10 to 86 nautical miles distance corresponding to contrail
ages of 55 to 572 s. During the contrail samplings, the pi-
lots of the commercial aircraft communicated their distance
to the Falcon as well as aircraft parameters such as velocity,
weight and fuel flow. These parameters were then used to
derive emission indices for NOx at flight altitude (Schulte et
al., 1997; Döpelheuer and Lecht, 1999).
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Fig. 5. Contrail flight A on 19 November 2008 above Germany from Oberpfaffenhofen to Hamburg. The flight altitude, temperature, and the
H2O and NO mixing ratios as well as particle number density detected with the FSSP and the extinction for particles larger than 3 µm are
shown. Periodic gaps in the NO data are due to calibration events. Sequences of contrail encounters of an A319 and an A340 are marked in
gray.

5.1 Survey of two contrail flights on 19 November 2008

On 19 November 2008, extensive contrail measurements
were performed with the Falcon. We detected 10 contrails
above Germany during a return flight from Oberpfaffenhofen
to Hamburg and back. During the first flight shown in Fig.5,
we frequently chased an A319, which was a charter aircraft
flying specifically for the contrail measurements. The ex-
haust of the A319 without contrail was detected in the first
encounter, thereafter contrails from the A319 were probed
four times with the longest contrail encounter of 13 minutes.
In addition, the contrail from an A340 was sampled twice.
During the return flight, we chased four commercial aircraft
and detected the contrails of a B767, a CRJ-2, an A380 and
an A320 over Germany as shown in Fig.6.

Contrail encounters are marked by fast simultaneous in-
creases in the NO mixing ratio, the particle number density
detected with the FSSP and the extinction detected with the
PN. We attribute contrails to measurements where the extinc-
tion is>0 km−1 and the NO mixing ratio is>0.2 nmol/mol.
In addition, the contrails were filmed by the camera in the
cockpit of the Falcon.

Highest NO mixing ratios and extinctions were detected
in the contrail of the A380. The contrail was observed for
756 s. NO values up to 58 nmol/mol were observed and the
extinction of particles with d>3 µm increased to 5.4 km−1 in
the A380 contrail. Enhanced particle concentrations (0.4<

d< 17.7 µm) up to 537 cm−3 were detected. Average values
in the A380 contrail were lower with a particle concentration
of 179 cm−3, NO mixing ratio of 6 nmol/mol and extinction
of 1.6 km−1.

The age of the contrails has been calculated based on the
positions of the Falcon and the contrail producing aircraft
taking into account the drift of the contrail at the measured
wind speed. The ages of the detected contrails were between
one and three minutes for the A319, the A340, the B767
and the CRJ-2. The A380 contrail with ages of 1 to 5 min
was detected for 16 minutes. Having left the contrail of the
A380, the contrail of an A320 with ages of 8 to 10 min was
sampled, representing the oldest contrail observed during the
CONCERT campaign. Given contrail ages of less then 10
minutes, all contrails are expected to be line shaped. Hence
the contrail measurements were performed in the vortex and
the early dispersion regime.
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Fig. 7. Plume ages versus Falcon flight time and fuel consumption
of the aircraft observed during two flights on 19 November 2008.
Fig. 7. Plume ages versus Falcon flight time and fuel consumption
of the aircraft observed during two flights on 19 November 2008.

6 Contrail modeling

A new ”Contrail Cirrus Prediction Tool” (CoCiP) has been
developed to simulate contrail cirrus resulting from a sin-
gle flight as well as from a fleet of cruising aircraft, flight
by flight, regionally or globally (Schumann, 2010). The
method predicts contrail cirrus for given aircraft, traffic and
weather prediction data. The method describes the life cycle
of individual contrails using a Lagrangian Gaussian plume

model, following early concepts (Schumann and Konopka,
1994; Schumann et al., 1995; Konopka, 1995). The turbu-
lent mixing of the plume is mainly controlled by shear but
also controlled by turbulent diffusivities; these parameters
were selected such that the computed dilution factor (i.e. the
mass of the plume per mass of fuel burnt) fits available mea-
surements (Schumann et al., 1998) and LES results (Dürbeck
and Gerz, 1996). Contrails are initiated when the Schmidt-
Appleman criterion is satisfied (Schumann, 1996). The evo-
lution of the individual contrails is computed using wind,
temperature, humidity, and ice water content from numerical
weather prediction (NWP) output. In our case we use the op-
erational forecast data of the Integrated Forecast System of
the ECMWF. This model computes the humidity, allowing
for ice supersaturation in air masses without and with cirrus
clouds, in fair agreement with observations (Tompkins et al.,
2007). The plume trajectory follows horizontal and vertical
winds using established methods (Stohl et al., 2001). The ice
phase is modelled as a function of bulk contrail ice properties
(ice mass and ice particle number). It is assumed that ice par-
ticles form on emitted soot particles. The ice water content is
computed as a function of mixing and ambient humidity. The
model assumes ice saturation inside the contrail. Contrails in
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subsaturated air masses evaporate at time scales depending
on the emitted mass of water vapor, the degree of subsatu-
ration and plume dilution. In supersaturated air masses, the
contrail ice water content grows by uptake of humidity mixed
into the plume from ambient air. The final life time of the
contrails in the model is controlled by ice particle loss pro-
cesses (turbulent mixing, aggregation, sedimentation, radia-
tive heating). These aspects will be described elsewhere and
are not important for the present study with young contrails.
The climate impact of the contrails (radiative forcing and ra-
diative energy gain per flight distance with contrail) is com-
puted as a function of the contrail properties (width, length,
life time, optical depth, temperature, effective radius, opti-
cal depth of ambient cirrus above the contrail) using radia-
tive fluxes without contrails from NWP output (Schumann,
2010).

The contrail properties are strongly dependent on the
ambient meteorological field (in particular humidity, shear,
stratification, and upward motion). In addition the computed
contrail properties are aircraft depending (Schumann, 1996).
The fuel properties and the propulsion efficiency of the air-
craft influence the threshold temperature of contrail forma-
tion (Busen and Schumann, 1995). The amount of water
vapor emitted in the early contrail contributes to the ini-
tial ice water content and hence the life time of the con-
trail in unsaturated ambient air. The number of soot par-
ticles emitted controls the number of ice particles forming
in the young contrail (Kärcher and Yu, 2009). Besides fuel
consumption, the emission indices (EI) control the computed
plume concentrations. The emission index for NOx was de-
termined as inDöpelheuer and Lecht(1999) based on aircraft
and engine type and the fuel consumption rates reported by
the aircraft pilots. The mass, speed and span width of the
individual aircraft determine the downward sinking of the
wake vortex (Holzäpfel, 2006). The shear driven plume dis-
persion is strongly enhanced for large wake vortex sinking
depths (Schumann et al., 1995). The actual air traffic data
(radar observed aircraft type and aircraft positions versus
time) were provided for the CONCERT days by the Deutsche
Flugsicherung (DFS). The position of the Falcon, measured
onboard was found to be in close agreement (50 m laterally,
10 m vertically) with the DFS observations.

6.1 Validation of CoCiP model results with CONCERT
observations of young contrails

From the position of the Falcon as a function of time, and the
ECMWF forecast wind field (wind speed of order 40 m/s),
the model computes the age of the exhaust plume at the time
of measurement. The data were accurate enough to decide
when the Falcon was in or near the exhaust of aircraft for
young plumes (a few minutes) to an age dependent accuracy
of order 300 m horizontally, and 20 m vertically. Figure7
shows the plume ages (between 60 and 600 s) for the two
Falcon flights of 19 November 2008. Also plotted is the fuel
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Fig. 8. Comparison of CoCiP model results to contrail observations
during two flights on 19 November 2008. Upper panel: NOx mix-
ing ratio versus Falcon flight time. Measured data (grey and black
dots) and computed results (red circles: along computed flight path;
red triangles: on the plume axis). Lower Panel: Concentration of
ice particles larger than 1 µm versus Falcon flight time. Measured
data (grey and cyan dots) and computed results (blue circles: along
computed flight path; blue triangles: on the plume axis).

Fig. 8. Comparison of CoCiP model results to contrail observations
during two flights on 19 November 2008. Upper panel: NOx mix-
ing ratio versus Falcon flight time. Measured data (grey and black
dots) and computed results (red circles: along computed flight path;
red triangles: on the plume axis). Lower Panel: Concentration of
ice particles larger than 1 µm versus Falcon flight time. Measured
data (grey and cyan dots) and computed results (blue circles: along
computed flight path; blue triangles: on the plume axis).

consumption of the aircraft, which varies by a factor of 20
between the various aircraft. Form a comparison of the com-
puted and measured times of entering the exhaust plume we
could see that the model correctly predicts the sinking of the
initial wake vortices, up to 270 m for the heaviest aircraft,
to within about 20 m vertical accuracy. Figure8 shows the
NOx mixing ratio versus Falcon flight time. Both 1-s data
and 10-s running averages of the measured data are plotted.
The latter are commensurable with the model results which
do not resolve the turbulent details of the aircraft wake. In
the model, the simulated Falcon track does not always lead
through the rather narrow (order of 100 m) exhaust plume.
Hence the model tends to underestimate the maximum mea-
sured exhaust concentrations. However, the model can also
be applied to compute the plume properties under the as-
sumption that the Falcon at the time of measurement would
be flying exactly in the center of the Gaussian plume. In this
way, the model provides the maximum exhaust values that
are consistent with the Gaussian plume. The NOx data reach
up to 50 nmol/mol, i.e., far above the background concentra-
tions. Maximum concentrations were measured in the plume
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Fig. 9. Observations in the contrail from a CRJ-2 on 19 November 2008 above Germany. The flight altitude, temperature, RHI , and trace
gas mixing ratios of NO, SO2 and HONO as well as particle number density detected with the FSSP and extinction for particles larger than
3 µm are shown. The contrail (cirrus) sequence is marked in dark (light) gray.

of the biggest aircraft (A380). The maximum concentrations
decrease with plume age because of dilution. Figure8 shows
that the model provides NOx mixing ratios that are within the
scatter of the measured data. The model gives different NOx
levels in the various plumes which differ because of different
plume ages, dilution, fuel consumption and emission indices.
For comparable plume ages, the NOx concentration is larger
for heavier aircraft, mostly with higher emission indices. The
results indicate that the model parameters were suitably se-
lected to correctly simulate the dilution in the sheared and
turbulent ambient atmosphere. It should be noted that this
agreement was obtained after the emission indices had been
adjusted for the various aircraft/engine types. The results in-
dicate quite large NOx emission indices in some cases up to
27 g/kg. Figure8 shows similar results for the ice crystal
number concentration in the contrail. The model results and
the measurements (for ice particles larger than 1 µm) agree
within the scatter of the data. The concentrations reach as
high as 100 cm−3 in the contrails. During the first flight the
model tends to overestimate the ice particle concentrations
and predicts very small ice water content because of the low
ambient humidity. The agreement with observations is bet-
ter during the second flight at higher ambient humidity. The
computed ice particle concentration is linearly dependent on
the number of soot particles emitted with the exhaust. Hence,
this is also a check for the soot number emission indices used

(2.4–3.4×1015 kg−1). The absolute level of the model re-
sults is sensitive to the plume dilution and the loss of ice
particles in the adiabatically sinking and thus heating wake
core contrail (Sussmann and Gierens, 1999; Unterstrasser
and Gierens, 2010; Lewellen and Lewellen, 2001). Again
the agreement is such that it supports the basic validity of the
model.

CoCiP seems to compute realistic ice particle concentra-
tions. There were no indications of additional ice formation
beyond soot induced ice particles. In particular, there are no
indications for large contributions from volatile material con-
tributing to ice nucleation for these cases with temperatures
of 210 to 222 K. Hence, it seems that the rather complex issue
of ice formation in fresh contrails can be explained at accu-
racy comparable with measurements with a Gaussian plume
model and with bulk ice physics and nucleation controlled by
the soot particles in the contrail.

The model is computationally efficient enough to be used
in forecast mode for operational route optimization with re-
spect to minimum climate impact. Further model tests are
underway to explain observed aviation induced cirrus cover
diurnal changes over the North Atlantic. Further, the model
can be used to evaluate the radiative forcing induced by con-
trail cirrus formation globally.
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7 Observation of the contrail from a CRJ-2 aircraft

Below we discuss in detail the contrail sampling from the
CRJ-2 on 19 November 2008. The aircraft was chased be-
tween 11:40:23 and 11:45:06 UT above Germany (Fig.9).
The contrail was detected for almost 4.5 minutes at an
altitude of 10.02 to 10.11 km and at temperatures near
221.4±0.1 K. Elevated extinction for particles larger than
3 µm up to 3.3 km−1, particle number concentrations up to
406 cm−3 and NO mixing ratios up to 6 nmol/mol were
measured. Average values in this contrail are 0.8 km−1 in
the extinction, 125 cm−3 in the particle concentration and
1.7 nmol/mol in the NO mixing ratio. Peak SO2 and HONO
mixing ratios of up to 0.69 and 0.26 nmol/mol were detected.
In the contrail the RHI increased to values between 82 and
95% and was below these values direct before and after the
encounter. The contrail was detected at an age of 61 to 122 s
and hence was probed in the vortex regime.

The mean particle surface area and volume distributions
detected with the FSSP and the 2D-C in the contrail are
shown in Fig.10. The gap in the particle data between 17.7
and 100 µm refers to the particle size range detected by the
FSSP (0.45<d<17.7 µm) and the 2D-C (d>100 µm).

Also shown is the particle size distribution of the surround-
ing cirrus field. The cirrus cloud has been detected after leav-
ing the contrail from 11:45:06 UT for 5 min as indicated by
background NO and SO2 mixing ratios and elevated extinc-
tion and particle number density. The cirrus cloud has been
observed at altitudes between 10.1 and 10.4 km and temper-
atures of 221 to 219 K. The cirrus particle size distribution
(see Fig.10) suggests that the contrail was embedded in a
cirrus cloud and that large cirrus crystals (d>100 µm) might
have been entrained in the contrail.

It has been questioned whether high ice crystal concentra-
tions often observed with the FSSP are real or were caused
by shattering of large ice crystals on protruding probe inlets
(McFarquhar et al., 2007; Jensen et al., 2009). Techniques
have been proposed (Field et al., 2003, 2006) to correct the
particle size distributions based on information of the parti-
cles interarrival times (Fast-FSSP or 2D-C) and new particle
image probes with high pixel resolution (including CIP and
2D-S) may be used to quantify shattering artefacts. In our cir-
rus case, the particle concentration may be affected by parti-
cle shattering as large ice crystals were detected by the 2D-C
and CPI instruments. In contrast, the contrail FSSP-300 mea-
surements are not strongly affected by ice-crystal shattering
since the cirrus contribution to the contrail ice crystal surface
or volume distribution for particles smaller than 17.7 µm is
less than 1% (see Fig.10), ruling out that the contrail par-
ticle size distribution is significantly influenced by shatter-
ing. During contrail encounters, the small particle mode with
d<17.7 µm is clearly dominated by contrail ice crystals.

The contrail particle size distribution for particles with
0.45<d< 17.7 µm has a mean total ice crystal surface A
of 0.51 µm2 mm−3 and a mean contrail ice volume V of
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Fig. 10.Particle size, surface and volume distributions of the CRJ-2
contrail (red) embedded in a cirrus cloud (black). The ice surface
area (ice volume) is given in µm2 dm−3 air (µm3 dm−3 air) for
each size bin. The total ice surface area and total ice volume can be
calculated by summing up the individual size bins.

1.80 µm3 mm−3. Using the equationreff = (3/4) V/A yields
an effective radius reff of 2.6 µm. Few observation of young
contrails with ages of less than 3 minutes exist. The contrail
particle size distribution detected during CONCERT broadly
agrees with observations in a less then 3 minutes old contrail
by Schr̈oder et al.(2000). Similar concentrations of ice crys-
tals (50–300 cm−3) with sizes below 10 µm were detected by
Baumgardner and Gandrud(1998) in a 30 seconds old con-
trail at 210 K.Poellot et al.(1999) observed slightly larger
particles with mean diameters of 8 µm at mean concentra-
tions of 10 cm−3 in contrails older than 3 minutes.

7.1 Processing of NO and SO2 in the engine and the
plume/contrail from the CRJ-2 aircraft

Amongst gaseous aircraft emissions, SO2 and NOx are the
most important precursors for condensable acids that influ-
ence particle formation and composition in the upper tropo-
sphere. The rate of conversion of fuel sulfur into H2SO4,
εS , has been subject to many investigations (Fahey et al.,
1995; Curtius et al., 1998; Miake-Lye et al., 1998) with re-
cent estimates ofεS ranging from 2 to 10%. Simultaneous
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measurements of HONO, NO and SO2 in aircraft exhaust
plumes under cruise conditions do not exist. HONO/NO ra-
tios have been measured in flight (Arnold et al., 1992) and
HONO/NOx ratios on the ground (Wormhoudt et al., 2007;
Wood et al., 2008) with an average of 2% for thrust settings
between 30 and 100%.

As an example we discuss here the encounter of the CRJ-
2 contrail with a CF34-3B engine detected on 19 November
2008 shown in Fig.6. We observed a good correlation of the
NO mixing ratios detected with a chemiluminescence detec-
tor and the HONO and SO2 mixing ratios measured with the
ITCIMS instrument. Within the plume HONO mixing ra-
tios range from 0.26 nmol/mol to values below the detection
limit and SO2 shows peak values of 0.69 nmol/mol with a
background of 0.08 to 0.1 nmol/mol.

The HONO/NO ratio was calculated by integrating over
all measurements in the contrail to account for the different
time resolution of the two instruments. For this aircraft and
plume ages of 62 to 122 s, HONO/NO (HONO/NOy) ratios
were 0.037 (0.024) with an instrumental error of±42 %. The
high HONO/NO value suggests that NO conversion to NO2
has occurred within in the first minute after emission. Higher
HONO/NO values are therefore expected in aging plumes
compared to measurements at the engine exit (Wood et al.,
2008).

In order to derive the conversion efficiency of fuel sulfur
εS in the engine we compare the two formation pathways
of HONO and HSO3 (a precursor of H2SO4) in the turbine
segment of the engine. A major part of the OH-induced con-
version of the precursor gases SO2 and NO takes place in the
combustion chamber and the turbine segment of the engine
(Kärcher et al., 1996; Somnitz et al., 2005). Here SO2 re-
acts with OH via the Stockwell-Calvert-Mechanism to form
H2SO4 and NO reacts directly with hydroxyl radicals to form
HONO. Under the assumption that the ratio of the effective
rate coefficients for the two reactions is near unity the sulfur
conversion efficiency can be inferred.

In the case of the CRJ-2 the fuel sulfur conversion effi-
ciency yields a value of 2.9 %. This fraction can be regarded
as a lower limit because our method accounts specifically for
the OH-induced conversion of SO2. This lower limit is in
good agreement with recent model simulations of the sul-
fur conversion efficiency (Starik et al., 2002), and compares
well with former direct in-situ measurements of total sulfu-
ric acid (Curtius et al., 2002) in aircraft exhaust plumes. The
uncertainty of the method arises from the uncertainty of the
effective rate coefficients for the reaction SO2+ OH and NO
+ OH. The advantage of this method to derive the sulfur con-
version efficiency is that it is independent of dilution and the
initial OH concentration and it benefits from reliable trace
gas measurements.

26 C. Voigt et al.: In situ observations of young contrails

Fig. 11. Simulations with the MATCH-MPIC model of background
NO (upper panel) and aircraft NO emissions (lower panel) on 31
October 2008, 12 UT, at 250 hPa above Europe. Also shown is the
flight trajectory of the Falcon (a return flight from Oberpfaffenhofen
to Shannon, black line).

Fig. 11.Simulations with the MATCH-MPIC model of background
NO (upper panel) and aircraft NO emissions (lower panel) on 31
October 2008, 12 UT, at 250 hPa above Europe. Also shown is the
flight trajectory of the Falcon (a return flight from Oberpfaffenhofen
to Shannon, black line).

8 Aircraft NO corridor effects in the lowermost
stratosphere

Besides small scale plume processing also the detection of
regional scale aircraft emissions were within the scope of the
CONCERT campaign.

Therefore, the MATCH-MPIC model (Lawrence et al.,
2003) was used for the prediction of regional aircraft NO
emissions. The MATCH-MPIC model is a global, three di-
mensional chemical transport model driven by meteorolog-
ical analyses and forecasts from NCEP (National Centers
for Environmental Prediction). During the CONCERT cam-
paign, MATCH-MPIC was run semi-operationally in two
configurations, one with, and the other without aircraft NO
emissions. Aircraft emissions used for these simulations are
described bySchmitt and Brunner(1997). Examination of
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Fig. 12. Altitude, temperature, RHI , NO, NOy, O3, SO2, HCl, and sulfate concentrations detected on 31 October 2008 on flight B from
Shannon to Oberpfaffenhofen. Large scale aircraft emissions in the lowest stratosphere and the aged eruption plume from volcano Mt.
Kasatochi have been observed.

the differences between the output from these two model
configurations allowed the prediction of large-scale regions
influenced by aircraft emissions. Fig.11 shows examples of
the background and the aircraft NO predictions for 31 Oc-
tober 2008, 12 UTC, at 250 hPa including the flight path
of the Falcon. The simulations show an extended feature
above Great Britain with elevated NO concentrations of up to
80 pmol/mol. In this region aircraft emissions additionally
contribute up to 70 pmol/mol to atmospheric background
concentrations, suggesting that more than 40% of the total
NO might originate from aircraft emissions. This day was
subsequently chosen for a flight to detect aircraft NO corri-
dor effects.

The region with enhanced NO was crossed twice by the
Falcon on 31 October during a return flight from Oberpfaf-
fenhofen to Shannon and back in the lowest stratosphere at
altitudes between 10.5 and 11.6 km (Fig.12). The detection
of spikes in the NO and NOy data within that region shows
the presence of aircraft exhaust plumes with ages of minutes
up to few hours (Schumann et al., 1998). The detection of
aircraft plumes and their superposition is a first indication
for the observation of aircraft corridor NOx effects. In ad-
dition to the individual aircraft plumes, large scale elevated
NO mixing ratios of 50 to 100 pmol/mol were detected in
the lower stratosphere within the region influenced by the
aircraft emissions compared to unperturbed stratospheric NO
levels<50 pmol/mol. The measurements qualitatively agree

with simulations with the MATCH-MPIC model of back-
ground and aircraft NO mixing ratios above Europe (Fig.11).
Hence we suggest that elevated NO levels in that region
might be attributed to the superposition and dispersion of
aged aircraft plumes and to regional aircraft NO effects. Our
first rough analysis invites for a detailed study of the impact
of aircraft NO in atmospheric composition. While several
studies of the aircraft NOx impact in the upper troposphere
exist (Schlager et al., 1997, 1999; Ziereis et al., 1999; Schu-
mann et al., 2000), our measurements present a rare observa-
tion (Kondo et al., 1999; Koike et al., 2000) of a substantial
large scale aircraft NO effect in the lowermost mid latitude
stratosphere.

9 Detection of aged stratospheric aerosol layers from
volcano Mt. Kasatochi

A natural source of particles and trace gases in the UTLS
region are major volcanic eruptions. Volcanic eruptions in-
ject sulfur into the stratosphere, preferably as gaseous SO2,
which undergoes stratospheric conversion to sulfuric acid
and ultimately to sulfate aerosols. Increased aerosol surface
areas after major volcanic eruptions increase the planetary
albedo, resulting in transient global surface cooling lasting
for about 1 to 2 years. In addition, volcanic eruptions may
also inject chlorine species into the stratosphere, as gaseous
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HCl or as NaCl particles. Depending on the RHI within the
eruption plume, a significant fraction of the emitted gaseous
HCl can reach the stratosphere (Textor et al., 2003). Halogen
activation on volcanic aerosol can contribute to ozone loss
in the lowest stratosphere (Borrmann et al., 1997; Solomon
et al., 1998) .

An aged volcanic eruption plume was observed during 3
CONCERT flights in the lowest stratosphere. The plume
originated from the 7/8 August 2008 eruption of the Aleu-
tian volcano Kasatochi (52◦ N), which injected about 1.5 Mt
of SO2 into the lower stratosphere, representing a rare case
of a major volcanic eruption in northern high latitudes. We
measured the eruption plume three month later on 28 Octo-
ber and on two flights on 31 October (Fig.12) in a strato-
spheric tongue extending over Western Europe. As the Fal-
con cruised at 8.5 to 11 km altitude, two stratified plumes
were sighted as dark bands against the horizon. The SO2 and
the sulfate aerosol measurements revealed the presence of
two major sulfate aerosol layers extending up to 5 km above
the local tropopause. The observed sulfate concentration of
2.0 µgm−3 was significantly enhanced compared to back-
ground concentrations of 0.5 µgm−3 (Schmale et al., 2010).
The increase of sulfate is most likely due to stratospheric
OH-induced conversion of injected volcanic SO2 leading to
gaseous sulfuric acid, followed by condensation. The max-
imum SO2 mixing ratio of 510 pmol/mol in the plume very
substantially exceeded the atmospheric background SO2 of
about 40 pmol/mol (Jurkat et al., 2010). The ratio of particu-
late sulfate to total sulfur inside the plume of 0.8±0.1 reflects
slow OH-induced SO2 conversion to sulfuric acid with an up-
per limit of the e-folding SO2 lifetime of 60 days (Jurkat et
al., 2010).

Additional trace gas measurements of HCl, HNO3 and O3
allow to investigate heterogeneous reactions taking place on
the sulfate particles. The ratio HCl/O3 tends to be increased
by 19 % in the SO2-rich plumes compared to outside plume
conditions suggesting direct injection of volcanic HCl into
the stratosphere and very slow processing of HCl on the
aerosol in the polar summer stratosphere. HNO3/O3 was en-
hanced by 50 % in the plumes suggesting increased N2O5
hydrolysis on enhanced sulfate aerosols (Jurkat et al., 2010).

21% of the volcanic aerosol consisted of carbonaceous
material, which is factor of 1.4 more than observed in UTLS
background aerosol (Schmale et al., 2010). The increase of
organic species may be due to direct injection of organic
aerosol into the stratosphere. Alternatively, organic aerosol
may form in the lower stratosphere from injected organic pre-
cursor gases, which became entrained into the tropospheric
segment of the eruption column. The increased organic
aerosol fraction might influence uptake coefficients and het-
erogeneous processing on volcanic sulfate aerosol.

10 Conclusions

Chemical, microphysical and radiative properties of con-
trails, cirrus clouds and an aged volcanic aerosol layer
were detected during the CONCERT campaign in Octo-
ber/November 2008 over Western Europe and were com-
pared to model simulations. The observations of microphys-
ical and chemical contrail properties provide a solid base for
future studies.

Of particular interest is the first detection of the contrail
from an A380-800 aircraft and the temporal evolution of par-
ticle size distribution and particle shape in the contrail. Fur-
ther the mixing of contrail ice crystals with ambient cirrus
cloud particles and the evaporation of contrail ice crystals un-
der ice sub-saturated conditions can be addressed with model
simulations. Particle properties such as the ratio between the
volume mean and the effective radius of contrail ice crystals
can be discussed. The chemical processing of trace gases in
contrails and the large scale perturbation of the UTLS com-
position by aircraft emissions can be studied in detail. The
contrail observations during the CONCERT campaign fur-
ther allow to calculate the radiative forcing from contrails
from a typical present-day aircraft fleet.
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Krämer, M., Schiller, C., Voigt, C., Schlager, H., and Popp, P. J.: A
climatological view of HNO3 partitioning in cirrus clouds, Q. J.
Roy. Meteorol. Soc., 134, 905–912, 2008.

Lawrence M. G., Rasch, P. J., von Kuhlmann, R., Williams, J., Fis-
cher, H., de Reus, M., Lelieveld, J., Crutzen, P. J., Schultz M.
Stier, P., Huntrieser, H., Heland, J., Stohl, A., Forster, C., Elbern,
H., Jakobs H., and Dickerson, R. R.: Global chemical weather
forecasts for field campaign planning: predictions and observa-
tions of large-scale features during MINOS, CONTRACE, and
INDOEX, Atmos. Chem. Phys., 3, 267–289, doi:10.5194/acp-3-

267-2003, 2003.
Lawson, R. P., Heymsfield, A. J., Aulenbach, S. M., and Jensen,

T. L.: Shapes, sizes and light scattering properties of ice crystals
in cirrus and a persistent contrail during SUCCESS, Geophys.
Res. Lett., 25(9), 1331–1334, doi:10.1029/98GL00241, 1998.

Lawson, R. P., OConnor, D., Zmarzly, P., Weaver, K., Baker, B.,
Mo, Q. and Jonsson, H.: The 2D-S (Stereo) Probe: Design
and Preliminary Tests of a New Airborne, High-Speed, High-
Resolution Particle Imaging Probe, J. Atmos. Ocean. Technol.,
23, 1462–1477, 2006.

Lawson, R. P., Jensen, E., Mitchell, D. L., Baker, B., Mo, Q., and
Pilson, B.: Microphysical and radiative properties of tropical
clouds investigated in TC4 and NAMMA, J. Geophys. Res., 115,
D00J08, doi:10.1029/2009JD013017, 2010.

Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C. N.,
Lim, L. L., Owen, B., and Sausen, R.: Aviation and global cli-
mate change in the 21st century, Atmos. Env., 43, 3520–3537,
doi:10.1016/j.atmosenv.2009.04.024, 2009.

Lewellen, D. C. and Lewellen, W. S.: The effects of aircraft wake
dynamics on contrail development, J. Atmos. Sci., 58, 390–406,
2001.

Locatelli, J. D. and Hobbs, P. V. : Fall speeds and masses of solid
precipitation particles, J. Geophys. Res., 79, 2185–2197, 1974.

McFarquhar, G., Um, J., Freer, M., Baumgardner, D., Kok, G. L.,
and Mace, G.: Importance of small ice crystals to cirrus prop-
erties: Observations from the Tropical Warm Pool International
Cloud Experiment (TWP-ICE), Geophys. Res. Let., 34, L13803,
doi:10.1029/2007GL029865, 2007.

Meilinger, S. K., K̈archer, B., and Peter, Th.: Microphysics and
heterogeneous chemistry in aircraft plumes – high sensitivity on
local meteorology and atmospheric composition, Atmos. Chem.
Phys., 5, 533–545, doi:10.5194/acp-5-533-2005, 2005.

Miake-Lye, R., Anderson, B., Cofer, W., Wallio, H., Nowicki, G.,
Ballenthin, J., Hunton, D., Knighton, W., Miller, T., Seeley, J.,
and Viggiano, A.: SOx oxidation and volatile aerosol in aircraft
exhaust plumes depend on fuel sulfur content, Geophys. Res.
Lett., 25, 1677–1680, 1998.

Minnis, P., Schumann, U., Doelling, D. R., Gierens, K., and Fahey,
D. W.: Global distribution of contrail radiative forcing, Geophys.
Res. Lett., 26, 1853–1856, 1999.

Minnis, P., Palikonda, R., Walter, B. J., Ayers, J. K., and Mannstein,
H.: Contrail properties over the eastern North Pacific from
AVHRR data, Meteorol. Z., 14, 515–523, 2005.

Neuman, J. A., Gao, R. S., Fahey, D. W., Holecek, J. C., Ridley,
B. A., Walega, J. G., Grahek, F. E., Richard, E. C., McElroy,
C. T., Thompson, T. L., Elkins, J. W., Moore, F. L., and Ray,
E. A.: In situ measurements of HNO3, NOy, NO, and O3 in the
lower stratosphere and upper troposphere, Atmos. Environ., 35,
5789–5797, 2001.

Penner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., and McFar-
land, M.: Aviation and the global atmosphere – A special report
of IPCC working groups I and III. Intergovernmental Panel on
Climate Change, Cambridge University Press, 365 pp., 1999.

M. Poellot, Arnott, W., and Hallett, J.: In situ observa-
tions of contrail microphysics and implications for their ra-
diative impact, J. Geophys. Res., 104(D10), 12077–12084,
doi:10.1029/1999JD900109, 1999.

Popp, P. J., Gao, R. S., Marcy, T. P., Fahey, D. W., Hudson, P. K.,
Thompson, T. L., K̈archer, B., Ridley, B. A., Weinheimer, A. J.,

Atmos. Chem. Phys., 10, 9039–9056, 2010 www.atmos-chem-phys.net/10/9039/2010/



C. Voigt et al.: In situ observations of young contrails 9055

Knapp, D. J., Montzka, D. D., Baumgardner, D., Garrett, T. J.,
Weinstock, E. M., Smith, J. B., Sayres, D. S., Pittman, J. V.,
Dhaniyala, S., Bui, T. P., and Mahoney, M. J.: Nitric acid up-
take on subtropical cirrus cloud particles, J. Geophys. Res., 109,
D06302, doi:10.1029/2003JD004255, 2004.
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