[Note]

April

www.whxb.pku.edu.cn

孔雀石绿与牛血清白蛋白的相互作用

曹团武* 杨季冬

(长江师范学院化学及环境科学系,重庆 408100)

摘要: 运用荧光光谱和紫外-可见吸收光谱研究了在缓冲溶液中不同温度下孔雀石绿(MG)与牛血清白蛋白(BSA) 之间的相互作用.实验结果表明, MG 对 BSA 的内源荧光猝灭为静态猝灭过程.测定了该反应在不同温度下的 结合常数 K_A, K_A 分别为 7.69×10⁴ L·mol⁻¹(10 ℃)、5.31×10⁴ L·mol⁻¹(20 ℃)和 4.85×10⁴ L·mol⁻¹(37 ℃), MG 与 BSA 以摩尔比 1:1 结合.根据 Förster 非辐射能量转移理论,求出了 37 ℃时给体(MG)和受体(BSA)之间能量转移效率 和结合距离分别为 *E*=0.1635 和 *r*=2.30 nm. 计算出的热力学参数表明, MG 和 BSA之间的作用力主要是通过氢 键和范德华力相互作用.

关键词: 孔雀石绿; 牛血清白蛋白; 荧光猝灭; 相互作用 中图分类号: O644; O621.1

Interaction between Malachite Green and Bovine Serum Albumin

CAO Tuan-Wu^{*} YANG Ji-Dong

(Department of Chemistry and Environment, Yangtze Normal University, Chongqing 408100, P. R. China)

Abstract: The interaction between malachite green (MG) and bovine serum albumin (BSA) was investigated *via* fluorescence and ultraviolet-visible absorption spectra in buffer solutions at different temperatures. The experimental results showed that static quenching was involved in adding MG in BSA solution. The binding constants (K_A) were 7.69× $10^4 \text{ L} \cdot \text{mol}^{-1}$ (10 °C), $5.31 \times 10^4 \text{ L} \cdot \text{mol}^{-1}$ (20 °C), and $4.85 \times 10^4 \text{ L} \cdot \text{mol}^{-1}$ (37 °C), respectively, and they reacted at a molar ratio of 1:1. The energy transfer efficiency *E* was 0.1635 and the binding distance *r* was 2.30 nm between MG and BSA according to Förster non-radiative energy transfer mechanism. The interaction between MG and BSA was driven mainly by hydrogen bonds and Vander Waals force according to thermodynamic parameters.

Key Words: Malachite green; Bovine serum albumin; Fluorescence quenching; Interaction

分子间的相互作用,尤其是药物小分子与生物 大分子间(血清白蛋白、DNA等)相互作用的研究, 已逐渐成为化学、生命科学和医药学等学科研究领 域中最为活跃的前沿和热点之一^[1,2]. 血清白蛋白是 血浆中最丰富的蛋白质,它能与许多内源和外源性 化合物结合,起到存储和转运作用,药物进入人体 后,正是通过血浆的存储和运输才能达到靶部位,进 而发生药理作用^[3-5]. 孔雀石绿(malachite green, MG) 是一种三苯甲烷类工业染料,在水产养殖过程中,常 作为杀菌剂抗寄生虫药,用于防止鱼病,但由于具有 高毒、高残留和"三致"等毒理性质,许多国家禁止其 在经济鱼类(观赏鱼除外)的养殖过程中使用,成为 药物残留监控的主要内容之一^{16-8]}.光谱法是目前获 得大分子和小分子相互作用的重要方法之一.牛血 清白蛋白(BSA)与三苯甲烷类染料孔雀石绿和乙基 紫之间是非共价键合,牛血清白蛋白的结合位点能 有效阻止三苯甲烷类染料因苯环旋转引起的快速非 辐射驰豫过程^{19,10]}.关于 MG 与 BSA 的相互作用研 究尚未见报道.本文研究了 MG 与 BSA 之间的相互 作用,讨论了 MG 对 BSA 内源荧光的猝灭机制,经

 ${\rm (}{\rm C}{\rm)}$ Editorial office of Acta Physico-Chimica Sinica

Received: August 28, 2007; Revised: December 26, 2007; Published on Web: February 19, 2008.

^{*}Corresponding author. Email: kyhua2001@yahoo.com.cn; Tel:+8623-72089393

处理实验数据得到了 MG 与 BSA 之间的作用距离、结合常数、结合位点数和热力学参数等重要信息.

1 实验部分

1.1 试剂与仪器

牛血清白蛋白(BSA, 华美生物工程公司产品, 99%), 孔雀石绿(MG, 湖南湘中地质研究所, 纯度> 98%), Britton-Robinson(B-R)系列缓冲溶液和 pH= 7.2 的 Tris-HCl(含 0.1 mol·L⁻¹ 的 NaCl 以维持离子 强度)缓冲溶液. 所用试剂均为分析纯, 实验用水为 二次去离子水.

F-2500型荧光分光光度计(日本日立公司); UV-3010紫外/可见分光光度计(日本日立公司); pHS-25C数字显示酸度计(上海宇隆仪器有限公司).

1.2 实验方法

在 10 mL 容量瓶中依次加入 1 mL 缓冲溶液、 2.0 mL 1.0×10⁻⁵ mol·L⁻¹ 的 BSA 溶液和一定浓度的 MG, 用二次去离子水稀释至刻度, 分别在实验温度 (10、20 和 37 ℃)下在恒温水浴中恒温 3 h. 荧光发射 与激发狭缝宽度均为 5 nm, 于 280 nm 激发波长下 进行荧光扫描, 光源为脉冲式氙灯, 扫描速率为 600 nm·min⁻¹. 在 U-3010 紫外可见近红外分光光度计上 扫描吸收光谱.

2 结果与讨论

2.1 MG 对 BSA 荧光猝灭方式的确定

BSA 中含有色氨酸、酪氨酸和苯丙氨等氨基酸 残基,能发射较强的内源荧光,因此 BSA 是内源性 荧光物质^[11].图 1 为 MG 对 BSA 的荧光猝灭的影响. 可以看出,激发波长在 280 nm, BSA 浓度固定不变 的情况下,随着 MG 浓度的增加,BSA 的内源荧光 有规律地降低,而它的发射峰的峰位及峰形基本保 持不变,这表明 MG 对 BSA 的荧光有猝灭现象,两 者之间存在相互作用.由于 MG 在 280 nm 激发波 长下有吸收,因此在研究中需要考虑内滤光效应,本 文用(1)式^[12]对内源荧光进行了校正.

$F_{c} = F_{a} \times e^{(A_{1} + A_{2})/2}$	(1)
式中, F。和 F。分别为校正后和测量到的荧光引	虽度,

A₁和A₂分别为溶液在激发和发射波长处的吸收值, 以下所用的荧光强度均为校正后的荧光值.

荧光猝灭机制通常可分为动态猝灭、静态猝灭 等.动态猝灭是猝灭剂和激发态荧光物质分子之间 的相互作用引起的,其猝灭常数随温度升高而增大;

pH=7.2, at 26 °C; $c(BSA)=2.0\times10^{-6} \text{ mol} \cdot \text{L}^{-1}$ in all cases; 10⁵ $c(MG)/(\text{mol} \cdot \text{L}^{-1})$: 1) 0, 2) 0.5, 3) 1.0, 4) 2.0, 5) 3.0, 6) 4.0, 7) 5.0, 8) 6.0, 9) 7.0

静态猝灭是由于猝灭剂和荧光物质发生了配合反应,形成了不发荧光的配合物引起的,其猝灭常数随温度的升高而减小. MG 对 BSA 荧光猝灭过程若为动态猝灭,则应符合 Stern-Volmer 方程^[13]:

 $F_0/F=1+k_q\tau_0[Q]=1+K_{sv}[Q]$ (2) 式中, F_0 和 F 分别为猝灭剂 Q 加入前、后的荧光强 度, k_q 为双分子猝灭过程速率常数, K_{sv} 为 Stern-Volmer 动态猝灭常数, τ_0 为猝灭剂不存在时荧光体 分子平均寿命, [Q]为猝灭剂的浓度.

将不同 pH 值和不同温度下 MG 对 BSA 的荧 光猝灭数据按式(2)进行处理, 以 pH=7.2 为例, 作 *F*₀/*F*-[Q]图(见图 2). 由此求得 MG 对 BSA 的 Stern-Volmer 动态猝灭常数 *K*_{sv} 和双分子猝灭过程速率常 数 *k*_o, 计算结果见表 1.

表 1 MG 与 BSA 结合的猝灭常数 Table 1 The quenching contants for the binding of MC to BSA

NIG to DSA						
рН	<i>T</i> /°C	$\frac{10^{-4} K_{\rm sv}}{(\rm L \cdot mol^{-1})}$	$\frac{10^{-12} k_{\rm q}}{(\rm L\cdot mol^{-1} \cdot s^{-1})}$	R		
5.4	10	2.58	2.58	0.998		
	20	2.22	2.22	0.999		
	37	1.76	1.76	0.996		
7.2	10	2.86	2.86	0.999		
	20	2.40	2.40	0.999		
	37	1.94	1.94	0.998		
9.0	10	3.23	3.23	0.997		
	20	2.76	2.76	0.999		
	37	2.18	2.18	0.998		

图 2 MG 对 BSA 荧光猝灭的 Stern-Volmer曲线 Fig.2 Stern-Volmer curves of fluorescence quenching of BSA caused by MG

 F_0 and F: the fluorescence intensity in the absence and presence of MG; pH=7.2, $c(BSA)=2.0\times10^{-6} \text{ mol} \cdot \text{L}^{-1}$ in all cases; $T/^{\circ}\text{C: a}$ 10, b) 20, c) 37

通常各类猝灭剂对生物大分子的最大扩散控制 碰撞猝灭速率常数为2.0×10¹⁰ L·mol⁻¹·s⁻¹, 而 MG 对 BSA 的猝灭速率常数 k_q 远大于此值, 同时温度升 高, K_{sv}减小.所以,可以基本确定 MG 对 BSA 的猝 灭并非分子间的动态碰撞所致, 而是由于形成复合 物所引起的静态猝灭.根据所测得的动态猝灭常数 可知, 在以上不同的 pH 体系中, MG 对 BSA 的猝灭 同样属于静态猝灭过程.

2.2 结合常数和结合位点数

药物小分子与蛋白质大分子的相互作用属于非 共价键作用.静态猝灭是由蛋白质基态分子和药物 分子形成了不发光的配合物引起的.对于 MG-BSA 体系,荧光强度与猝灭剂的关系可由荧光分子与猝 灭剂的结合常数求出.设药物 Q 在蛋白质分子 B 上 有 n 个相同且独立的结合位点,则它们的猝灭反应 可表示为^{III}:

 $nQ+B \rightleftharpoons Q_nB$

$$K_{A}=[Q_{n}B]/[Q]^{n}[B]$$

(3)

式中, K_A表示结合常数, [B]、[Q]分别为游离的蛋白 质和药物浓度. 若蛋白质总浓度为[B₀], 则[B₀]=[Q_nB]+ [B]; 当[Q]≫[B₀]时, 以猝灭剂药物的起始浓度代替 其平衡浓度, 则

$$K_{\rm A} = ([B_0] - [B]) / [Q]^n [B]$$
(4)

且在静态猝灭中荧光体系的荧光强度 F 与蛋白质的游离浓度成正比, [B₀]/[B]=F/F₀. 由此, 式(4)可改 写为

$$lg((F_0-F)/F) = lgK_A + nlg[Q]$$
(5)

当在一定量的 BSA 溶液中加入不同浓度的 MG 时,

其荧光强度变化遵从式(5). 以-lg((F_0 -F)/F)对 lg/[Q] 作图, 如图 3 所示, 可得一条直线. 计算得 MG-BSA 体系的 K_A 为 7.69×10⁴ L·mol⁻¹(10 °C)、5.31×10⁴ L· mol⁻¹(20 °C)和 4.85×10⁴ L·mol⁻¹(37 °C), n 为 1.15(10 °C)、1.11(20 °C)和 1.08(37 °C), 相应的直线相关系 数均为 0.999. 由所得的结合常数及结合位点数可 以看出, MG 与 BSA 之间有较强的结合作用, 可形 成一个结合位点, 且温度对 MG 与 BSA 的结合常数 有影响.

2.3 MG 与 BSA 分子间作用距离的估算

作为给体的荧光光谱和作为受体的吸收光谱的 重叠,可说明有一定程度的能量转移.根据 Förster 非辐射能量转移理论,可以求出结合位置与蛋白质 分子中荧光发射基团之间的距离¹⁵³.按此理论,能量 转移效率 *E* 与给体-受体间距离 *r* 及临界能量转移 距离 *R*₀ 相关

$$E = 1 - F/F_0 = R_0^6 / (R_0^6 + r^6)$$
(6)

式中, R₀ 是 E=50%时的临界距离, 可由下式计算:

R₆=8.8×10⁻²⁵ K²N⁻⁴ΦJ (7) 式中, K² 为偶极空间取向因子(取值 2/3), N 为介质 的折射指数(取值 1.336), Φ 为给体的光量子效率(取 值 0.118), J 为给体(蛋白)荧光发射光谱与受体(药 物)吸收光谱间的光谱重叠积分, 可表示为

 $J=\Sigma F(\lambda)\epsilon(\lambda)\lambda^4\Delta\lambda/\Sigma F(\lambda)\Delta\lambda$ (8) 其中, $F(\lambda)$ 为荧光给体在波长 λ 处的荧光强度, $\epsilon(\lambda)$ 则为受体在波长 λ 处的摩尔消光系数.图 4 为 MG 的紫外吸收光谱(a)和 BSA 的荧光发射光谱(b).将 图 4 中 BSA 荧光发射光谱与 MG 的吸收光谱重叠, 求得光谱的重叠的积分 $J=1.0437 \times 10^{-15} \text{ cm}^3 \cdot \text{L} \cdot \text{mol}^{-1}$,

图 3 不同温度下 lg((F₀-F)/F)与 lg[Q]的关系图 Fig.3 Plot of lg((F₀-F)/F) vs lg[Q] [Q]=c(MG); c(BSA)=2.0×10⁻⁶ mol·L⁻¹ in all cases; pH=7.2; *T*/°C: a) 10; b) 20; c) 37

图 4 MG 的紫外吸收光谱(a)和 BSA 的荧光发射光谱(b) Fig.4 Overlap of the UV absorption spectrum of MG (a) with the fluorescence emission spectrum of BSA(b)

按(7)、(8)式计算得 BSA 体系的能量转移效率 E= 0.1635,结合距离为 r=2.30 nm.

根据 Förster 非辐射能量转移理论, 当供能体发 射荧光,供能体的荧光发射光谱与受能体的吸收光 谱有足够的重叠,且供能体与受能体之间的最大距 离不超过 7 nm 时,将会发射非辐射能量转移,导致 一个猝灭¹⁰. 所以, MG 与 BSA 之间发生的是非辐 射能量转移.

2.4 作用力类型的判定

当温度变化不大时,热力学参数可通过下列 公式求得^[17]: 根据 MG 与 BSA 的结合常数 K_{A} ,并结 合式(9)求得反应的自由能变 ΔG:

$$\Delta G = -RT \ln K_A$$
 (9)
当温度变化不大时,反应的焓变 ΔH 可以视为一个
常数,可根据式(10)求得焓变 ΔH :

 $\ln(K_2/K_1) = (\Delta H/R) \cdot (1/T_1 - 1/T_2)$ (10)从而根据式(11)进一步求得熵变 ΔS:

$$\Delta G = \Delta H - T \Delta S \tag{11}$$

对于本实验体系,将实验得到的不同温度下 K_A 值代 入上述热力学公式,求得 MG 与 BSA 反应的有关热 力学参数,把得到的数据列于表2中.

药物与生物大分子作用力类型包括氢键、范德华 力、静电引力和疏水作用力等.蛋白质和药物不同,则 它们之间的作用力类型也不完全相同.根据反应前 后的焓变 ΔH 和熵变 ΔS , 可以判断药物与蛋白质之 间的主要作用力类型. 当 $\Delta H > 0$, $\Delta S > 0$ 时, 主要作用 力为疏水作用力; 当 ΔH<0, ΔS<0 时, 主要作用力为 氢键和范德华力; 当 ΔH<0, ΔS>0 时, 主要作用力为 静电引力.因此,可认为 MG 与 BSA 之间主要是通 过氢键和范德华力相互作用.

表 2 MG 与 BSA 结合的热力字参数								
Table 2Themodynamic parameters of the								
interaction between MG and BSA								
T/℃	$10^{-4} K_{\rm A}$	$-\Delta H$	$-\Delta G$	$-\Delta S$				
	$(L \cdot mol^{-1})$	$\overline{(kJ \cdot mol^{-1})}$	$(kJ \cdot mol^{-1})$	$\overline{(\mathbf{J} \cdot \mathrm{mol}^{-1} \cdot \mathbf{K}^{-1})}$				
10	7.69		26.36	106.94				
20	5.31	3.91	25.92	101.81				
37	4.85		26.40	100.72				

2.5 NaCl 对 BSA-MG 体系的影响

用强电解质 NaCl 溶液来控制体系的离子强度 时,随 NaCl 浓度的增加, BSA 本身的荧光强度降 低,原因可能是 NaCl 的加入导致了 BSA 构象的改 变. 当 MG 存在时, 体系中 ΔF 随 NaCl 浓度的增加 而减小,当 NaCl 浓度超过 0.5 mol·L⁻¹时, ΔF 几乎 保持不变. 这可能是 NaCl 竞争 BSA 上的结合位点, 阻碍了 MG 与 BSA 之间的结合, 可以推断 BSA 与 MG之间存在静电力作用.因此,在测定MG与BSA 体系时,应在较低的离子浓度下进行.

3 结 论

采用荧光光谱法和紫外光谱法研究了孔雀石绿 (MG)与牛血清白蛋白(BSA)的相互作用,确定了静 态猝灭和非辐射能量转移是导致 MG 对 BSA 荧光 猝灭的两大原因. 求得了 MG 对 BSA 的表观结合常 数 K_{A} 结合位点数n及两者之间的结合距离r.根据 热力学函数确定了 MG 与 BSA 之间主要靠氢键和 范德华力作用,它们之间的结合是自发进行的.这些 信息对于了解 MG 在生物体的吸收、分布、代谢, 尤 其是对人体的生理毒性具有重要意义.

References

- 1 Yi, P. G.; Yu, Q. S.; Shang, Z. C.; Zong, H. X. Acta Pharm. Sin., 2000, 35(10): 774 [易平贵, 余庆森, 商志才, 宗汉兴. 药学学报, 2000, 35(10): 774]
- 2 Yi, P. G.; Shang, Z. C.; Yu, Q. S. Acta Chim. Sin., 2000, 58(12): 1649 [易平贵, 商志才, 余庆森. 化学学报, 2000, 58(12): 1649]
- 3 Bhattacharya, A. A.; Curry, S.; Franks, N. P. J. Biol. Chem., 2000, 275: 38731
- 4 Channu, B. C.; Kalpana, H. N.; Ergowda, G. B. J. Pharm. Biomed. Anal., 1999, 21: 775
- 5 Gelamo, E. L.; Tabak, M. Spectrochim. Acta Anal., 2000, 56: 2255
- 6 Zhai, Y. X.; Guo, Y. Y.; Gen, X.; Zhang, C.; Ning, J. S. Perio. China Ocean Univ., 2007, 37(1):27 [翟毓秀, 郭莹莹, 耿 霞, 张 翠, 宁劲松. 中国海洋大学学报, 2007, 37(1): 27]
- 7 Zhai, Y. X.; Zhang, C.; Ning, J. S.; Geng, X. Mar. Fish. Res.,

2007, 28(1): 101 [翟毓秀,张 翠,宁劲松,耿 霞.海洋水产 研究, **2007, 28**(1): 101]

- 8 Zhang, Z. G.; Shi, B.; Chen, L. P.; Lin, L. Y.; Zhou, Y. Chin. J.
 Anal. Chem., 2006, 34(5): 663 [张志刚, 施 冰, 陈鹭平, 林立 毅, 周 昱. 分析化学, 2006, 34(5): 663]
- 9 Jeremy, A. B.; Guilherme, L. I. Dyes and Pigments, 1999, 43: 219
- 10 Mauricio, B.; Guilherme, I. Chem. Commun., 1997: 1792
- Zhao, J.; Wang, Z.; Wu, Q. H.; Yang, X. M.; Wang, C.; Hu, Y. X. *Acta Pharm. Sin.*, 2006, 41(4): 666 [赵 锦, 王 志, 吴秋华, 杨 秀敏, 王 春, 胡彦学. 药学学报, 2006, 41(4): 666]
- Xu, Y.; Huang, H. G.; Shen, H. X. Chin. J. Anal. Chem., 1998, 26 (12): 1494 [徐 岩, 黄汉国, 沈含熙. 分析化学, 1998, 26(12): 1494]
- 13 Qu, L. B.; Wang, L.; Yang, R.; Chen, X. L.; Li, P. Acta Pharm.

Sin., **2006**, **41**(4): 352 [屈凌波, 王 玲, 杨 冉, 陈晓岚, 李 萍. 药学学报, **2006**, **41**(4): 352]

- Su, Z.; Qin, C.; Xie, M. X.; Li, J. D.; Wang, Y. D. Acta Chim. Sin.,
 2007, 65(4): 329 [苏 忠, 秦 川, 谢孟峡, 李建东, 王英典. 化
 学报, 2007, 65(4): 329]
- Feng, X. Z.; Bai, C. L.; Lin, Z.; Wang, N. X.; Wang, C. Chin. J. Anal. Chem., 1998, 26(2): 154 [冯喜增, 白春礼, 林 璋, 王乃 新, 王 琛. 分析化学, 1998, 26(2): 154]
- Ma, C. Q.; Li, K. A.; Zhao, F. L.; Tong, S. Y. Acta Chim. Sin., 1999, 57: 389 [马春琪, 李克安, 赵凤林, 童沈阳. 化学学报, 1999, 57: 389]
- Shao, S.; Ma, B.Y.; Zhang, J. J.; Li, X. F.; Qin, Q. Acta Phys. -Chim. Sin., 2005, 21(7): 792 [邵 爽, 马博英, 张佳捷, 李雪锋, 秦 青. 物理化学学报, 2005, 21(7): 792]