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Log-linear modeling and two-sample CFA in the search
of discrimination types
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Summary

Two-sample confi gural frequency (CFA) is suggested as a useful statistical tool to 
compare data from pretest-posttest-designs. The investigated data may be difference or 
improvement scores. The above procedure is recommended because improvement scores 
from two dependent samples, although metrically scored, are usually non-normally 
distributed and therefore not suitable for parametric comparisons. The two-sample CFA 
is compared to log-linear modeling (LLM); the similarities and dissimilarites between 
the two statistical methods are presented. LLM takes a model fi tting approach, that is 
LLM tests the goodness-of-fi t of a null model, which assumes no interactions between the 
sample or grouping variable and the outcome variables. Instead of a global approach as 
used by LLM, CFA takes a local or cell level approach, searching for differences between 
the hypothesized (null) model and the empirical data. The Fisher-Yates test is introduced 
as a statistic to test for cell patterns or confi gurations which discriminate between the two 
samples under investigation. Real data from educational psychological research is used 
to demonstrate univariate and bivariate two-sample comparisons.
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1. Introduction

In a Lead Article of the journal Applied Psychology (von Eye, Spiel and Wood, 1996) the 
advantages of confi gural frequency analysis (CFA) in applied psychological research were 
presented. This paper can be understood as a sequelae or a supplement, introducing CFA 
for the analysis of dependent samples, comparable to a dependent t-test in parametric data 
analysis, an application not outlined in the mentioned Lead Article.

In experimental intervention research improvement scores Y = X
Time 2

 - X
 Time 1

 are derived 
from treatment N

Treatment
 and control samples N

Control
 of N

Total
 individuals (e.g., children, 

adolescents) as part of pretest-posttest treatment designs. In such designs both samples are 
observed before and after an intervention, for example, before and after an enhancement 
program for children. When the improvement scores (Y) are scaled ordinally rather than 
metrically (or continuously) it is more appropriate to test for group differences using a 
nonparametric statistical approach such as the Mann-Whitney U test or a median test. 
However, ratings are often bimodal, one mode resulting from small improvements in the 
control group and the other mode resulting from large improvements in the treatment group. 
In such instances the U test (cf. Siegel and Castellan, 1988) should not be applied. Here, the 
application of other nonparametric tests, for instance, log-linear modeling (LLM) or the two-
sample Confi gural Frequency Analysis (CFA), is recommended. Although CFA is a statistical 
technique with some tradition (Lienert and Krauth, 1975; Netter, 1996), its merits for 
evaluation research have been widely neglected in the authors’ opinions. In this paper, CFA 
is presented as a nonparametric statistical tool to test for differences between two dependent 
samples. The similarities and dissimilarities between CFA and LLM are illustrated using real 
data from educational psychology.

2. Confi gural frequency analysis

Confi gural Frequency Analysis (CFA) is a nonparametric tool for the analysis of 
d-dimensional contingency tables (von Eye, 1990; 2002). In CFA the cells of a contingency 
table, called confi gurations, are analyzed by comparing expected frequencies to observed 
frequencies. The binomial test, Pearson’s chi-square or asymptotic approximations to the 
z-statistic are the commonly used test statistics to compare the expected to the observed 
frequencies (Krauth, 1993; Lautsch and von Weber, 1995). Expected frequencies may be based 
on any hypothetical model and are usually expressed in terms of a log-linear model, typically 
a main effect model (Mellenbergh, 1996; von Eye and Nesselroade, 1992). Although CFA 
was developed independently of log-linear modeling, both methods are similar with regard 
to residual analysis (Lehmacher, 1984). Residuals are the standardized differences between 
observed and expected frequencies. CFA and residual analysis in log-linear analysis examine 
all cells of a contingency table. Whereas log-linear modeling applies a model fi tting approach 
which looks for a match between the model (i.e., the expected frequencies) and the observed 
frequencies, CFA searches for differences on the cell level. In other words: LLM takes a 
global and CFA a local approach. Signifi cant differences between observed (f

0
) and expected 

frequencies (f
e
) are called ”types“ if there are more observed than expected frequencies (i.e., 

f
0
 > f

e
), and ”antitypes“, if there are fewer observed than expected frequencies (i.e., f

0
 < f

e
). 

Since its introduction to the scientifi c community (Lienert, 1969), CFA has developed to a 
universally useful statistical tool for the analysis of contingency tables (Krauth 1988; Krauth, 
1993). The researcher may apply CFA nonparametrically or even parametrically (Spiel and 



423Log-linear modeling and two-sample CFA

von Eye, 1993) for exploratory purposes and for statistical inference (Krauth, 1993), and for 
the nonparametric evaluation of MANOVA (Stemmler, 1994) and regression designs (Netter, 
1996; Lienert and Netter, 1996).

Conceptually, in intervention research types may identify groups of subjects with 
certain patterns or variable confi gurations that are in absolute number signifi cantly greater 
than expected and which might represent groups for which the intervention was especially 
effective. Below, the application of LLM and CFA is demonstrated to test for univariate and 
bivariate differences in a two-sample pretest-posttest design; the demonstration applies real 
data taken from educational research.

3. Univariate testing for treatment effects in two samples

In this example, a pretest-posttest treatment design is used to assess improvement in 
school performance (i.e., reading ability) in a sample of students (N = 36) suffering from 
dyslexia (the data are taken from Lienert, 1978; p. 978). The students were randomly assigned 
to a treatment (N

Treatment
 = 18) and a waiting-list control group (N

Control
 = 18). After four weeks, 

students’ reading ability was evaluated by their teacher; the ratings were arranged into three 
categories based on the kind of changes occuring between pre- and post-test: decreased 
performance (-), unchanged performance (0), or improved performance (+)(see Table 1). The 
null hypothesis (H

0
) states that the teacher’s improvement ratings (i.e., three patterns: -, 0, +) 

are independent of the grouping or sample variable (i.e., two patterns: treatment and control 
group). The alternative hypothesis (H

1
) postulates that there is an interaction between the 

teacher’s ratings and the grouping variable. The null hypothesis may be expressed in terms of 
the following log-linear model:

(1) log eij = λ0 + λTeacher Rating +λGroup

The data were analyzed with the program SICFA, a FORTRAN program written by 
Lautsch and von Weber (1995). The program calculates several test statistics to evaluate 
the differences between expected and observed frequencies: (1) the z-statistic according to 
Lienert (1969), which is basically the square root of Pearson’s chi-square, (2) the binomial 
test using Stirlings formula (von Eye, 1990), (3) Lehmacher’s asymptotic hypergeometrical 
test (Lehmacher and Lienert, 1982), and (4) the asymptotic approximation of the z-statistic 
by Perli, Hommel and Lehmacher (1987). The statistics displayed by the program are listed 
in Table 1. The authors of SICFA (Lautsch and von Weber, 1995) recommend to use either 
the Lehmacher’s asymptotic hypergeometrical test or the test statistic according to Perli et al. 
Lehmacher‘s test assumes fi xed row and column marginals, which is rarely the case. The test 
statistic according to Perli et al. seems to be powerful, whereas the z-statistic according to 
Lienert leads to conservative decisions and should be used primarily for exploratory purposes. 
The binomial test approximation using Stirlings formula is, according to von Eye (1990), 
more powerful than the exact binomial test and can best be used when the difference between 
observed and expected frequencies is large.

In our example, the obtained global chi-square is 12.0 with df = 2 which is signifi cant 
at the α = 0.05 level. This suggests that the null hypothesis of assumed independence of the 
teacher’s ratings and the group variable needs to be rejected. The global chi-square is the same 



424 M. Stemmler, C. R. Bingham

chi-square provided by log-linear modeling (χ2 = 11.94, df = 2, p = .003), which indicates a 
mismatch between the expected and the observed frequencies. The log-linear models were 
calculated using SPSS (SPSS Software Inc.). For reasons of comparisons, Table 1 lists the 
CFA statistics and also the standardized residuals provided by the log-linear model.

To look for signifi cant deviations from the hypothesized model on the cell level we apply 
the two-sample CFA, which is comparable to the dependent sample t-test in parametric 
statistical analysis. Two types and two antitypes were consistently detected through 
Lehmacher’s test statistic and the approximation of the z-statistic according to Perli et al. 
Signifi cant deviations on the cell level exist for those students who were rated as improved by 
the teacher and for those who were rated as unchanged. There were more treatment students 
than expected (i.e., type) who were rated as improved by the teachers; in the same category 
there were fewer control students than expected (i.e., antitype). Furthermore, there were fewer 
treatment students than expected who were rated as unchanged and more control students than 
expected in the same category. The standardized residuals show the same pattern (see z-scores 
above ±1.96).

In order to search for so called discrimination types (Lautsch and von Weber, 1995), that 
is types or signifi cant cell patterns that signifi cantly differentiate between the two samples, 
Table 1 was transformed into three, two by two (2 x 2) tables (see Table 2), one table for each 
pairwise comparison of improvement ratings derived by comparing one group to the other two 
groups combined: {‘+’ versus ‘-,0’}, {‘0’ versus ‘-,+’} and {‘-’ versus ‘0,+’}.

Table 1: 
Application of LLM and CFA to test the independence between teacher’s rating and the 

grouping variable; data are taken from a study of 36 students suffering from dyslexia

Note. Learning disabled children (N = 36) were divided at random into two equally sized groups of 
N

T
 = N

C
 = 18. The treatment group N

T
 received a new reading enhancement program while the control 

group N
C
 was on a waiting list. After 4 weeks of training all N children were rated by their teachers as 

‘improved’(+), ‘unchanged’ (0) or ‘decreased’ (-). The new alpha level based on Bonferroni adjustment 
is α*: 0.05 / 6 = .0083; the corresponding z-value is 2.640. T = Type and A = Antitype. Total chi-square 
= 12.0, df = 2, p<.05; *p<.05.

Teacher 
Rating

Group f(o) f(e)

Approx. 
of the z-
statistic

(Lienert)

Approx. of the 
Bino mi al  test

(Stirling)

Lehmacher’s 
test

Approx. of the 
z-statistic

(Perli et al.)

Standard. 
Residuals

+ T 18 13.5 1.22 1.37 3.04 T 3.46 T 4.49*

+ C 9 13.5 1.22 1.39 3.04 A 3.46 A -4.49*

0 T 0 3.0 1.73 1.71 2.20 2.68 A -3.00*

0 C 6 3.0 1.73 1.44 2.20 2.68 T 3.00*

- T 0 1.5 1.22 0.79 1.19 1.81 -1.50

- C 3 1.5 1.22 0.88 1.19 1.81 1.50
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Table 2: 
Transformed data of Table 1

Note. For the application of a two-sample CFA, Table 1 is transformed into three two by two (2 x 2) 
tables. In the fi rst table the teacher‘s ratings of ‘0’ and ‘-’ are collapsed together, in the second table the 
ratings of ‘+’ and  ‘-’ are collapsed, and in the third the ratings of ‘+’ and ‘0’. The p-values were derived 
from the one-tailed Fisher‘s exact test. The asterisk indicates a signifi cant type.*p < 0.05 (Bonferroni 
adjusted).

The exact one-tailed Fisher-Yates test (Lienert, 1978; von Eye, 1990) for Table 2 yields the 
following probabilities: p(+ versus 0,-) = 0.000516; p(0 versus +,-) = 0.00953; and p(versus +,0) = 0.11428. Using 
Bonferroni‘s adjusted α* = 0.05/3 = 0.0167, the two probabilities p(+ versus 0,-) and p (0 versus+ ,-) are still 
signifi cant.

In terms of a two-sample CFA one might say that there are two signifi cant types 
discriminating signifi cantly between treatment and control group. These discrimination types 
can be detected in the Table 1; one type implies that the enhancement program is effective (see 
number of improved scores: f(T

+
) = 18), since signifi cantly more subjects showed improvement 

in the treatment than in the control group. The other type states that signifi cantly more students 
in the control group experienced no change in their reading abilities (see number of unchanged 
scores: f(T

0
) = 6); the two samples of students do not differ signifi cantly in the number whose 

reading improvement ratings decreased.

4. Bivariate testing for treatment effects in two samples

Table 1 contains the data based on a univariate (i.e., the teacher‘s rating) two-sample 
comparison. The design was extended to a bivariate case including students, self-assigned 
improvement ratings, as well as teacher-assigned improvement ratings (the student data are 
unpublished data provided by G. A. Lienert). At the end of the training period the dyslexic 
children were asked whether they felt their reading had improved (↑) or had not improved 

Treatment Group Control Group

Teachers‘
Ratings

0 a = 0 b = 6*

-,+ c = 18 d = 12

p = 0.00953

Treatment Group Control Group

Teachers‘
Ratings

- a = 0 b = 3

0,+ c = 18 d = 15

p = 0.11428

Treatment Group Control Group

Teachers‘
Ratings

+ a = 18* b = 9

-,0 c = 0 d = 9

p = 0.000516
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(=). Combining these self-assigned ratings with the teacher-assigned ratings resulted in the 
three by two by two table of 12 improvement ratings as illustrated in Table 3a. Data analysis 
was done using CFA and LLM. Again, the H

o
 postulates an independence model, allowing no 

interactions between the grouping variable and any other variables in the model; interactions 
between the non-grouping variables are allowed. The H

1
 assumes at least one interaction 

between the grouping variable and any variable in the model. The log-linear model may be 
stated as follows (TR = teacher’s ratings; SR = students’ ratings):

(2) log eij =  λ0 + λTR + λSR + λGroup + λTR SR

Table 3a: 
Bivariate two sample CFA - listing of self-ratings and teacher ratings

of the dyslexic children

Note. The teacher’s ratings were arranged as ‘improved’ (+), ‘unchanged’ (0) or ‘decreased’ (-); students’ 
ratings as ‘improved’ (↑) or ‘unchanged’ (=). T = treatment group; C = control group. * = signifi cant 
discrimination type after Bonferroni adjustment α* = α/6 = 0.0083, the corresponding χ2 = 6.97. The total 
χ2 = 16.51 with df = 5, p < .05.

Now, the CFA program by von Eye (2002) was applied. The expected frequencies 
calculated by the program were consistent with those provided by SPSS. Again, CFA statistics 
and the standardized residuals from LLM are listed for reasons of comparisons. The two-

Teacher Student Group f(o) f(e) χ2 Std. Resid. Residuals
+ ↑ T 6 5.00 0.2  0.45 1.00
+ ↑ C 4 5.00 0.2 -0.45 -1.00

Test for a discrimination type: χ2 = 0.40, df = 1, p = n.s.
Teacher Student Group f(o) f(e) χ2 Std. Resid. Residuals

+ = T 3 8.50 3.56 -1.88 -5.49
+ = C 14 8.50 3.56  1.88 5.49

Test for a discrimination type: χ2 = 7.11, df = 1, p < .05
Teacher Student Group f(o) f(e) χ2 Std. Resid. Residuals

0 ↑ T 4 2.00 2.00 1.41  2.00
0 ↑ C 0 2.00 2.00 -1.41 -2.00

Test for a discrimination type: χ2 = 4.00, df = 1, p = n.s.
Teacher Student Group f(o) f(e) χ2 Std. Resid. Residuals

0 = T 2 1.00 1.00  0.99 0.99
0 = C 0 1.00 1.00 -0.99 -0.99

Test for a discrimination type: χ2 = 2.00, df = 1, p = n.s.
Teacher Student Group f(o) f(e) χ2 Std. Resid. Residuals

- ↑ T 0 0 - - -
- ↑ C 0 0 - - -

-
Teacher Student Group f(o) f(e) χ2 Std. Resid. Residuals

- = T 3 1.50 1.50  1.23  1.50
- = C 0 1.50 1.50 -1.23 -1.50
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sample CFA adds the chi-square components for each specifi c pattern from the two samples 
and tests the combined chi-square component for a discrimination type; it is also possible to 
add the absolute values of the standardized residuals and interprete them as z-statistics. The 
total chi-square provided by the log-linear model was χ2 = 16.51, df = 5, p = .006; thus the 
postulated null model of no interactions between the grouping variable and the other variables 
in the model needs to be rejected. Any deviation from the null model can be interpreted as 
a discrimination type, that is, a type that differentiates signifi cantly between the two groups; 
here, no differentiation between types and antitypes is performed. By applying the Bonferroni 
adjustment for multiple testing α*: 0.05 / 6 = 0.0083 (the corresponding chi-square is 6.97), 
one discrimination type was detected with CFA. There were fewer treatment students than 
expected by the null model who rated themselves as unchanged but were rated by the teachers 
as improved. At the same time, there were more control students who rated themselves as 
unchanged but were rated by the teachers as improved. Again, the Fisher-Yates test may 
be performed to double-check for a discrimination type with a = 3, b = 14, c = 18-3 = 15, 
and d = 18-14 = 4 resulting in a 1-tailed p-value of p = 0.000305 (see Table 3b). For R = 6 
sign patterns in Table 3a, the Bonferroni adjustment is α/6 = 0.0083. Therefore, the bivariate 
rating type (T+, S=) has a post-hoc signifi cance below the 5% level, suggesting that this type 
differentiates signifi cantly between the two samples. Thus, the Fisher-Yates test and the two-
sample CFA lead to same result.

Table 3b:
 Listing of data from Table 3a transformed such that the pattern ‘+ =’ is tested 

against all other patterns

Note. T = teacher; S = student. The asterisk indicates a signifi cant type. *p < .05 (Bonferroni adjusted).

Of course the design may be expanded to three or more improvement ratings by including 
other variables, such as the parents‘ view of the child‘s learning progress. In this case, the 
design needs to be adapted accordingly, but the test rationale stays the same.

5. Discussion

Confi gural Frequency Analysis is a very useful tool for nonparametrically testing two-
sample differences in applied psychological research. This version of CFA may be compared 
to the parametric dependent sample t-test. CFA compares the expected frequencies based on 
the specifi ed null hypothesis (usually an independence model) with the observed frequencies. 
Whereas LLM takes a global or model fi tting approach (Langeheine, 1984); CFA takes a local 
cell level approach to look at differences between the expected and observed frequencies. 
CFA also identfi es which cells account for the signifi cant sample differences. Those cells were 
called discrimination types. The traditional Fisher-Yates test and the two-sample CFA were 
suggested for the detection of discriminating cell patterns.

T S Treatment Group Control Group
+ = a =  3 b = 14*

other c = 15 d =  4

N
T
 = 18 N

C
 =18

p = 0.000305
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For two-sample comparisons LLM and CFA can be treated as complementary statistical 
tools. LLM can be used to look for the underlying associations in the dataset. On the cell 
level standardized residuals may indicate deviations from a pre-specifi ed model. A signifi cant 
global chi-square assumed, CFA is able to identify the types that discriminate between the 
two samples.

In general, improvement scores derived from pretest-posttest designs only yield 
conclusive discrimination types when the following two criteria are met: (1) when the control 
and treatment samples are randomly selected from a given population (e.g., in our case the 
population of children suffering from dyslexia); and (2) when the improvement ratings are 
made ‘blindly’ by a teacher who does not know the group assignments of the children being 
rated. In the present example the improvement ratings were derived from essays written 
before and after an intervention (i.e., enhancement training in the treatment group and regular 
training in the waiting-list control group). These essays were compared by a teacher who was 
blind to group membership of the children, and the post-treatment essays were rated as having 
improved (improved performance: +), remained the same (unchanged performance: 0), or 
declined (decreased performance: -) relative to the pre-treatment essays.

However, the experimental approach based on randomized assignments to treatment and 
control groups is rarely realized in educational research. More often a quasi-experimental 
approach is utilized in which two parallel, already existing classes of children are exposed 
to different teaching methods. If such a quasi-experimental design is used, care must be 
taken to rule out alternative explanations for the resultant improvement ratings. For example, 
improvement ratings from two parallel classes of students are comparable only if the students 
in the two classes have the same average IQ. Classes with higher average IQs will show greater 
improvements; however this will be an artifact of their IQ and not an effect of the training, 
because students with higher IQs are likely to profi t more from whatever training they receive. 
Therefore, if obtained from two non-randomly assigned groups, improvement ratings are not 
directly comparable, even if the ratings are obtained from a blind rater.

The pretest-posttest design can be generalized to more than one improvement criterion 
if a longitudinal, rather than a cross-sectional design, is used. Single-measurement-point 
designs, such as the one illustrated in Table 1, may be expanded to a longitudinal design 
with three measurement points. Improvement ratings across the three measurements can be 
used to yield four, two-period improvement patterns resembling response curves: (↑↑), (↑=), 
(=↑), (= =) (where (=) corresponds to no improvement and (↑) indicates improvement (cf. 
Lehmacher, 1987). Assuming that the treatment was given between the fi rst and second time 
of measurement, (↑=) would represent a short-term learning effect which does not further 
improve after the second measurement, while (↑↑) would indicate a long-term effect of 
increasing learning abilities, and (= =) would indicate no improvement of learning abilities. 
Finally, a pattern of no improvement followed by enhanced performance (=↑) would indicate 
a delayed effect.
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