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Abstract. Recently, a number of investigations have been
made that point to the robust effectiveness of the Ensem-
ble Kalman Filter (EnKF) in convective-scale data assimi-
lation. These studies have focused on the assimilation of
ground-based Doppler radar observations (i.e. radial veloc-
ity and reflectivity). The present study differs from these in-
vestigations in two important ways. First, in anticipation of
future satellite technology, the impact of assimilating space-
borne Doppler-retrieved vertical velocity is examined; sec-
ond, the potential for the EnKF to provide an alternative to
instrument-based microphysical retrievals is investigated.

It is shown that the RMS errors of the analyzed fields pro-
duced by assimilation of vertical velocity alone are in gen-
eral better than those obtained in previous studies: in most
cases assimilation of vertical velocity alone leads to analyses
with small errors (e.g.<1 ms−1 for velocity components) af-
ter only 3 or 4 assimilation cycles. The microphysical fields
are notable exceptions, exhibiting lower errors when obser-
vations of reflectivity are assimilated together with observa-
tions of vertical velocity, likely a result of the closer relation-
ship between reflectivity and the microphysical fields them-
selves. It is also shown that the spatial distribution of the
error estimates improves (i.e. approaches the true errors) as
more assimilation cycles are carried out, which could be a
significant advantage of EnKF model-based retrievals.

1 Introduction

The Kalman filter (Kalman, 1960) has a rich history of suc-
cess in a wide range of applications, but not until a compu-
tationally feasible Monte Carlo implementation was devel-
oped (Evensen, 1994) did its application to geophysical data
assimilation become attractive. The Ensemble Kalman Filter
(EnKF), so called because it relies on an ensemble of model
forecasts to provide the requisite error statistics, has been ap-
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plied to atmospheric data assimilation at scales ranging from
the global (Houtekamer and Mitchell, 1998, hereafter HM)
to the convective (Snyder and Zhang, 2003, hereafter SZ).

Future generations of satellites are anticipated to include
Doppler capability1, thus providing the possibility of hereto-
fore unavailable observations of vertical velocity. Convec-
tive systems are by definition regions of enhanced vertical
motion, and so an EnKF Observing System Simulation Ex-
periment (OSSE) conducted on an idealized supercell thun-
derstorm, as in SZ, will provide an excellent opportunity for
evaluating the potential impact of these data.

Dowell et al. (2004) broached the possibility of employing
the EnKF in convective-scale wind and temperature retrieval,
and here we extend their results to examine the potential of
the EnKF in microphysical retrieval. In addition to forming
a posterior estimate that comprises more information than
the instrument-based retrieval alone, the EnKF would pro-
vide the ability to retrieve model fields which are not directly
observable (such as rainfall), as well as provide superior spa-
tiotemporal resolution and a straightforward means of quan-
tifying retrieval error.

Section 1 sets out a brief review of the Ensemble Kalman
Filter. Section 2 provides an overview of the experiment de-
sign and methodology. Section 3 presents the results of the
experiments, and conclusions are presented in Sect. 4.

2 The Ensemble Kalman Filter

As mentioned above, the EnKF is a Monte Carlo imple-
mentation of the optimal linear filter developed by Kalman
in 1960. Its implementation is illustrated by the follow-
ing: lettingxf denote a column vector containing the model

1Im, E. and Durden, S. L.: Spaceborne Atmospheric Radar
Technology, Proceedings of the 2005 Earth-Sun System Technol-
ogy Conference,http://www.esto.nasa.gov/conferences/estc2005/
author.html, 2005
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forecast, the analysisxa obtained by assimilating a column
vector,y, of observations is

xa
= xf

+ K(y − H(xf )). (1)

H is a measurement operator, possibly nonlinear, which re-
lates the model variables to the observationsy, and the ma-
trix K is known as the Kalman gain.K provides the means
for converting the discrepancy between model and observa-
tion at a particular point into a smooth increment applied to
rest of the model domain. It is defined as

K = PHT (HPHT
+ R)−1, (2)

whereP is the error covariance matrix of the model fore-
castxf and R is the observation error covariance matrix.
The matrixP has as many elements as the model state size
squared (i.e. 1012 or 1014 elements, given a typical NWP
model) and is thus impractical to compute directly. In ad-
dition, H will not in general be transposable if it is nonlinear.
Fortunately these difficulties may be overcome if the covari-
ances are computed from an ensemble of model forecasts as
demonstrated by HM:
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where the indexi varies over them ensemble members and
the H indicates that the measurement operator may indeed
be a nonlinear model operator.

Implementation of the EnKF thus requires that an initial
ensemble of model states be defined, usually by perturbing
a best-guess estimate of the initial state. Then, each ensem-
ble member is integrated forward until observations become
available, at which point Eqs. (3) and (4) are used to calculate
the productsPHT andHPHT . The Kalman gainK is then
calculated from Eq. (2), and the analysis for each ensemble
member may then be computed from Eq. (1). The result is an
ensemble ofm analyses which are then integrated forward to
the next observation time. SinceK is computed from an en-
semble of model states (rather than propagated according to
a linear model, as in the original Kalman filter), it is allowed
to evolve in accord with the nonlinear dynamics of the NWP
model. This “flow-dependence” is a very attractive feature of
the EnKF, and will be addressed further in Sect. 3.

It is important to note that the EnKF (as well as the Kalman
filter before it) is an algorithm for propagating the state prob-
ability density function (PDF) forward in time, assuming that
the PDF is Gaussian and thus requiring only two moments –
the mean and covariance – to completely specify it. In this
framework, one can think of them state vectors as random
vectors drawn from the PDF, and the mean of these vectors
as the best linear estimate (in the minimum variance sense)
of the true PDF mean. The covariance matrixP is a measure
of the spread of the ensemble members and thus a gauge for

Fig. 1. Environmental sounding used to initialize the simulations.
Temperature (◦C) is denoted by the solid line and dewpoint (◦C) by
the dashed line. Wind vector magnitude is indicated by half barbs
(2.5 m s−1), full barbs (5 m s−1) and flags (25 m s−1) (after Snyder
and Zhang, 2003).

the quality of the estimate. The potential usefulness of the
information contained inP will be discussed again in sec-
tion 3. The extent to whichP reflects the true error in the
estimate depends in large part on the filter’s optimality, and
this in turn depends on a number of factors, among the most
important of which is the well-recognized tendency of finite-
sized ensembles to underestimate the forecast error covari-
ance (Whittaker and Hamill, 2001, hereafter WH).

3 Experiments

The experimental setup is largely the same as that employed
in SZ and begins with the environmental sounding shown in
Fig. 1. The University of Wisconsin Nonhydrostatic Model-
ing System (UW-NMS) (Tripoli, 1992) is initialized with this
sounding on a domain employing 35 grid points in each spa-
tial dimension. Grid spacing is 2 km in the horizontal, 500 m
in the vertical and a time step of 10 s is used in integrating
the model forward. Convection is initiated with a warm bub-
ble at the surface center of the domain (nx=18, ny=18, nz=1)
and 7 ms−1 is subtracted from the zonal wind component,u,
in order to keep the storm within the computational domain.

In accordance with the above, a 100-minute “Truth” simu-
lation (TR) is used to produce simulated observations of both
vertical velocity, w, and equivalent reflectivity factor,Ze

(Smith, 1975). Since the minimum detectable signal (MDS)
of the spaceborne Doppler instrument is anticipated to be
∼5 dBZ, observations ofw andZe are saved only at those
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Table 1. Description of Experiments.

Experiment Field Assimilated Observation Density Observation Frequency

TR (TRUTH) n/a n/a n/a
W2 w 2 km (5 min)−1

Z2 Z 2 km (5 min)−1

WZ2 w, Z 2 km (5 min)−1
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Fig. 2. Vertical velocity,w, at z=6 km (shaded) and surface streamlines at(a) t=30 min,(b) t=45 min,(c) t=60 min, and(d) t=75 min for the
“Truth” simulation.

grid points whereZe is greater than or equal to this threshold
value.

Three assimilation experiments are conducted in which
the observations as obtained above are assimilated using the
EnKF. In the first experiment, denoted W2, observations ofw

are assimilated every five minutes beginning at t=25 min into
the simulation (the point at which the number of observations
exceeds several dozen) and is continued until t=100 min.
Similarly, experiment Z2 involves the assimilation ofZe, and
experiment WZ2 involves the simulation of bothw andZe.
The experiments are summarized in Table 1.

Each of the assimilation experiments is begun by adding
40 separate realizations of uncorrelated, zero-mean Gaussian
random noise to each gridpoint of the environmental sound-
ing after it has been interpolated into model space and be-
fore the warm bubble is activated, thereby producing a 40-
member ensemble. The standard deviation of the noise is
1 ms−1 for the wind components and 1 K for the ice-liquid
potential temperature,θil . The observation error covariance

matrix, R, is assumed to be diagonal (i.e. observation errors
are uncorrelated) and standard errors of 1 ms−1 are assumed
for the vertical velocity component,w, and a standard error
of 5 dBZ is assumed for reflectivity.

Several additional details concerning the precise formula-
tion of the EnKF algorithm need to be mentioned. First, a
compact covariance localization scheme with local support
(Gaspari and Cohn, 1999) is used to reduce the influence of
distant, noisy covariance estimates owing to the finite-sized
ensemble; in this case, only those elements of the covariance
field lying within 6 km of the observation point are allowed
to influence the analysis. This choice of localization radius
is supported by consideration of the correlation and cross-
correlation structure of the model fields as calculated from
the ensemble (not shown). In a further effort to improve the
optimality of the filter, both a square-root analysis scheme
and a covariance inflation scheme as described in WH are
employed. An inflation factor of 7% seems to produce the
best results in conjunction with the chosen localization radius
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Fig. 3. RMS errors averaged over the domain whereZe exceeds 5 dbz for(a) u, (b) v, (c) w, (d) θil , (e)qr , and(f) qs . Errors foru, v andw

are in units of m s−1. Errors forθil are in K. Errors forqr andqs are in g kg−1. Red line indicates experiment W2, green line indicates Z2,
and blue line indicates WZ2.

of 6 km. Finally, sinceR is assumed diagonal, observations
are assimilated one at a time, allowing the analysis field re-
sulting from the assimilation of one observation to become
the forecast field for the next, and so on until all observations
for a particular time period are assimilated (Anderson and
Moore, 1979).

4 Results

The evolution of the “Truth” simulation can be seen in Fig. 2,
which depicts vertical velocity (shaded) atz=6 km as well as
streamlines of the horizontal wind at the lowest model level
over the innermost 20 km of the model domain. At t=30 min
(Fig. 2a) the storm has begun to split into right and left-
moving cells, as two vertical velocity maxima are evident.
By t=45 min (Fig. 2b) the right-moving cell has become dom-
inant, as one would expect from the veering wind profile of
the environmental sounding. The right-moving cell contin-
ues to intensify at t=60 min (Fig. 2c) and t=75 min (Fig. 2d),
and an increasingly diffluent pattern is noted in the surface
streamlines, indicative of the establishment of a well-defined
rear-flanking downdraft.

In order to gauge the improvement of the analysis over
time, the RMS errors of the ensemble mean of six model
fields –u, v, w, θil , qr , andqs – are calculated. The errors
are averaged over each gridpoint in the model domain where
reflectivity equals or exceeds 5 dBZ and thus give a good in-

dicator of filter performance. The errors at gridoints where
Ze<5 dBZ are very small, and, since they constitute a major-
ity of the computational domain, their inclusion would serve
to mask the robust reduction of error in the area of interest.
Figures 3a, b, and c show the evolution of the RMS errors
associated with theu, v, andw compnents of the wind, re-
spectively, with experiment W2 depicted by the red line, ex-
periment Z2 by the green line, and experiment WZ2 by the
blue line.

Several trends are apparent. First, the largest impact oc-
curs during the first few assimilation cycles. Second, the as-
similation of reflectivity generally produces inferior results
compared to the assimlation of vertical velocity, especially
during the first 30 or 40 min of the assimilation. Tong and
Xue (2005) noted similar behavior and attributed it to the
evolution of the cross covariances associated with reflectiv-
ity. Since precipitation begins forming in the simulation only
at t=20 min, and frozen precipitation only at t=30 min, it is
reasoned that it takes some time for cross covariances be-
tween reflectivity and the other model fields to develop and
become representative of the actual dynamics. Also of note
is the magnitude of the errors. At t=40 min, the errors for
u and v have been reduced to∼1 ms−1 and the errors for
w to ∼ 0.5 ms−1. RMS errors this low are not achieved at
any point during the 100 min simulation carried out by SZ.
This improvement is attributed to the intrinsic value of ver-
tical velocity as an observed field relative to observations
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Fig. 4. Comparison of true and predicted errors in g kg−1 for qr at the lowest model level. True errors at t=30 min and t=75 min are shown
in (a) and(c) respectively, and predicted errors for t=30 min and t=75 min are shown in(b) and(d) respectively. Note the change in contour
level between the two times.

of the horizontal wind, especially in cloud-resolving simu-
lations such as the ones here. Not only do vertical velocity
observations indicate the location of important features such
as up- and downdrafts, they also provide immediate insight
into the divergent part of the horizontal wind. Conversely,
moving from observations of horizontal wind components to
knowledge of the vertical motion field is much trickier (e.g.
O’Brien, 1970).

The RMS errors for the ice-liquid potential temperature,
θil , are shown in Fig. 3d, and the errors associated with the
rainwater mixing ratio,qr , and snow mixing ratio,qs , are
shown in Figs. 3e and f, respectively. The filter is less ef-
ficient in reducing the errors for these fields, with rainwater
and especially snow revealing particularly refractory behav-
ior. With regard toθil , the reason for the lag in error reduc-
tion vis-a-vis the velocity components is a somewhat more
indirect dynamical coupling to the observations. For exam-
ple, assimilation ofw produces a rapid response in the ana-
lyzedw field, and a correspondingly rapid response (though
smaller in magnitude) to theu andv fields since the horizon-
tal and veritcal motion fields are related via continuity. The
coupling ofw to theθil field is more complex and involves
diabatic processes, thus requiring a bit more time for the im-
pact of the observations to translate to the analysis.

The microphysical fields reveal an interesting reversal of
the relative impact ofw and Ze, namely thatZe is as ef-
fective (rain) or superior (snow) tow in reducing the RMS
errors. Here again, the reasoning is that reflectivity is more

directly linked to the microphysical fields than is vertical ve-
locity. Therefore, even though the cross-covariances associ-
ated with reflectivity are slow to develop with regard to the
dynamical and thermodynamical fields, they develop some-
what more quickly with regard to the microphysical fields. It
is interesting to note that over time,w becomes as effective
asZe in reducing the microphysical errors, suggesting that
once developed, the cross covariances associated with verti-
cal velocity are more robust.

Finally, the potential role of the EnKF in performing
model-based retrievals is explored. Given that bulk reduc-
tion of RMS error has been demonstrated here as well as
in numerous other studies, the ability of the EnKF to pro-
duce spatial estimates of retrieval error provides a necessary
complement. Shown in Fig. 4 are actual as well as predicted
RMS errors for rainwater mixing ratio at the lowest model
level. Figures 4a and b refer to true and predicted errors,
respectively, at t=30 min, and Figs. 4c and d to true and pre-
dicted errors at t=75 min. At t=30 min, the predicted error
field bears little resemblance to the actual error field, other
than the identification of the locus of maximum error near
x=12 km and y=17 km. Considerable improvement is noted
by t=75 min. Indeed, the bimodel spatial distribution of the
true error is captured nicely by the EnKF, although the mag-
nitude of the error is overestimated by several hundredths of
1 g kg−1, likely as a result of the simplistic covariance infla-
tion scheme employed. Further improvement could likely be
gained by using a more sophisticated (i.e. adpative) inflation
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scheme and by increasing the size of the ensemble, but over-
all these results suggest that given a properly tuned filter, a
reasonably accurate retrieval of the rain field can be achived
after 50 min of assimilation. Similar results hold for the other
dynamical, thermodynamical and microphysical fields (not
shown).

5 Conclusions

It is shown that assimilation of vertical velocity with an
EnKF produces RMS errors which are in general lower than
those produced when only ground-based radial velocity is as-
similated as in SZ. This result is anticipated given that con-
vective systems, such as the supercell thunderstorm under
consideration here, are characterized by their enhanced verti-
cal motion fields. Accurate placement of up- and downdraft
cores is crucial, as is properly resolving the divergent part
of the horizontal wind. The EnKF, with its flow-dependent
gain matrix, provides an effective means of accomplishing
this latter task, as information contained in observations of
w is spread tou, v and indeed to all other model fields in a
dynamically consistent manner.

Given that future generations of satellites will include
Doppler capability, the potential for producing better
convective-scale forecasts certainly exists. However, several
caveats must be stated. First, the observation density (2 km)
and period (5 min) is greater than would initially be available
from spaceborne Doppler radar. Second, more realistic re-
sults are to be anticipated from direct assimilation of vertical
hydrometeor velocity as measured by radar (as opposed to
the vertical component of the wind, as is done here). Fur-
ther experiments which address these issues, as well as apply
the methodology developed here to other convectively active
systems such as tropical cyclones, are in progress.

Also encouraging is the potential for the EnKF frame-
work to form a viable, perhaps eventually superior, alter-
native to traditional instrument-based retrieval. The EnKF
allows retrieval of fields which are not directly observable
and current generation NWP models provide spatiotempo-
ral resolution which is greater than that of most instruments,
meaning that retrievals would be available at virtually any
place and time required. In addition, the EnKF provides a
means of directly computing the error structure associated
with the estimate, namely through the evaluation of the sam-
ple covariance of the ensemble. If the retrievals produced
through EnKF assimilation are to become an alternative to
instrument-based retrieval, however, more work will be nec-
essary to understand the impact of various sources of filter
suboptimality. Improved methods of ensemble initialization
(Evensen, 2004) as well as rigorous studies of error dynamics
are essential.
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