[Article]

www.whxb.pku.edu.cn

内含式复合物 X@(HAINH)₁₂ (X=Be, Mg, Ca, Zn, Al⁺, Ga⁺)的 结构和稳定性

张彩云 崔丽亚 武海顺*

(山西师范大学化学与材料科学学院,山西临汾 041004)

摘要: 在研究闭式多面体(HAINH)₁₂ 簇合物几何构型及稳定性的基础上,用 DFT 的 B3LYP 方法在 6-31G(*d*)的 水平上,对其内含式复合物 X@(HAINH)₁₂ (X= Be, Mg, Ca, Zn, Al⁺, Ga⁺)进行了构型优化和能量计算,并讨论了稳定结构的几何构型、自然键轨道(NBO)、振动频率、能量参数及NMR数据与结构的关系.用Gaussian 03的 QST3 方法确定了客体 X 通过笼面 6-元环的迁移过渡态(TS)结构,并用 IRC 方法对所得 TS 结构进行了验证.最后得到内含式复合物 X@(HAINH)₁₂结构在热力学和动力学上的稳定性信息,其中复合物 Ga⁺@(HAINH)₁₂的结构相对最稳定.

关键词: 结构和稳定性; 包含能; 变构能; 核独立化学位移; 迁移过渡态 中图分类号: O641

Structure and Stability of Endohedral Complexes X@(HAlNH)₁₂ (X=Be, Mg, Ca, Zn, Al⁺, Ga⁺)

ZHANG Cai-Yun CUI Li-Ya WU Hai-Shun*

(Institute of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, Shanxi Province, P. R. China)

Abstract: Based on our previous research work of closo-hedral cluster (HAlNH)₁₂ the geometries, natural bond orbital, vibrational frequency, energetic parameters, magnetic shielding constants, and nucleus independent chemical shifts of stable endohedral X@(HAlNH)₁₂ complexes (X=Be, Mg, Ca, Zn, Al⁺, Ga⁺) were studied at the B3LYP/6-31G(*d*) level of density functional theory. The transition states (TS) of guest X shifting from the cage center toward a face of sixmembered ring were investigated by the QST3 method of Gaussian 03 package and demonstrated with intrinsic reaction coordinate (IRC). It was found that the X@(HAlNH)₁₂ complexes (X=Be, Mg, Zn, Al⁺, Ga⁺) were kinetically stable structures, and the complex Ga⁺@(HAlNH)₁₂ was energetically favorable than the other complexes in thermodynamics.

Key Words: Structure and stability; Inclusion energy; Deformation energy; Nucleus independent chemical shifts; Exit transition state

内含式多面体簇合物 X@An 的结构在超导、有机铁磁体、非线性光学材料、功能分子开关、核磁造影剂和生物示踪剂等领域有着重要的应用前景^[1,2]. 其中,金属包含物由于其特殊的性质和诱人的应用前景受到了广泛的关注^[3,4].近来,一些金属^[5,6]或者稀有气体^[7,8]原子掺杂在半径较大的富勒烯结构中的微 观结构也得到了比较深入的研究. Oku 等人在高分 辨率的电子显微镜下观察到了 La@B₃₆N₃₆¹⁰¹和 Fe@ B₃₆N₃₆¹⁰¹内含式化合物的存在,并从理论上预测了它 们的电子结构. 目前,许多笼内金属富勒烯及其同分 异构体已被分离纯化出来,使得它们的结构、物化性 质的研究成为可能. Al_mN_n 为磁控反应溅射(MRS)制

C Editorial office of Acta Physico-Chimica Sinica

Received: October 12, 2007; Revised: November 6, 2007; Published on Web: January 7, 2008.

^{*}Corresponding author. Email: wuhs@mail.sxnu.edu.cn; Tel: +86357-2052468; Fax: +86357-2051375.

国家自然科学基金(20471034)和山西省自然科学基金(2007011028)资助项目

备 AIN 纳米薄膜的先驱中间化合物^[11]. 近年来, 随 着对凝聚态物质理论研究的系统和深入以及 AIN 薄膜材料研究的进展, 新的 Al_mN_n^[12,13]团簇已被发现. Wu 等^[14]对(AIN)_n(n=2-41)团簇研究时发现, 该体系 中 T_h 对称性的(AIN)₁₂ 团簇具有相当高的稳定性. 如 果将(AIN)₁₂ 笼结构完全氢化, 其氢化反应是一个放 热过程^[15](ΔH_h=-2237.478 kJ·mol⁻¹), 所得氢化物结 构(HAINH)₁₂(T_h)是一种虚频数为零的稳态结构(N_{imag}= 0), 应更具稳定性. 由于这种簇合物结构对称性高, 笼内空隙较大, 易于嵌入适当的客体 X 而不致引起 笼的胀裂, 有望形成一种多面体结构的新材料. 因 此, 本文对(HAINH)₁₂(X=Be, Mg, Ca, Zn, Al⁺, Ga⁺) 的结构和稳定性从理论上进行了计算, 所得结果在 合成方面可作为有效的目标.

1 计算方法

首先用 DFT 的 B3LYP 方法在 6-31G(d)基组的 水平上, 对簇合物(HAINH)₁₂ 的构型进行优化, 得到 具有 T_h 对称性的局域稳态结构, 接着对等构态金属 客体(X=Be, Mg, Ca, Zn, Al⁺, Ga⁺)占据笼的中心位置 形成 T_h构型的内含式结构 X@(HAINH)₁₂进行了优 化, 确定其稳态结构(N_{imeg}=0), 结果如图 1 所示. 然后 在 GIAO/B3LYP/6-31G(d)水平上完成了磁屏蔽常 数(σ)及核独立化学位移(NICS)值等结构参数的计 算. 最后用 QST3 方法在 B3LYP/6-31G(d)//B3LYP/ 3-21G(d)和 B3LYP/6-31G(d)//B3LYP/6-31G 基组的 水平上, 进一步确定了客体 X 通过笼面 6-元环的迁 移过渡态(TS)结构, 并用 IRC 方法对所得 TS 结构 进行了验证, 全部计算均采用 Gaussian 03 程序^[16].

2 结果与讨论

2.1 几何构型与电荷分布

图 1 是(HAINH)₁₂ 和 X@(HAINH)₁₂ 复合物 T_h 对称性的几何构型,相应的自然电荷及几何参数分 别列于表 1 和表 2 中. 簇合物 (HAINH)₁₂ 是一种稳态 的笼状结构 (N_{imag}=0),其骨架上的 Al 和 N 均以 sp^x (x=2-4)杂化而形成具有多支化度的笼面结构,由于 Al 属于缺电子原子,而 N 的电负性又较大,所以使 得复合物(HAINH)₁₂ 具有一定的得电子倾向.

从表 1 中的 qx 值可看出, 具有 T_h 对称性的内含式复合物, 对于原子系列(X=Be, Mg, Zn), 客体X上的部分电荷(<0.5 e)发生转移, 笼骨架得到一定的电子, X 客体呈正电性. 这种电荷的转移随着客体 X 原子半径的增大而增大, 结果使电荷重新分布, 其中电负性较大的 N 原子得到一定的负电荷, 电负性较小的 Al 原子也得到部分负电荷, 使正电性略有下降, 而外围 H 所带电荷变化基微. 对于+1 价(X= Al+, Ga+)系列, Al+和 Ga+均得到了负电荷(<0.4 e), 使正电性降低, 由于笼骨架上的 N 和 Al 也得到一定的负电荷, 其负电性略有增加, 因此可得出, 这种负电荷的转移只能是外围 H 上的负电荷通过笼的骨架而转移到内嵌客体上. 从电荷转移情况看, 无论是(HAINH)₁₂ 笼作为电子接受体, 还是电子给予体, 它

表 1	(HAINH) ₁₂ 和 X@(HAINH) ₁₂ 簇合物的
	自然电荷 q(e)分布
fable 1	Natural charges $q(e)$ of (HAlNH) ₁₂ and
	X@(HAINH),, clusters

		, 1	-		
Cluster	$q_{\rm X}$	$q_{ m N}$	$q_{ m Al}$	$q_{\mathrm{H(N)}}$	$q_{ m H(Al)}$
(HAlNH) ₁₂	-	-1.730	1.672	0.446	-0.389
Be@(HAlNH) ₁₂	0.344	-1.747	1.661	0.447	-0.390
Mg@(HAlNH) ₁₂	0.499	-1.750	1.653	0.445	-0.390
Zn@(HAlNH) ₁₂	0.475	-1.748	1.650	0.447	-0.388
Al ⁺ @(HAlNH) ₁₂	0.640	-1.734	1.662	0.462	-0.360
Ga ⁺ @(HAlNH) ₁₂	0.610	-1.735	1.665	0.464	-0.361

表 2 (HAINH)₁₂ 和 X@(HAINH)₁₂ 簇合物(T_h)的 键长(nm)

Table 2Bond lengths (nm) of $(HAINH)_{12}$ and
X@ $(HAINH)_{12}$ clusters (T_h)

Cluster	$R_{\rm X-N}$	$R_{\rm X-Al}$	${}^{\mathrm{a}}\!R_{\mathrm{N\!-\!Al}}$	${}^{\mathrm{b}}R_{\mathrm{N}\!-\!\mathrm{Al}}$	$R_{\rm N \rightarrow H}$	$R_{ m Al ightarrow H}$
(HAlNH) ₁₂	(0.2970)	(0.3100)	0.1892	0.1949	0.1027	0.1592
Be@(HAlNH) ₁₂	0.2992	0.3118	0.1903	0.1958	0.1028	0.1591
Mg@(HAlNH) ₁₂	0.3005	0.3129	0.1910	0.1966	0.1030	0.1590
Zn@(HAlNH) ₁₂	0.2996	0.3112	0.1905	0.1961	0.1028	0.1591
Al ⁺ @(HAlNH) ₁₂	0.2957	0.3165	0.1914	0.1968	0.1031	0.1576
Ga+@(HAlNH)12	0.2942	0.3151	0.1903	0.1960	0.1030	0.1576

"the N—Al bond fusing two 6-ring; "the N—Al bond between a 4-ring and a 6-ring; the numbers in parentheses represent the distance from the cage center to a vertex, N, or Al.

衣い	族言物的总能里(L_T)、虚妙致(N_{ineg})、取低派幼频率(V_1)、冬息能(LPL)、能隙(ΔL_g)、包含能(L_{inc})和受构能(L_{def})
Table 3	Total energy ($E_{\rm T}$), number of imaginary frequency ($N_{\rm imag}$), the first vibrational frequency (ν_1), zero-point
ene	rgy (ZPE), HOMO-LUMO ($\Delta E_{ m g}$), inclusion energy ($E_{ m inc}$), and deformation energy ($E_{ m def}$) of the clusters

Cluster	ET(a.u.)	$N_{ m imag}$	ν_1/cm^{-1}	ZPE(eV)	$\Delta E_{\rm g}/{\rm eV}$	${}^{\mathrm{a}}E_{\mathrm{inc}}/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	${}^{\mathrm{b}}E_{\mathrm{def}}/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$
(HAINH) ₁₂	-3581.9902	0	140.5	8.11	7.12	-	0.0000
Be@(HAINH)12	-3596.6119	0	150.2	8.10	4.56	122.6111	3.9843
Mg@(HAlNH)12	-3781.9821	0	152.3	8.06	4.25	229.7317	9.8827
Ca@(HAINH)12	-4259.3489	3	-110.1	7.86	2.35	468.3901	33.3807
Zn@(HAlNH)12	-5361.0585	0	87.7	8.09	5.58	57.4986	5.3613
Al+@(HAINH)12	-3824.0971	0	15.6	8.00	5.38	105.5453	43.5434
Ga+@(HAlNH)12	-5504.6846	0	97.1	8.06	5.25	-93.4680	39.4022

^a $E_{inc} = E[X@(HAINH)_{12}] - E(X) - E[(HAINH)_{12}]; ^{b}E_{def}$ is the deformation energies of cage (HAINH)_{12} due to X insertion.

与等构态金属客体之间的电荷转移量都不大(<0.5 e).根据我们前期的工作^{17]},在(HAINH)₁₂笼中增加 1e-2e 后,(HAINH)₁₂和(HAINH)²₁₂构型(T_h)保持不变,其 相对应的能量(E_T)与(HAINH)₁₂的能量比较,其增量 ΔE_T分别为 0.0004 和 0.1086 a.u,可见增加负电荷 使(HAINH)₁₂能量变化甚微,表明(HAINH)₁₂笼具有 一定的储存电的性能.另外,从键长的变化来看,随 着同族原子或离子半径的增大,X—N 和 X—AI 键 长均依次增大,即笼的骨架胀大.对于骨架上的 N— AI 键,随着等构态金属客体 X 半径的增大, N—AI 键长略有增大,但从笼面外围的N(AI)—H键长来看, 其变化甚微,表明客体 X 与簇合物 (HAINH)₁₂的作 用主要是发生在笼内.

2.2 能量参数与稳定性

(HAINH)₁₂ 簇合物是一种稳态笼状结构(N_{imag} = 0),从计算结果(表 3)看出,当在(HAINH)₁₂ 笼中嵌入 等构态金属客体X(X=Be, Mg, Ca, Zn, Al⁺, Ga⁺)后, 它们的最低振动频率 ν_1 、零点能ZPE、HOMO-LUMO 能隙(ΔE_g)值均改变.与(HAINH)₁₂结构相比,内含式 复合物的零点能(ZPE)数值变化不大.由于 HOMO 和 LUMO 的变动,使得能隙 ΔE_g 值相对于(HAINH)₁₂ 结构平均降低约 2.56 eV,能隙的减小,使电子更容 易跃迁,表明嵌入金属客体可使笼结构产生由半导 体向导体方向变化的趋势. Ca@(HAINH)₁₂的能隙最 小为2.35 eV, Zn@(HAINH)₁₂的能隙最大为5.58 eV. 除 Ca@(HAINH)₁₂(ν_1 =-110.1 cm⁻¹)复合物外,其余复 合物最低振动频率 ν_1 均为正值,说明 X@(HAINH)₁₂ (X=Be, Mg, Zn, Al⁺, Ga⁺) 结构均为位能面上的稳定 点,是稳态结构.由于 Ca 的半径较大,与笼之间电 子云的排斥力大,所形成的 T_h 对称结构 Ca@ (HAINH)₁₂(N_{imag} =3)不稳定.为了确定其局域稳定结 构,将 Ca 在笼内其它不同位置的结构进行了全方 位的优化和频率分析,其结果是计算不收敛或虚频 数较多,所以可知 Ca 不能在笼中形成稳定的内含 式复合物.同样,对 Ca⁺@(HAINH)₁₂(T_h)也进行了分 析,由于 Ca⁺的半径还是较大,虚频数仍为 3,包含物 结构不稳定,但对于半径较小的 Ca²⁺离子客体,它的 包含物是一种稳态结构,其虚频数为 0,可见 Ca 客 体不易形成稳态包含物结构主要是由于半径大和与 笼之间电子云排斥力大的缘故.

2.2.1 垂直电离势 IP 和电子亲和能 EA

对金属客体原子(X=Be, Mg, Zn)内含式复合物 的第一、第二垂直电离势及电子亲和能进行了计算, 并与它们的游离态原子的第一、第二电离势及电子 亲和能进行了对比分析,结果列于表4中.对于同一 主族元素,随着半径的增长,Be、Mg的内含式复合 物的电离势越来越小,其值均小于游离态原子的电 离势,Zn的内含式复合物的电离势同样也小于其游 离态原子的电离势,即得电子能力减弱,失电子能力 增强.另外,从表1和表4看出,由于客体X(Be,

表 4 垂直电离势(IP)和电子亲和能(EA) Table 4 Vertical ionization potential (IP) and electron affinity (EA)

				FA(eV)						
Cluster		I_1		I_2						
	(ato	m)	(endo) ^a	(ato	om)	(endo) ^a	(at	om)	(endo) ^a	
Be@(HAlNH)12	9.322 ^b	9.048	8.106	18.211 ^b	18.605	14.825	-0.5°	-1.486	0.555	
Mg@(HAlNH) ₁₂	7.646 ^b	7.731	6.471	15.035 ^b	15.456	11.475	-0.4°	-0.754	-0.460	
Zn@(HAlNH)12	9.394 ^b	8.947	8.199	17.964 ^b	17.807	14.536	-0.6°	-1.181	-0.275	

*the endohedral structure X@(HAINH)12; *from Ref.[18]; *from Ref.[19]

+ -

Mg, Zn)向笼骨架上转移了部分电子, 其顺序为 Be (0.344 e)<Zn(0.475 e)<Mg(0.499 e), 这样将使得内含 式复合物结构得电子的倾向依次减弱, 即电子亲和能(EA)的顺序为 Be@(HAINH)₁₂(0.555 eV)>Zn@(HAINH)₁₂(-0.275 eV)>Mg@(HAINH)₁₂(-0.460 eV). 另外, 由于电子亲和能(EA)的数值很小或为负值, 说 明得电子能力很弱或略显为失电子的倾向, 这与垂 直电离势的分析结果相一致.

2.2.2 包含能 Einc

包含能表示反应 X+(HAINH)₁₂→X@(HAINH)₁₂ 过程的能量变化. 从表 3 可看出,除 Ga⁺的 E_{inc} 为负 值(-93.4680 kJ·mol⁻¹)外,其余均为正值,说明客体 X 嵌入笼中的过程一般需要能量. E_{inc} 为负值,说明 客体X 嵌入笼中的过程可释放能量,使形成的复合 物结构趋于稳定.影响包含能 E_{inc} 大小的笼中态效 应主要取决于客体 X 的半径. 当客体为 Ga⁺时,由于 其半径最小,因此,所形成的内含式复合物 Ga⁺@ (HAINH)₁₂ 很稳定,而对于 Be、Mg、Ca、Zn 和 Al⁺客 体,在同一系列原子中,随着半径的增大,客体与笼 之间电子云的排斥力也增大,使得能量相对升高,因 此,从热力学角度考虑,形成的复合物稳定性较低. 另外,笼(HAINH)₁₂与客体X之间电子转移较少(<0.5 e),所以,电子得失对包含能 E_{inc} 的影响相对较小. 2.2.3 变构能 E_{inf}

笼中态效应是引起骨架胀大(或变构)的主要原因,所引起的变构能(*E*_{def})可表示为

 $E_{def} = E_{(HAINH)_{12}}(strain) - E_{(HAINH)_{12}}$

即由于笼中嵌入客体 X 后使笼的径向半径 *R*_{X-Al} 增 大而引起的能量变化. 从表 3 可看出, 对于第二主族 系列原子(Be, Mg), 随着半径的增大, 变构能增大, 其值分别为3.9843、9.8827 kJ·mol⁻¹. 而对于+1价系 列客体(Al⁺、Ga⁺), 由于它们从笼骨架上均获得约0.4 *e* 的电荷, 这样就对笼骨架产生相对较大的影响, 所以 变构能较大, 分别为 43.5434、39.4022 kJ·mol⁻¹. 但与 *E*_{inc} 比较, *E*_{def} 只构成一小部分的能量释放, 而非构成 影响热力学和动力学稳定性的主要因素. 因此, 根据 能量参数的分析, 从热力学角度考虑, 包含能 *E*_{inc} 是 影响稳定性的主要因素, 因此可得复合物 X@ (HAINH)₁₂>Al⁺@ (HAINH)₁₂>Be@ (HAINH)₁₂> Mg@(HAINH)₁₂.

2.3 核独立化学位移(NICS)值与磁屏蔽常数(σ)

表5给出了由B3LYP/6-31G(d)方法计算所得

表 5 复合物(T_h)的核独立化学位移值(NICS)和 磁屏蔽常数(σ)

Table 5Nucleus independent chemical shifts(NICS) and magnetic shielding constants (σ) of
complexes(T_h)

Cluster	NI	CS ^a		σ			
Cluster -	4-ring	6-ring	X	Al	Ν		
(HAlNH) ₁₂	-4.40	-0.40	(-0.64)	487.38	204.58		
Be@(HAlNH) ₁₂	-4.30	0.14	143.30	486.77	203.90		
Mg@(HAlNH) ₁₂	-4.19	0.44	689.51	491.32	204.00		
Zn@(HAlNH)12	-4.24	0.25	2363.98	489.32	205.44		
Al*@(HAlNH)12	-4.18	0.18	737.38	482.78	204.09		
Ga ⁺ @(HAlNH) ₁₂	-4.18	0.10	2788.92	483.51	205.20		

The NICS values are calculated at the center of a face (0.00) of 4-ring and 6-ring, respectively.

簇合物的各种NMR数据,可作如下分析,由于NICS 值对团簇芳香性判定上的一致性^[20-23],在6-31G(d)组 的水平上计算了体系的 NICS 值, 其中负值表示芳 香性,正值表示反芳香性.在(HAINH)2笼中心位置 的 NICS 值为 0.64, 无芳香性. 而在笼面上四元环和 六元环面的中心,有较小的 NICS 负值 (-4.40 和-0.40), 所以仅有微弱的芳香性, 这与骨架分子轨道 不存在共轭 π 键是一致的. 因为 σ -和 π -型分子 轨道的芳香性与环的大小(或环上的原子数)成反 比[24,25], 所以四元环上 NICS 值略高于六元环上的值 (表 5), 但由于这两种环中仅存在 σ 电子, 离域效应 较弱,当嵌入等构态金属客体 X 后,随着笼骨架的 进一步胀大, 6-元环面上的芳香性消失. 另外, 当在 (HAINH)₁₂笼的中心位置嵌入等构态金属客体X后, 笼面上的芳香性大小及变化与(HAINH)12 笼面上的 基本一致,这进一步说明金属客体 X 与簇合物 (HAINH)₁₂的作用主要发生在笼内.

磁屏蔽常数(σ)的变化可表示电荷转移的情况, 对于自由态 X 原子或离子, 它们的 σ 值分别为, Be, 149.58; Mg, 708.13; Zn, 2521.07; Al⁺, 783.74; Ga⁺, 2626.36, 当被嵌入笼的中心位置后, 除 Ga⁺外, 它们 的 σ 值均减小(表 5). 相对化学位移(δ)值分别为, δ_{Be} , 6.28; δ_{Me} , 18.624; δ_{Zn} , 157.09; δ_{Al^+} , 46.36; δ_{Ga^+} , -162.56. 正值表明电荷发生了转移, 屏蔽减弱, 这种变化的顺 序与客体 X 原子上电荷转移的多少相一致. 另外, 在(HAINH)₁₂ 笼面上, Al 和 N 原子上的 σ 值分别为 487.38 和 204.58, 当嵌入等构态金属客体 X 后, 虽 然 N 与 Al 原子上的负电性增加, 但增加数值却很 小,所以 σ 值变化不大.

2.4 势能面与迁移过渡态(TS)

图 2 X@(HAINH)₁₂→X+(HAINH)₁₂的迁移过渡态(TS)结构 Fig.2 Exit transition state(TS) structures for the X@(HAINH)₁₂→X+(HAINH)₁₂ reaction

为了获取动力学上的稳定信息,用QST3方法分 别在B3LYP/6-31G(*d*)//B3LYP/3-21G和B3LYP/6-31G (*d*)//B3LYP/6-31G 基组的水平上进行计算,进一步 确定了客体X(X=Be, Mg, Zn, Al⁺, Ga⁺)通过笼面 6-元环的迁移过渡态(TS)结构(图2),并用IRC方法对

表 6	迁移过程各部分的总能量 (E _r)和客体 X 的
	迁移势垒 (H _{exit})
Fable 6	5 Total electronic energies ($E_{\rm T}$) of initial

(endo), transition state (TS), final structures, and X exit barrier heights (*H*_{exit})

$E_{\mathrm{T}}(\mathrm{a.u.})$	$H_{\text{exit}}^{a}/(\text{kJ}\cdot\text{mol}^{-1})$
-3596.6119	333 1766
-3596.4850	455 7077
-3596.6586	455.7877
-3781.9821	995 9409
-3781.8963	225.2083
-3782.0696	455.0000
-5361.0585	225 7024
-5360.9725	225.7934
-5361.0804	283.2920
-3824.0971	220 4770
-3823.9678	339.4778
-3824.1373	445.0231
-5504.6846	100.0079
-5504.6157	180.8973
-5504.6490	87.4293
	$E_{\tau}(a.u.)$ -3596.6119 -3596.4850 -3596.6586 -3781.9821 -3781.8963 -3782.0696 -5361.0585 -5360.9725 -5361.0804 -3824.0971 -3823.9678 -3824.1373 -5504.6846 -5504.6157 -5504.6490

^athe exit barrier heights(*H*_{exit}) for X expulsion from or insertion in the cage; ^bthe initial state with the endohedral structure X@(HAINH)₁₂; ^ctransition state (TS); ^dthe final state in possession of isolated components [X+(HAINH)₁₂] 所得TS结构进行了验证,得到了X@(HAINH)₁₂(X=Be, Mg, Zn, Al⁺, Ga⁺)包含物的迁移势垒,计算结果如 表6所示.从数据可看出,包含物分解所需能量 (180.8973-339.4778 kJ·mol⁻¹)还是较大的,说明包 含物 X@(HAINH)₁₂(X=Be, Mg, Zn, Al⁺, Ga⁺)结构在 动力学方面仍可处于稳定态,在普通(室温)条件下 能稳定存在.

3 结 论

(1) (HAINH)₁₂笼结构得电子后形成的(HAINH)₁₂、 (HAINH)²₁₂(*T_h*)复合物是一种稳态结构,由于能量变 化基微,说明(HAINH)₁₂笼具有一定的储存电的性能.

(2) 内含式 X@(HAINH)₁₂(X=Be, Mg, Zn, Al⁺, Ga⁺)复合物的基态是客体X处于笼中心位置具有 *T_h* 对称性的结构, 其中 Ga⁺@(HAINH)₁₂复合物是热力 学最稳态结构(*E*_{inc}<0); 而对于客体 Ca, 由于其半径 大, 与笼的静电作用较强, 所以在笼内不能形成稳态的结构.

(3) 根据键参数与 NMR 数据分析, 当客体 X 嵌 入笼中后, 笼面上环中心的 NICS 值基本不变, 说明 客体 X 与笼的作用主要发生在笼内, 而这种笼中效 应主要决定包含能(*E*_{inc})的大小.

(4) 从能隙(ΔE_g)的变化看出,嵌入客体 X 后,形成的内含式复合物的能隙值有降低的趋势,能隙的减小,使电子更容易跃迁,表明嵌入金属客体可使笼结构产生由半导体向导体方向变化的趋势.

(5)根据动力学计算结果,客体 X 的迁移势垒都 较大,表明内含式X@(HAINH)12(X=Be, Mg, Zn, Al⁺, Ga⁺)复合物结构不易分解,即在普通(室温)条件下可 稳定存在.

(6) 对于离子态簇合物结构,本文仅分析客体的 笼中态效应及其稳定性,如果能进一步考虑到外接 匹配离子对结构所产生的影响,其结果将更具合理 性.

References

- Irle, S.; Rubin, Y.; Morokuma, K. J. Phys. Chem. A, 2002, 106(4):
 680
- 2 Shinohara, H. Rep. Prog. Phys., 2000, 63: 843
- 3 Shinohara, H.; Hayashi, N.; Sato, H.; Saito, Y.; Wang, X. D.; Hashizume, T.; Sakurai, T. J. Phys. Chem., **1993**, **97**(51): 13438
- Miyake, Y.; Suzuki, S.; Kojima, Y.; Kikuchi, K.; Kobayashi, K.; Nagase, S.; Kainosho, M.; Achiba, Y.; Maniwa, Y.; Fisher, K. *J. Phys. Chem.*, **1996**, **100**(23): 9579
- Laskin, J.; Peres, T.; Khong, A.; Jiménez-Vázquez, H. A.; Cross, R. J.; Saunders, M.; Bethune, D. S.; de Vries, M. S.; Lifshitz, C. Int. J. Mass Spectrom., 1999, 185–187: 61
- 6 Hirsch, A. Angew. Chem., Int. Ed. Engl., 2001, 40(7): 1195
- Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Mroczkowski,
 S.; Freedberg, D. I.; Anet, F. A. L. *Nature*, **1994**, **367**: 256
- 8 Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Mroczkowski,
 S.; Gross, M. L.; Giblin, D. E.; Poreda. R. J. *J. Am. Chem. Soc.*,
 1994, 116(5): 2193
- 9 Oku, T.; Kuno, M.; Narita, I. *Diamond. Relat. Mater.*, 2002, 11: 940

- 10 Oku, T.; Suganuma, K. Diamond. Relat. Mater., 2001, 10: 1205
- Egashira, Y.; Kim, H. J.; Komiyama, H. J. Am. Ceram. Soc., 1994, 77(8): 2009
- Zheng, L. S.; Huang, R. B. Sci. Found. China, 1998, 3: 187
 [郑兰荪, 黄荣彬. 中国科学基金, 1998, 3: 187]
- Chu, C.; Ong, P. P.; Chen, H. F.; Teo, H. H. Appl. Surf. Sci., 1999, 137: 91
- 14 Wu, H. S.; Zhang, F. Q.; Xu, X. H.; Zhang, C. J.; Jiao, H. J. Phys. Chem. A, 2003, 107(1): 204
- 15 Silaghi-Dumitrescu, I.; Lara-Ochoa, F.; Haiduc, I. J. Mol. Struct.-Theochem, 1996, 370(1): 17
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; *et al.* Gaussian 03.Pittsburgh, PA: Gaussian, Inc., 2003
- Zhang, C. Y.; Wu, H. S. Chin. J. Struct. Chem., 2005, 24(6): 684
 [张彩云, 武海顺. 结构化学, 2005, 24(6): 684]
- 18 Miessler, G. L.; Tarr, D. A. Inorganic chemistry. 3rd ed. New Jersey: Pearson Prentice Hall, 2004: 671–672
- 19 Bratsch, S. G.; Lagowski, J. J. Polyhedron., 1986, 5(11): 1763
- Verevkin, S. P.; Beckhaus, H. D.; Rüchardt, C.; Haag, R.;
 Kozhushkov, S. I.; Zywietz, T.; de Meijere, A.; Jiao, H.; Schleyer,
 P. v. R. J. Am. Chem. Soc., 1998, 120: 11130
- 21 Wang, G. W.; Saunders, M.; Khong, A.; Cross, R. J. J. Am. Chem. Soc., 2000, 122: 3216
- 22 Charkin, O. P.; Klimenko, N. M.; Moran, D.; Mebel, A. M.; Charkin, D. O.; Schleyer, P. v. R. *Inorg. Chem.*, **2001**, **40**: 6913
- 23 Bühl, M. Chem. Eur. J., 1998, 4: 734
- 24 Heine, T.; Schleyer, P. v. R.; Corminboeuf, C.; Seifert, G.; Reviakine, R.; Weber, J. J. Phys. Chem. A, 2003, 107: 6470
- 25 Wannere, C. S.; Schleyer, P. v. R. Org. Lett., 2003, 5: 865