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1. Introduction

The present note is motivated by our recent estimates of the remainder in the Taylor
formula forn-times differentiable functions (see [5, 10]). Different types of repre-
sentations of the Taylor remainder are known in the literature (see [3, p. 230] or [8,
p. 489]) where "little o" Landau notation is used. This abbreviation always appears
at the end, since hardly any further quantitative results can be based on a little-o-
statement. To illustrate this remark we recall Theorem 1.6.6 from Davis’ book [1],
where the remainder term is attributed to Young:

Theorem 1.1.Letf(x) ben-times differentiable atx = x0. Then

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ 1

(n− 1)!
f (n−1)(x0)(x− x0)

n−1

+
(x− x0)

n

n!
·
[
f (n)(x0) + ε(x)

]
,

wherelimx→x0 ε(x) = 0.

For a functionf ∈ Cn[a, b], the space ofn-times continuously differentiable
functions, the remainder in Taylor’s formula is given by(x0, x ∈ [a, b], n ∈ N =
{1, 2, . . . , })

(1.1) Rn(f ; x0, x) := f(x)− Pn(f, x0),

where

(1.2) Pn(f, x0) =
n∑

j=0

(x− x0)
j

j!
· f (j)(x0)

is the Taylor polynomial - the special case of the Hermite interpolation polynomial.
In [6] the Peano remainder is estimated in a different form. For a continuous function
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f defined on the compact interval[a, b] , i.e. f ∈ C[a, b], the first order modulus of
continuity is given forε ≥ 0 by

ω(f, ε) := {sup |f(x)− f(y)| : x, y ∈ [a, b], |x− y| ≤ ε}.

Further we denote bỹω(f, ·) the least concave majorant ofω(f, ·) as

ω̃(f, ε) = sup
0≤x≤ε≤y≤1, x 6=y

(ε− x)ω(f, y) + (y − ε)ω(f, x)

y − x
,

for 0 ≤ ε ≤ 1. It is known that

(1.3) ω(f, ε) ≤ ω̃(f, ε) ≤ 2ω(f, ε).

The first quantitative estimate forRn(f ; x0, x) using ω̃(f (n), ·) was proved in [6,
Theorem 3.2] which we cite as

Theorem 1.2. For n ∈ N0, let f ∈ Cn[a, b], and x, x0 ∈ [a, b]. Then for the
remainder in Taylor formula we have

(1.4) |Rn(f ; x0, x)| ≤ |x− x0|n

n!
· ω̃
(

f (n);
|x− x0|
n + 1

)
.

Another appropriate tool to estimateRn(f ; x0, x) is the so-called local moduli of
continuity, defined as

ω(f, x0; ε) = {sup |f(x0 + h)− f(x0)| : |h| ≤ ε}.

The properties of local and averaged moduli of continuity and their numerous
applications in a broad class of problems in numerical analysis can be found in the
monograph [9] and in the paper [7]. In [10] to obtain the quantitative variant of
Voronovskaja’s theorem for the Bernstein operator the following estimate was es-
tablished:
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Theorem 1.3. For n ∈ N0, let f ∈ Cn[a, b], and x, x0 ∈ [a, b]. Then for the
remainder in Taylor formula we have

(1.5) |Rn(f ; x0, x)| ≤ |x− x0|n

n!
· ω
(
f (n), x0; |x− x0|

)
.

It is clear that
ω(f, x0; ε) ≤ ω(f, ε).

In Section2 we study the approximation properties of the Taylor polynomial
Pn(f, x0). In Section3 we give new estimates of the error in the quadrature formula
based on the Taylor polynomial. The formula for numerical differentiation will be
studied in Section4.
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2. Degree of Approximation by Taylor Polynomial

In Theorem 6.1 of [7], the following was proved.

Theorem 2.1.Letf have a boundedn-th derivative in[0, 1] andPn(f) be a Hermite
interpolation polynomial forf w.r.t. the netX = {x0, x1, . . . , xm}. Then

(2.1) ‖f − Pn(f)‖C[0,1] ≤ C · 1

(n + 1)n
· ω
(

f (n),
1

n + 1

)
,

whereC = O(nn), n →∞.

If we take thesup norm in both sides of (1.4) with

q = max{|x0|, |1− x0|}

we arrive at

Theorem 2.2.For f ∈ Cn[0, 1], x0 ∈ [0, 1] we have

(2.2) ‖f − Pn(f, x0)‖C[0,1] ≤
q

n!
· ω̃
(

f (n),
q

n + 1

)
.

If we compare the estimates in Theorems2.1 and 2.2 it is clear that (2.2) is
much better than (2.1) according to the term in front of the modulus of continu-
ity of f (n)(x). One of the reasons is that in Theorem2.2 we suppose thatf (n) is
continuous and in Theorem2.1only the boundedness off (n) is supposed. However,
Theorem2.2cannot be obtained as a corollary from Theorem2.1.

In pointwise form the estimate (1.5) could be better than (1.4). For example let
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us consider the following function

f(x) =



(
1
4
− x
)3

, 0 ≤ x ≤ 1
4
,

0, 1
4
≤ x ≤ 3

4
,(

x− 3
4

)3
, 3

4
≤ x ≤ 1.

Let n = 2 andx0 = 0.5. It is clear thatf ∈ C2[0, 1] andf ′′(x) = 6
(

1
4
− x
)
, for

x ∈
[
0, 1

4

]
andf ′′(x) = 6

(
x− 3

4

)
for x ∈

[
3
4
, 1
]
. We calculateP2

(
f, 1

2

)
= 0 and

R2

(
f, 1

2
, x
)

= f(x) for x ∈ [0, 1]. If x ∈
[

1
4
, 3

4

]
we get∣∣∣∣x− 1

2

∣∣∣∣ ∈ [0, 1

4

]
and

R2 = 0 = ω

(
f ′′,

1

2
;

∣∣∣∣x− 1

2

∣∣∣∣) .

Hence the estimate (1.5) with local moduli is exact. On the other side

ω̃

(
f ′′,

∣∣x− 1
2

∣∣
3

)
≈ ω

(
f ′′,

∣∣x− 1
2

∣∣
3

)
= 2

∣∣∣∣x− 1

2

∣∣∣∣ ≥ 0.

The advantage of (1.4) compared with (1.5) is the term 1
n+1

in the argument of
the modulus. Therefore we may conclude that for the "small" values ofn (1.5) is
preferable and for big values ofn (1.4) is more appropriate.
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3. Quadrature Formula

Let f have a boundedn-th derivative and

(3.1) L(f) =
n∑

j=0

Aj · f (j)(x0)

be a quadrature formula exact inHn-the set of all algebraic polynomials of degree
n. We denote the error ofL by

(3.2) R(f) =

∫ 1

0

f(x)dx− L(f).

There are numerous quadrature formulas which include the derivatives of the
integrated functionf . Based on the Hermite interpolation polynomial and as partial
case of the Taylor polynomial we cite the following result:

Theorem 3.1 ([7, Theorem 9.1, p. 296]).

(3.3) |R(f)| ≤ C · 1

(n + 1)n
· ω
(

f (n),
1

n + 1

)
,

whereC = O(nn), n →∞ andf (n) is bounded on[0, 1].

Recently I. Gavrea has proved estimates forPn-simple functionals in terms of the
least concave majorant of modulus of continuityω̃(f (n), ·) (see [4, 5]). The linear
functionalA is aPn-simple functional if the following requirements hold:

(i) A(en+1) 6= 0, whereei : [0, 1] → R, ei(x) = xi, i ∈ N.
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(ii) For any functionf ∈ C[0, 1] there exist distinct pointsti = ti(f) ∈ [0, 1], i =
1, 2, . . . , n + 2 such that

A(f) = A(en+1)[t1, t2, . . . , tn+2; f ],

where[t1, t2, . . . , tn+2; f ] is the divided difference off . If A is a Pn-simple
functional then we notice that

A(ei) = 0, i = 0, 1, . . . , n.

The main result in [5] is the following

Theorem 3.2. Let A be aPn-simple functional,A : C[0, 1] → R. If f ∈ C(n)[0, 1]
then

(3.4) |A(f)| ≤ ‖B‖
2

· ω̃
(

f (n),
2|B(e1)|
‖B‖

)
,

where

(3.5) ‖B‖ =
1

(n− 1)!
·
∫ 1

0

|A((· − y)n−1
+ )|dy,

and

(3.6) B(e1) =
1

(n− 1)!
·
∫ 1

0

A((· − y)n−1
+ )ydy.

We recall that(· − y)n−1
+ is (x− y)n−1 for y ≤ x ≤ 1 and0 for 0 ≤ x ≤ y.

Next we construct a quadrature formula of type (3.1) based on the Taylor poly-
nomial forf(x) and represent the error of the quadrature formulaR(f) from (3.2)
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asPn-simple functionalA(f). Let

(3.7) L =
n∑

j=0

f (j)(0)

(j + 1)!
,

whereL is obtained by integratingPn(f, x0) for x0 = 0. Consequently we denote
the error of this quadrature formula by

(3.8) A(f) := R(f) =

∫ 1

0

f(x)dx− L.

The functionalA(f) from (3.8) is Pn-simple and is0 for all f -algebraic polynomials
of degreen. To apply Theorem3.1we estimate‖B‖ andB(e1).

Lemma 3.3. Under the conditions of Theorem3.1, A(f) from (3.8) andL from (3.7)
we have

(3.9) ‖B‖ =
1

(n + 1)!
.

Proof. Forf(x) = (x−y)n−1
+ we havef (k)(0) = 0 for 0 ≤ k ≤ n, y ∈ [0, 1]. Hence

A(f) =

∫ 1

0

f(x)dx =

∫ 1

y

(x− y)n−1dx =
(1− y)n

n
.

Lastly

‖B‖ =
1

(n− 1)!
·
∫ 1

0

(1− y)n

n
dy =

1

(n + 1)!
.
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Lemma 3.4. Under conditions of Theorem3.1we have

(3.10) |B(e1)| =
1

(n + 2)!
.

Proof. We calculate

|B(e1)| =
1

(n− 1)!

∫ 1

0

(1− y)n

n
· ydy

= − 1

(n + 1)!

∫ 1

0

yd((1− y)n+1).

After integrating by parts we get

|B(e1)| =
1

(n + 2)!
.

If we apply Lemmas3.3 and3.4 in Theorem3.2 we complete the proof of the
following

Theorem 3.5.LetA be the functional from (3.8) andf ∈ C(n)[0, 1]. Then

|A(f)| ≤ 1

2(n + 1)!
· ω̃
(

f (n),
2

n + 2

)
.

Again, if we compare Theorem3.5 with Theorem3.1, we see that the condition
of continuity off (n) leads to a quadrature formula with an essentially smaller error.
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4. Error of Numerical Differentiation

In this section we estimate the error committed when replacing the first derivative
f ′(x) with the derivative of the Taylor polynomialPn(f, x0) at the pointx0 = 1.
Differentiating (1.2) we have

(4.1) P ′
n(f, 1) =

n−1∑
j=0

(x− 1)j

j!
· f (j+1)(1).

Consequently we denote the error of numerical differentiation by

(4.2) A(f) := f ′(x)− P ′
n(f, 1).

It is clear thatA(f) = 0 for f ∈ Hn. To apply Theorem3.2 for A(f) from (4.2)
we need to calculate the values of‖B‖ andB(e1).

Lemma 4.1. Letf(x) = (x− y)n−1
+ , for x, y ∈ [0, 1]. Then

(4.3) ‖B‖ =
(1− x)n−1

(n− 1)!
.

Proof. Obviouslyf ′(x) = (n− 1)(x− y)n−2
+ , n > 2. Let us calculateP ′

n(f, 1) from
(4.1). We get

P ′
n(f, 1) =

n−1∑
j=0

(x− 1)j

j!
· f (j+1)(1)

= (n− 1) [(x− 1) + (1− y)]n−2

= (n− 1)(x− y)n−2.
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Following (4.2) we have

A(f) = (n− 1)
[
(x− y)n−2

+ − (x− y)n−2
]
.

Therefore

‖B‖ =
1

(n− 1)!

∫ 1

0

|A((· − y)n−1
+ )|dy

=
1

(n− 2)!

∫ 1

x

(y − x)n−2dy

=
1

(n− 1)!
· (1− x)n−1.

Lemma 4.2. Letf(x) = (x− y)n−1
+ . Then

(4.4) B(e1) =
(x− 1)n−1

(n− 1)!
·
(

1 +
x− 1

n

)
.

Proof. We evaluateB(e1) from (3.6) as follows

B(e1) =
1

(n− 2)!

∫ 1

x

(
−(x− y)n−2

)
ydy =

1

(n− 1)!

∫ 1

x

yd(x− y)n−1.

Integration by parts of the last integral yields

(x− 1)n−1

(n− 1)!
+

(x− 1)n

n!
=

(x− 1)n−1

(n− 1)!
·
(

1 +
x− 1

n

)
.

Further we apply (4.3) and (4.4) in Theorem3.2.
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Theorem 4.3.For f ∈ C(n)[0, 1] and the differentiation formulaA(f) from (4.2) we
have

(4.5) |A(f)| ≤ (1− x)(n−1)

2(n− 1)!
· ω̃
(

f (n), 2

(
1 +

x− 1

n

))
.

It is easy to observe that forx = 1, A(f) = 0 and the right side of (4.5) is also
0. The estimate (4.5) is pointwise, i.e. the formula of differentiation (4.2) gives the
possibility of approximatingf ′(x) at eachx ∈ [0, 1] by the derivative of its Taylor
polynomial atx0 = 1. It would be interesting to establish similar formulas for
numerical differentiation using the Taylor expansion formula atx0 < 1, including
higher order derivatives off .
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