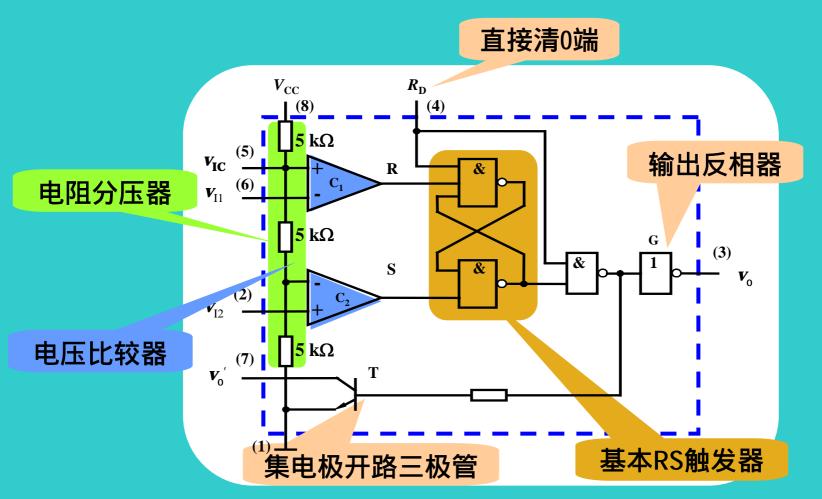
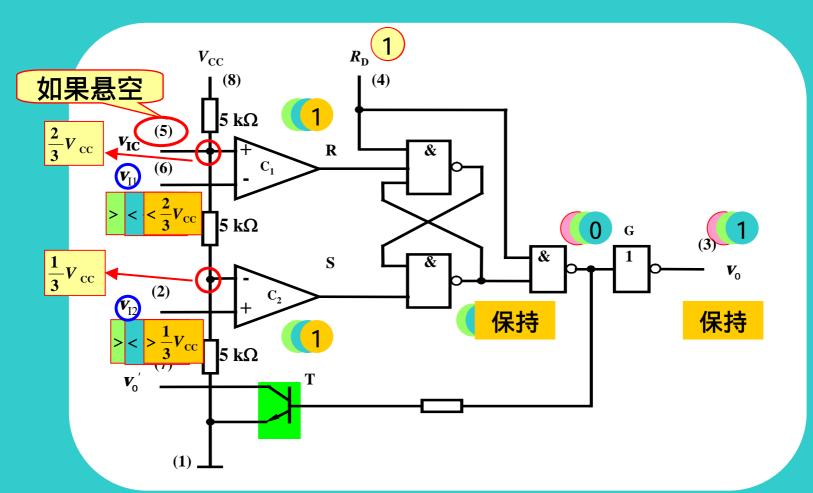
9.4 555定时器及其应用


555集成定时器属中规模集成电路,它将模拟功能和数字功能结合在一起,外接电阻、电容后,可方便地构成单稳、多谐和施密特触发器,使用灵活、功能齐全,输出电流大(100-200mA),因而在定时、检测、报警、家用电器、电子玩具和波形产生和变换方面得到了广泛的应用。

目前生产的定时器有双极型和CMOS两种类型。双极型定时器具有较大的驱动能力,电源电压范围为5-16V;而CMOS定时器具有较低的功耗和较高的输入电阻,电源电压范围为3-18V,负载电流在4mA以下。

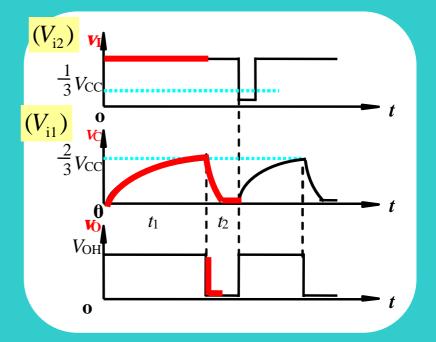

9.4.1. 555定时器

HOME

1.555定时器

555定时器功能表

输入			输出	
阈值输入(V _{l1})	触发输入(V _{l2})	复位(R _D)	输出(V ₀)	放电管T
×	×	0	0	导通
$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	1	截止
$> \frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	1	0	导通
$<\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	1	不变	不变

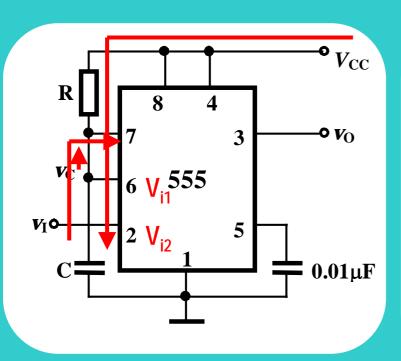

9.4.2. 定时器的应用举例

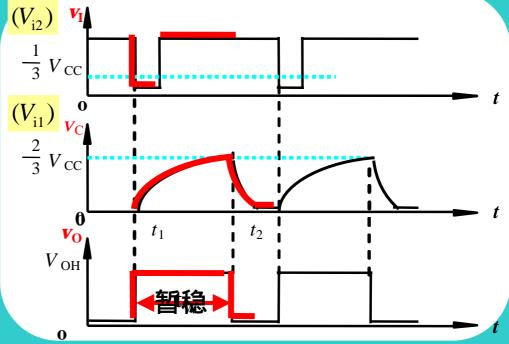
1. 单稳态触发器 ——不可重复触发单稳

1). 稳态: 输出=0。

Image: Control of the	•		V _{CC}
R	8 4	3	——• v _O
V₁•	6 V _{i1} 555	_	
C	2 V _{i2} 1	5	- 0.01μF
_			

输入		输出		
V_{11}	V_{12}	V_{0}	T	
×	×	0	导通	
$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm cc}$	1	截止	
$> \frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm cc}$	0	导通	
$<\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm cc}$	不变	不变	

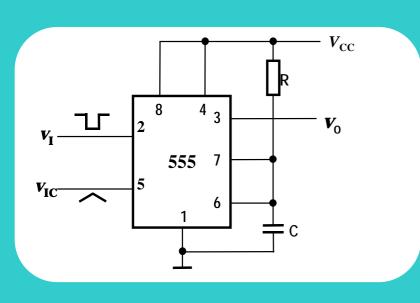


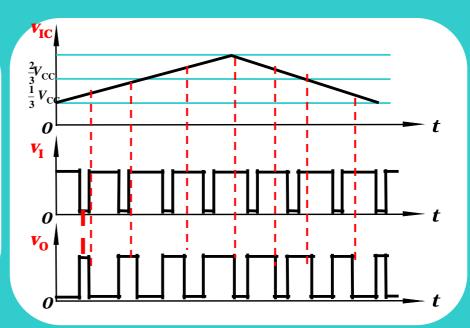


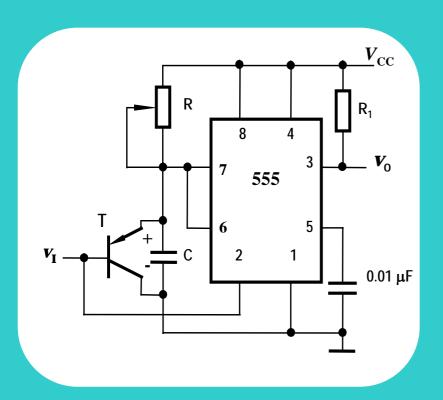
2. 触发翻转, 电路进入暂稳态, 输出=1

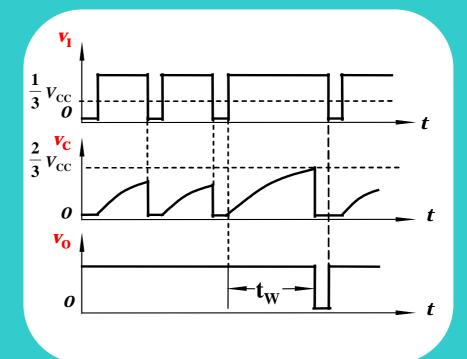
3. 自动返回

输入		输出		
V_{l1}	V_{l2}	V_{0}	T	
×	×	0	导通	
$<\frac{2}{3}V_{\rm cc}$	$<\frac{1}{3}V_{\rm cc}$	1	截止	
$> \frac{2}{3}V_{\rm cc}$	$> \frac{1}{3}V_{\rm cc}$	0	导通	
$<\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm cc}$	不变	不变	



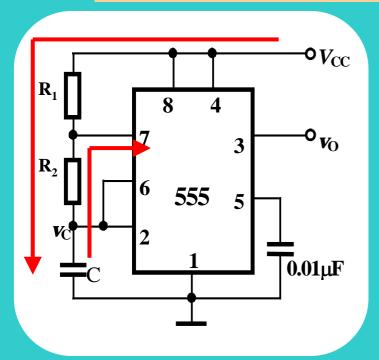

 $t_{\rm w}$ =RC1n3 1.1RC

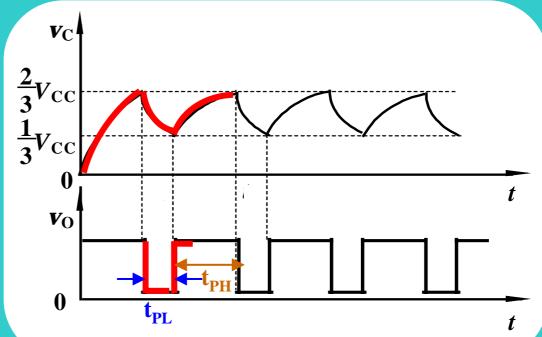

脉冲宽度调制器


如果在控制电压端(第5脚)加一个变化电压, 例如三角波,则单稳就可构成脉冲宽度调制 器,实现电压—频率转换。

* 1. 单稳态触发器——可重复触发单稳

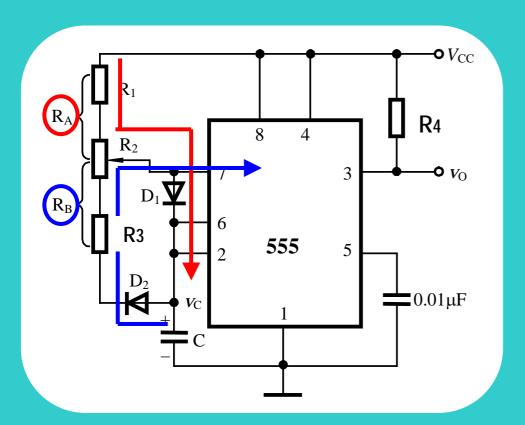
2. 多谐振荡器


 $t_{\rm PL} = R_2 C \ln 2 \quad 0.7 R_2 C$


由于的振

该电路占空比是固定不变的,始终大于50%。

它和


$$q = \frac{R_1 + R_2}{R_1 + 2R_2}$$

2. 多谐振荡器——占空比可调

$$f = \frac{1}{t_{\rm PL} + t_{\rm PH}} \approx \frac{1.43}{(R_1 + 2R_2)C}$$

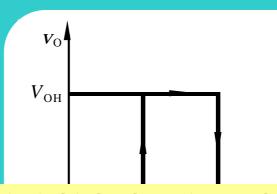
$$t_{\rm pH} = R_{\rm A}C1n2$$
 0.7 $R_{\rm A}C$

$$t_{\rm PL} = R_{\rm B}C1$$
n2 0.7 $R_{\rm B}C$

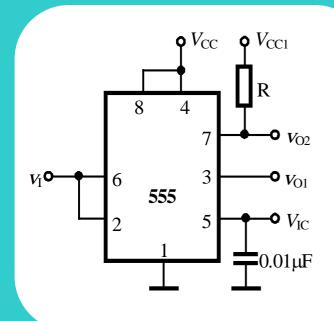
$$f = \frac{1}{t_{\rm PL} + t_{\rm PH}} \approx \frac{1.43}{(R_A + R_B)C}$$

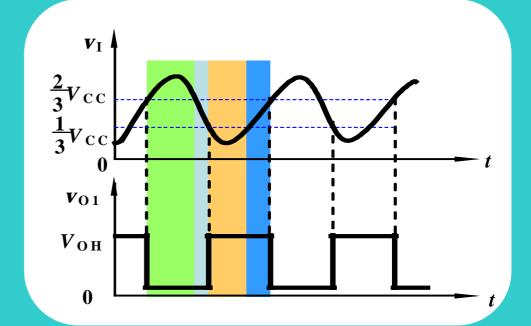
$$Q(\%) = \frac{R_{\rm A}}{R_{\rm A} + R_{\rm B}} \times 100\%$$

例 用NE555设计一个多谐振荡器,要求振荡周期为1秒,输出脉冲幅度大于3V,占空比=2/3。


解:
$$: q = \frac{R_1 + R_2}{R_1 + 2R_2} = \frac{2}{3}$$
即, $R_1 = R_2$
又 $T = 0.7(R_1 + 2R_2) C = 1(秒)$
2.1 $R_1 C = 1$, $R_1 = \frac{1}{2.1C}$

取 $C=10 \mu$,则 $R_1=R_2=47.6k$


+Vcc 47K


取+Vcc=5v,则输出电压幅度在3.6v以上,满足要求

3. 施密特触发器

若 Mc外接一个控制电压,改变控制电压的大小,就 改变了回差电压。

作业

P383 9.3.2

9.4.5

9.4.6