[Article]

www.whxb.pku.edu.cn

介孔 SnO₂的结构表征及其湿敏性能

刘晓磊 何建平* 党王娟 计亚军 赵桂网 张传香

(南京航空航天大学材料科学与技术学院,南京 210016)

摘要: 以十六烷基三甲基溴化铵、十二胺为模板剂,采用双模板法及均相沉淀法,分别制备了介孔结构的 SnO₂. BET测试结果表明,双模板法制备的介孔SnO₂平均孔径、孔容和比表面积分别为4.9 nm、0.213 m³·g⁻¹和 172.9 m²·g⁻¹,而均相沉淀法合成产物孔径分布的离散程度较大,孔容和比表面积降至双模板法的 66.0%和 21.8%.以 叉指电极为工作电极集电体,利用交流阻抗技术测定了所得 SnO₂ 的湿敏性能.结果表明,与均相沉淀法制备的 SnO₂ 相比,双模板法制得 SnO₂ 的双电层电荷传递阻抗、双电层电容及 Warburg 扩散系数随湿度变化的幅度 更明显,表明其具有较好的湿敏性能.对介孔结构特征与湿敏性能相关性研究表明,具有较大孔容和比表面的介 孔 SnO₂ 可改善材料的感湿性能.

关键词: 介孔氧化锡; 双模板法; 均相沉淀法; 电化学阻抗法 中图分类号: O646

Structural Characteristics and Humidity Sensing of Mesoporous SnO₂

LIU Xiao-Lei HE Jian-Ping* DANG Wang-Juan JI Ya-Jun ZHAO Gui-Wang ZHANG Chuan-Xiang

(College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China)

Abstract: A double-template (DT) method using hexadecyl trimethyl ammonium bromide (CTAB) and dodecylamine (ODA) as templates and a homogeneous precipitation (HP) method were used to prepare mesoporous-SnO₂. The BET characterization showed that the average diameter, total pore volume, and surface area of the DT-processed sample were 4.9 nm, 0.213 $\text{m}^3 \cdot \text{g}^{-1}$, and 172.9 $\text{m}^2 \cdot \text{g}^{-1}$, respectively. The sample prepared by the HP method had a considerably non-uniform distribution of pore size, while the total pore volume and surface area decreased to 66.0% and 21.8% of the corresponding value of the DT-processed material. Electrochemical impedance spectroscopy (EIS) was introduced to test the humidity sensing of the sensor made by the mesoporous-SnO₂, using interdigitated electrodes as a working electrode. It was found that the charge transferring resistance, the electric double layer capacity, and the Warburg diffusive coefficient of the DT-processed sample generally exhibited a more significant change than that of the HP-processed sample, indicating that the DT-processed sample possessed a higher sensitivity to humidity. A closer look at the correlation between structural features and humidity sensing revealed that the humidity sensing of the sensor could be improved by obtaining the mesoporous SnO₂ with higher pore volume and surface area.

Key Words: Mesoporous tin oxide; Double-template method; Homogeneous precipitation method; Electrochemical impedance spectroscopy

SnO₂ 是一种宽带隙 n 型半导体,表面存在的 O⁻、O₂⁻、H⁺和 OH⁻等化学活性点,可与气体相互作用, 使SnO₂的电导率发生变化.利用SnO₂的这一性质,能 够检测污染性气体的类型,例如 CO¹²³、H₂S¹³、NO_x¹⁴、 SO₂ 以及 H₂¹⁵、CH₄¹⁶和碳氢化合物¹⁷等易燃性气体. 文献[8,9]的研究结果表明, SnO₂ 可以在含有水蒸气

© Editorial office of Acta Physico-Chimica Sinica

Received: August 16, 2007; Revised: November 16, 2007; Published on Web: January 4, 2008.

^{*}Corresponding author. Email: jianph@nuaa.edu.cn; Tel:+8625-52112918.

江苏省高新技术项目(BG2005009)资助

的两种或多种气体同时存在的环境中使用. Vlachos 等^[10]研究了 SnO₂ 对水和 CO 混合气体的气敏特性, 发现随着气体温度的升高, SnO₂ 气敏传感器的阻抗 数值明显减小. 还有研究发现, 经 Pt^[11]、Pd^[12-14]、La^[15] 等掺杂后的纳米 SnO₂, 具有特异的光电特性和气敏 特性. 在水和CO共存的体系中, 掺杂Pd的传感器具 有更强的反馈信号, 反应在红外散射光谱上, 产物特 征峰的强度值增大^[16]. 在SnO₂中掺杂氧化物^[17,18]也能 明显改善材料的湿度感知性能. Yawale 和 Tai 等 将Al₂O₃^[19]、TiO₂^[20]分别掺杂到SnO₂中,发现 SnO₂-5Al₂O₃ 的电导和敏感度对湿度均有更大的线性范 围, 感湿材料的响应时间也大大缩短.

SnO₂湿度传感器的工作原理是基于水汽的吸 附和表面反应过程而引起的电导变化.随着水蒸气 吸附量的增加,体系的电导率随之变大,其实质可能 是 H₂O 和 O₂^[21]在 SnO₂ 表面发生作用的结果. Kuse 等四认为, SnO2 的感湿过程是 H2O 和 O2 在材料表 面吸脱附的过程. H₂O 在向 SnO₂ 表面吸附的过程中 产生自由运动的电子,使得原来吸附在表面的负氧 离子发生了脱附;或是因吸附的 H₂O 进入材料表面 生成—OH,形成质子导电的缘故. Gong 等[23]则认为, 随着湿度的增大,水分子与晶格中的氧发生作用,产 生了氧空穴,氧空穴继续向体内扩散,发挥施主作 用,导致阻抗减小. Ionescu 等[24]从另一方面解释了 电导增加的原因,认为水电离出来的 H+、OH-和晶格 点 Sn²⁺O²⁻通过两种途径发生反应生成了自由移动 的电子,它既可以用来增强导电性,也可以用来增强 氧的化学吸附作用.

介孔材料具有较大的比表面积和表面能,有着 丰富的离子或分子通道.具有介孔结构的 SnO₂ 可能 与周围的介质之间存在更强的相互作用力,从而提 高传感器材料的灵敏度.但现有的研究多倾向于对 SnO₂ 的掺杂改性和纳米化研究^[25],很少讨论介孔结 构对湿敏性能的影响.在材料湿敏性质的表征中主 要使用四探针仪来测试材料在不同湿度下的电导 率,但因测试结果单一,难以全面评价材料的湿敏性 能.本研究以十六烷基三甲基溴化铵(CTAB)和十二 胺(ODA)为模板剂,采用较新颖的双模板法,制备了 介孔 SnO₂.为便于比较,还用传统均相沉淀法制备 了 SnO₂,用氮气吸脱附法测试材料结构特征,并用 交流阻抗技术测试材料在不同湿度下的湿敏性能, 探讨了 SnO₂ 微观结构对湿敏性能的影响.

1 实验部分

1.1 试剂和仪器

十六烷基三甲基溴化铵(CTAB),南京宁试化学 试剂公司;十二胺(ODA),中国医药上海化学试剂站; 氨水,南京化学试剂厂; SnCl₄·5H₂O,上海宜山冶炼 厂;柠檬酸钠,上海久亿化学试剂有限公司; NaOH, 南京宁试化学试剂公司;无水乙醇,上海实意化学 试剂公司;丙酮,上海化学试剂公司.以上试剂均为 分析纯.实验用水为去离子水.

Bruker D8 Advanced X 射线仪(XRD), Cu K_{α} 衍 射, 管电压 40 kV, 管电流 40 mA; 美国 Micromeritics ASAP 2010 自动吸附仪,77 K; FEI Technai 20 透射 电子显微镜(TEM), 200 kV; 英国 Solartron 1260 频率 响应分析仪, Solartron1287 电化学恒电位仪.

1.2 材料制备

双模板法:将 2.5 g CTAB 溶于 40 mL 水中,搅 拌得到 CTAB 溶液.将 1.28 g ODA 加入到上述溶 液中,搅拌至完全溶解.将3 mL的氨水(25%, w)加入 到 20 mL 水中配成氨水溶液,将其加入到 CTAB 与 ODA 的混合液中,搅拌均匀,得到模板剂溶液.将3 g SnCl₄·5H₂O溶于14 mL水中并将其逐滴加入到模 板剂溶液中,磁力搅拌 4 h. 室温(25 ℃)老化 96 h,过 滤,洗涤.于空气气氛中,300 ℃焙烧 1 h,升温速率 为 1 ℃·min⁻¹.

均相沉淀法:将 0.5 g 柠檬酸钠、2.24 g SnCl₄· 5H₂O 和 1 g NaOH(三种试剂的摩尔比为 1:4:16),按 顺序依次加入 160 mL 去离子水中;磁力搅拌 10 min,形成白色混浊物.倒入容量为 200 mL 的反应 釜中,200 ℃下保温 24 h 后,自然冷却到室温.产物 经离心分离,过滤后在 60 ℃下干燥至恒重.于空气 气氛中,300 ℃焙烧 1 h,升温速率为 1 ℃•min⁻¹.

1.3 湿度传感器的结构及制备

湿度传感器的结构如图 1 所示, 传感连接为小型叉指金电极, 基体为陶瓷基板. 用感光刻蚀法形成 梳状叉指电极, 将多余的铜腐蚀掉, 电极表面镀金, 线宽 150 µm, 线间距 300 µm. 电极在无水乙醇和丙酮中反复浸泡, 烘干后备用.

将 0.1 g SnO₂ 的粉体加入 1.5 mL 去离子水中, 放到超声振荡器中震荡,使 SnO₂ 均匀分散在溶剂 中,形成浆料,用旋涂法使其均匀涂覆在叉指电极 上,25℃干燥至恒重.采用两电极法,用 Solartron 1287 电化学恒电位仪和 1260 频率响应分析仪,进 行不同湿度下的阻抗测试,频率范围为 0.01-100

图 1 湿度传感器结构示意图 Fig.1 Schematic image of humidity sensor

图 2 湿敏性能测量装置 Fig. 2 Apparatus for humidity sensitive testing

kHz, 振幅 10 mV. 用盐的饱和溶液控制湿度(25 ℃), MgCl₂、K₂CO₃、NaBr、NaCl、KCl 饱和溶液与 H₂O 对 应的湿度分别为 33%、43%、59%、75%、85%、98%. 湿度敏感测量装置如图 2 所示.

2 结果与讨论

2.1 结构表征

图 3 为双模板法(a)和均相沉淀法(b)所制样品

a) double-template method; b) homogeneous precipitation method

的 X 射线衍射谱. 将图 3 中各衍射峰与标准卡片比较, 发现实验数据与卡片 7720452 吻合较好, 表明产物为四方相 SnO₂. 从谱线(a)中可以看出, 2 θ =26.5°附近的(110)峰宽化明显, 其它各峰也有不同程度的宽化现象. 谱线(b)中, 各晶面的衍射峰强度有所增强, 尽管各衍射峰还存在一定程度的宽化, 但仍显示出比较规整的四方相特征.用 Scherrer 公式 $D=k\lambda/(\beta cos \theta)(D 为晶粒尺寸; k 为 Scherrer 常数, 其值为 0.89; <math>\lambda$ 为 X 射线波长; β 为积分半高宽度; θ 为衍射角) 计算双模板法和均相沉淀法所得样品的晶粒尺寸, 分别为 4.3 nm 和 13.1 nm. 可见, 双模板法制备的氧化锡晶粒尺寸更小.

为了探讨 SnO₂结构与湿度性能的关系,对材料 进行微观结构特征表征.图4为双模板法(a)和均相 沉淀法(b)所制氧化锡样品的 N₂吸脱附曲线和 BJH 孔径分布图.可以看出,两种条件下获得的样品均为 明显的介孔结构,双模板法所得 SnO₂平均孔径较 小,分布较窄(半高宽).测试结果表明,双模板法制备 的介孔SnO₂平均孔径、孔容和比表面积分别为4.9 nm、0.213 m³·g⁻¹和 172.9 m²·g⁻¹,而均相沉淀法合成 产物相应值分别为14.8 nm、0.140 m³·g⁻¹、37.7 m²·g⁻¹.

图 4 SnO₂的 N₂吸脱附曲线(A)和 BJH 孔径分布(B) Fig.4 Nitrogen adsorption-desorption isotherms (A) and BJH pore-size distribution plots (B) a) double-template method ; b) homogeneous precipitation method

图 5 SnO₂的 TEM 图 Fig.5 TEM images of SnO₂ a) homogeneous precipitation method; b) double-template method

均相沉淀法合成产物孔径分布的离散程度较大,其 孔容和比表面积分别降至双模板法的 66.0% 和 21.8%. 双模板法制备的 SnO₂ 比表面积为 172.9 m²· g⁻¹, 是沉淀法制备 SnO₂ 的 4.6 倍,比 Srivastava 等^[25] 所得 SnO₂ 的比表面积增大 37 m²·g⁻¹ 左右. 沉淀法 制备的 SnO₂ 孔结构中有少量微孔存在,孔容为 0.003 cm³·g⁻¹, 双模板法制备的 SnO₂ 几乎全部由介 孔组成. 经计算, 双模板法和沉淀法制得 SnO₂ 的介 孔孔容和总的孔容比为 100%和 97.9%. 可见,和沉 淀法相比, 双模板法制备的样品孔径较小,孔容和比 表面积较大.

图 5 为沉淀法(a)和双模板法(b)制备的 SnO₂ 高 温焙烧后的 TEM 图.可以看出,两种方法制得的 SnO₂ 均呈无序介孔结构.在实验中要获得颗粒均 匀、粒度适当的 SnO₂ 颗粒,可采取控制反应物的浓 度、加入阻隔剂等方法控制Sn(OH)₄沉淀.均相沉淀 法中选用柠檬酸为阻隔剂,因为柠檬酸不会引入阳 离子,热处理后没有新的杂质产生.生成的Sn(OH)₄ 经高温焙烧后失水,形成了介孔结构,如图 5a 所示. 研究表明,以表面活性剂为模板剂可以获得介孔结 构的 SnO₂,如 Srivastava^[26]和 Zhu^[27]等在实验中分别 用 CTAB 和十四胺为模板剂,均获得了介孔结构性 能较好的SnO₂.本实验采用CTAB和ODA为表面活 性剂,通过表面活性剂的分散作用,阻碍Sn(OH)4颗 粒的增大.由于表面活性剂加入量较大,其形成的 胶束在高温下发生分解,在 SnO₂中形成了介孔尺度 的空隙,如图 5b 所示.

2.2 湿敏性能表征

模板法和沉淀法制备 SnO₂ 试样在不同湿度下的交流阻抗谱分别如图 6 和图 7 所示.可以看出,阻抗谱中高频区域有一个明显被压缩了的半圆,低频区出现一段对应 Warburg 阻抗的直线.高频区域反映氧化锡/微溶液界面电荷传递阻抗和双电层电容,低频区域反映了离子在微溶液中的扩散过程.

利用阻抗谱分析软件 Zview-Impedance 2.80 software 对阻抗数据进行模拟分析,获得模拟等效 电路如图 8 所示. 通过该模型并利用 Zview 软件计 算出不同湿度下的电极过程参数,列于表 1 和表 2 中.由于阻抗曲线表现出一定扭曲变形性,而不是表 现为纯电阻与纯电容的简单连接,因此在等效电路 中采用常相位角元件 CPE 取代电容 C_i. 表中 R₁ 为 微溶液电阻,对应于半圆左起点 X 轴的交点. R₂ 和 CPE 分别为表示氧化锡/微溶液界面双电层电荷 传输阻抗(即双电层电阻)和双电层电容. W₀代表 Warburg 扩散阻抗,即微溶液内离子的扩散阻抗.

据表 1 和表 2 的计算结果, 双模板法制备 SnO₂ 试样的微溶液电阻 *R*₁ 随湿度的增加快速减小, 从 33%RH 时的 18398 Ω 到 98%RH 时的 579 Ω, 减小 到约 1/30. 而沉淀法制备的 SnO₂ 试样的液阻从相 应湿度的 19299 Ω 降到 4172 Ω, 只减小到约 1/5. Warburg 扩散系数 *W*₀-T 随湿度增加都有所减小. 双

图 7 不同湿度下均相沉淀法制备 SnO₂ 的交流阻抗谱 Fig.7 EIS of SnO₂ prepared by homogeneous precipitation method at different relative humidities

图 8 SnO₂的电极过程模型

Fig.8 Electrode process model of SnO₂

 R_1 : solution resistance; R_2 : charge transferring resistance; CPE: electric double layer capacity; W_0 : Warburg resistor

	1020y
Table 1 EIS analysis result of Sn	0. by
表 1 均相沉淀法制备 SnO_2 的交流阻抗	晋分析结果

nomogeneous precipitation method							
Relative humidity(%)	R_1	10 ¹¹ CPE	R_2	$W_{\text{O-T}}$			
33	19299	0.442	105920	27.0			
43	16985	0.224	43158	11.2			
59	13079	0.612	12066	9.0			
75	8508	2.17	3921	7.6			
85	5246	191	1219	7.2			
98	4172	1650	490	5.5			

 $W_{\text{O-T}}$: the parameter of the Warburg resistance

模板法制备的 SnO2 试样从低湿到高湿时, 扩散系数 减小了约 1/10, 而沉淀法试样只减小到约 1/5; 双模 板法制备SnO2 试样的双电层电阻减小幅度、电容增 加幅度也较沉淀法的大.可见,双模板法制备 SnO₂ 试样对湿度具有较高灵敏度.同时可见,相同湿度 下,模板法制得氧化锡的液阻、双电层电阻较小,扩

表 2	双模板	法制备 SnO2 的交流阻抗谱分析结果			
Т	able 2	EIS analysis result of SnO ₂ by			
double-template method					

Relative humidity(%)	R_1	10 ⁸ CPE	R_2	W _{O-T}
33	18398	0.00016	54881	71.5
43	15608	0.000262	21163	69.9
59	9024	0.0991	7685	34.4
75	4575	8.82	1810	33.4
85	1076	478	516	9.2
98	579	9110	240	7.6

散系数、双电层电容 CPE 较大.

SnO。薄膜是一种晶体间隙存有过剩 Sn 原子的 n型半导体[28],电极表面的吸附水电离生成的OH-化 学吸附在薄膜表面,与晶格中的Sn原子(Sn_{lat})共用一 个电子对,形成 HO-Sn_{lat}. 晶格中的氧(O_{lat})或吸附的 氧则与水电离出的弱键质子 H⁺反应, 形成 O_{la}H^{-[29]}, 同时释放出可以自由运动的电子.随着环境湿度的 增加,吸附水分子的数量发生相应的变化,使吸附水 分子逐渐发生凝聚形成液态水,即形成导电通道性 质的电解质微溶液.导电粒子为吸附水自身产生的 H+、H₃O+以及O₁₀H-.因此吸附水越多,参与导电的离 子越多,即离子化程度越高.在外加电场作用下,可 以导电的载流子增多,迁移速率加快,使得试样的溶 液电阻下降,双电层电阻减小,同时使得离子在微溶 液中的扩散阻力减小.又由于双模板法制备的 SnO₂ 孔体积大于沉淀法制备的 SnO2 试样, 因此双模板法 制备的 SnO₂试样对水蒸气的吸附量较大,离子化程 度较高,故相同湿度下,双模板法制备的 SnO。试样

a) double-template method; b) homogeneous precipitation method

溶液电阻、双电层电阻均较小.

本实验制得的SnO₂薄膜的厚度很小,介孔结构 丰富,水分子很容易渗透进去.因SnO₂介电常数不 大,水的介电常数较大,室温时约为79,故SnO₂薄膜 吸水后的双电层电容改变较大,随着湿度的增大,吸 附的水汽的量也增大,电容不断增大.相同湿度下双 模板法制备SnO₂试样吸附水量越多,其电容越大.

从两种试样的电化学阻抗 Bode 图中选取 f=1 kHz 时的阻抗值进行阻湿性能分析,结果如图 9 所示.由图可见,两种方法制备试样的阻抗随环境湿度的增大而减小,属于负特性湿敏电阻器.随着湿度的增大,材料阻抗减小.相同湿度下双模板法制备的材料阻抗较小;在相对湿度为 33%-59%范围内阻抗变化较大,可见试样在这个范围内灵敏度较高;在相对湿度为 59%-98%范围内,阻抗变化较小,表明试样在这个范围内灵敏度较小.

3 结 论

用双模板法和均相沉淀法制得结构不同的介孔 SnO₂,其平均孔径分别为 4.9 和 14.8 nm,比表面分 别为172.9和37.7 m²·g⁻¹,孔容分别为0.21和0.140 m³·g⁻¹.双模板法制备的 SnO₂ 几乎全部由介孔组成, 而均相沉淀法制备的 SnO₂ 则有部分微孔存在.

用电化学阻抗技术测试两种试样的湿敏性能. 结果显示,随着相对湿度的增加,两种试样的微溶液 电阻、SnO₂/微溶液的双电层电荷传输阻抗、Warburg 扩散系数都有所减小,双电层电容增大.相对湿度从 低到高变化时,双模板法制备的 SnO₂试样的各参数 的变化值都较大,说明双模板法制备 SnO₂试样对湿 度具有较高灵敏度.两种试样更适宜在相对湿度为 33%-59%的环境中使用.

References

- Kappler, J.; Tomescu, A.; Barsan, N. *Thin Solid Films*, **2001**, **391** (2): 186
- Li, G. J.; Zhang, X. H.; Kawi, S. Sensors and Actuators B, 1999, 60(1-2): 64
- 3 Rumyantseva, M.; Kovalenko, V.; Gaskov, A.; Makshina, E.; Yuschenko, V.; Ivanova, I.; Ponzoni, A.; Faglia, G.; Comini, E. Sensors and Actuators B, 2006, 118(1–2): 208

- 4 Stambolova, I.; Konstantinov, K.; Vassilev, S.; Peshev, P.;
 Tsacheva, T. *Materials Chemistry and Physics*, 2000, 63(2): 104
- 5 Faglia, G.; Baratto, C.; Sberveglieri, G.; Zha, M.; Zappettini, A. *Appl. Phys. Lett.*, **2005**, **86**(1): 11923
- 6 Katsuki, A.; Fukui, K. Sensors and Actuators B, 1998, 52(1-2): 30
- Wollenstein, J.; Ihlenfeld, F.; Jaegle, M. Sensors and Actuators B, 2000, 68(1–3): 22
- 8 Heilig, A.; Barsan, N.; Weimar, U.; Gopel, W. Sensors and Actuators B, 1999, 58(1-3): 302
- 9 Ionescu, R.; Vancu, A.; Moise, C.; Tomescu, A. Sensors and Actuators B, 1999, 61(1–3): 39
- Vlachos, D. S.; Skafidas, P. D.; Avaritsiotis, J. N. Appl. Phys. Lett., 1993, 63(13): 1760
- Licznerski, B. W.; Nitsch, K.; Teterycz, H.; Szecowka, P. M.; Wisniewski, K. Sensors and Actuators B, 1999, 57(1–3): 192
- Ménini, P.; Parret, F.; Guerrero, M.; Soulantica, K.; Erades, L.;
 Maisonnat, A.; Chaudret, B. Sensors and Actuators B, 2004, 103 (1–2): 111
- Martinelli, G.; Carotta, M. C.; Passari, L.; Tracchi, L. Sensors and Actuators B, 1995, 26 (1–3): 53
- Korotcenkov, G.; Brinzari, V.; Boris, Y.; Ivanova, M.; Schwank, J.; Morante, J. *Thin Solid Films*, 2003, 436(1): 119
- Marsal, A.; Cornet, A.; Morante, J. R. Sensors and Actuators B, 2003, 94(3): 324
- Harbeck, S.; Szatvanyi, A.; Barsan, N.; Weimar, U.; Hoffmann, V. Thin Solid Films, 2003, 436 (1): 76
- de Lacy Costello, B. P. J.; Ewen, R. J.; Ratcliffe, N. M.; Sivanand,
 P. S. Sensors and Actuators B, 2003, 92(1-2): 159
- 18 Ling. Z.; Leach, C. Sensors and Actuators B, 2004, 102(1): 102
- 19 Yawale, S. P.; Yawale, S. S.; Lamdhade, G. T. Sensors and Actuators A, 2007, 135(2): 388
- 20 Tai, W. P.; Oh, J. H. Thin Solid Films, 2002, 422(1-2): 220
- 21 Chang, S. J. Vac. Sci. Technol., 1980, 17(1): 366
- Kuse, T.; Takahashi, S. Sensors and Actuators B, 2000, 67(1-2):
 36
- 23 Gong, J. W.; Chen, Q. F.; Lian, M, R. Sensors and Actuators B, 2006, 114(1): 32
- 24 Ionescu, R. Sensors and Actuators B, **1999**, **58**(1–3): 375
- 25 Liu, X. H.; Tang, D. H.; Zeng, C. L.; Hai, K.; Xie, S. S. Acta Phys. -Chim. Sin., 2007, 23(3): 361 [刘星辉, 唐东升, 曾春来, 海 阔, 解思深. 物理化学学报, 2007, 23(3): 361]
- Srivastava, D. N.; Chappel, S.; Palchik, O.; Zaban, A.; Gadanken,
 A. *Langmuir*, 2002, 18(10): 4160
- 27 Zhu, J.; Tay, B. Y.; Ma, J. Materials Letters, 2006, 60(8): 1003
- 28 Robertson, J. Phys. Rev. B, 1984, 30(6): 3520
- 29 Xu, C. N.; Tamaki, J.; Miura, N.; Yamazoe, N. Sensors and Actuator B, 1991, 3(2): 147