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Abstract. In the course of the GOCE satellite mission, the
high-low Satellite toSatellite Tracking (SST) observations
have to be processed for the determination of the long wave-
length part of the Earth’s gravity field. This paper deals with
the formulation of the high-low SST observation equations,
as well as the methods for gravity field recovery from or-
bit information. For this purpose, two approaches, i.e. the
numerical integration of orbit perturbations, and the evalua-
tion of the energy equation based on the Jacobi integral, are
presented and discussed. Special concern is given to the nu-
merical properties of the corresponding normal equations. In
a closed-loop simulation, which is based on a realistic orbit
GOCE configuration, these methods are compared and as-
sessed. However, here we process a simplified case assuming
that non-conservative forces can be perfectly modelled. As-
suming presently achievable accuracies of thePreciseOrbit
Determination (POD), it turns out that the numerical inte-
gration approach is still superior, but the energy integral ap-
proach may be an interesting alternative processing strategy
in the near future.
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1 Introduction

Based on the assumption that precise GOCE orbits are avail-
able from a POD solution, several strategies for the recovery
of the harmonic coefficients exist:

– Numerical integration of orbit perturbations (classical
concept);

– Evaluation of the energy equations based on the Jacobi
integral;

– Derivation of satellite accelerations.
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In this paper, as the baseline method we follow the clas-
sical approach, i.e. the numerical integration of orbit pertur-
bations. First we will give a short summary of the method
that is used for the gravity field recovery based on SST ob-
servations, implemented as the software moduleARCSST.
The formulation as well as the structure of the linearized ob-
servation equations model will be presented. Additionally,
we will give an overview of the numerical integration model,
together with some performance tests. Since the classical
SST concept is based on linear orbit perturbations with re-
spect to a reference orbit, the partials of the position with
respect to the spherical harmonic coefficients are needed. In
the sequel their derivation, by means of numerical integra-
tion of the variational equations, will be explained. A case
study analyzing the influence of the arc length as well as nu-
merical investigations on the linearization errors will be pre-
sented. Concerning the estimation of the static coefficients,
a numerical simulation will be introduced, where we deter-
mine the spherical harmonic coefficients up to degree and
order 80. For this purpose, an orbit with a 59 days repeat
period which is close to the planned GOCE satellite orbit is
integrated numerically, and the unknown spherical harmonic
coefficients are determined in the noise-free case. Further-
more, another configuration will be presented, where orbital
noise based on a simulated kinematic POD is introduced in
the vector of measurements by properly taking into account
the variance-covariance information of the simulated orbit.
Additionally, some considerations on the orbital energy bal-
ance principle will be given. This second technique of har-
monic coefficients estimation, which is based on the Jacobi
integral approach, will be presented and assessed.

2 Orbit perturbations of one satellite

The concept to evaluate the SST information for gravity
field determination we perform as the baseline strategy is
the potential coefficients determination using the orbit per-
turbations of one satellite (SST in high-low mode). The
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Low Earth Orbiter (LEO) satellite has an altitude of about
250 km, and is tracked by a at least 7 GPS satellites (Arsov
et al., 2002) flying at a high altitude of about 20 200 km. In
the process of the POD the coordinates of the LEO satellite
can be determined with a high accuracy of some centimeters.
If we compare the model (standard) orbit, which is based on
a priori gravity field information, with the GOCE orbit de-
termined by GPS, generally they will not coincide, because
of the imperfection of our model. The goal is to improve the
a priori gravity model (e.g. EGM96) using the information
from the orbit perturbations. It should be mentioned, that
as additional unknowns we have to introduce also the initial
satellite state vector (position and velocity unknowns) rep-
resenting the 6 integration constants. The adjustment has to
be performed iteratively, where the standard orbit is updated
after each adjustment step for the coordinate differences of
the initial epoch, and of course for the unknown geopoten-
tial coefficients. The observational equations based on linear
satellite orbit perturbations are given as:

1ρρ = Wδββ + 8δx (1)

where1ρρ represents the residuals from the standard orbit
for each epoch expressed in the inertial system by the coor-
dinatesX, Y andZ, δx represents the initial state vector to
be determined, andδββ represents the unknown potential co-
efficient differences.W is the parameter sensitivity matrix,
whose elements are given as the derivatives of the orbit posi-
tionsr with respect to the coefficientsββ:

W =
∂r

∂ββ
(2)

The state transition matrix8 (with 18 elements, if we use
only the position discrepancies as measurements) is given as

8 =

{
∂r

∂r0
,

∂r

∂ ṙ0

}
(3)

The components of8 are evaluated using the standard or-
bit positions. In our concept, the SST data are processed
using a multi-arc method, where the vector of unknownsδx

is composed of the initial positions and velocities for each
arc. The major computational effort in evaluating Eq. (1) is
the computation of the parameter sensitivity matrixW. In
our software developments for the numerical integration of
the orbit and variational equations, we closely follow Cun-
ningham (1970), but with some modifications that enable us
to work with normalized spherical harmonic coefficients.

For the orbit and variational equations integration, two
routines were implemented: the Runge-Kutta 5 (in the fur-
ther context abbreviated by RK5) and the Gauss-Jackson 14
(GJ14) predictor-corrector method. Since in our case the
GJ14 needs 13 initial values, we use the RK5 integration to
obtain these 13 values, and subsequently the integration is
continued applying GJ14.

RK5 can achieve the accuracy of a Taylor series, trun-
cated after the linear term, without requiring the calculation

of derivatives beyond the first. Many variations of the Runge-
Kutta method exist. In the course of this study we apply
Butcher’s fifth order method (cf. Boulet, 1991). The GJ14
predictor-corrector method, or second sum method for nu-
merical integration, is a powerful method for the integration
of the second order differential equations. Here, we shall not
give the complete derivations of GJ14. More details about
the derivation itself can be found in Montenbruck (2000). In
order to test the implementation of the GJ14 routine and to
analyze its performance, a small test run was performed. It
is known that the equations of satellite motion, using a point
mass as the only gravitational attraction, can be described an-
alytically by the Keplerian equations. Considering our GJ14
and RK5 routines, the same scenario could be achieved by
assigning zero values to all harmonic coefficients excepting
the termC00. We perform an orbit integration of 1 year
both with Keplerian equations and the GJ14 integrator, and
in Fig. 1a the high accuracy of the GJ14 integrator can be no-
ticed, yielding discrepancies of about 10 cm after the 1 year
integration period.

Another test of the numerical stability can be performed
by the use of the energy conservation law. It is known that
in a closed system the sum of the potential and the kinetic
energy is constant. Applied to our satellite motion, this law
reads (Jekeli, 1999):

V +

∑
k

∫ t

t0

F k ṙk dt −
1

2
|ṙ|

2
− ω(XẎ − YẊ) = const (4)

In Eq. (4),V represents the Earth’s geopotential, the sec-
ond term is the energy dissipation term (contribution of the
non-conservative forces), the third term represents kinetic
energy, whereas the last term is due to the coordinate trans-
formation between the inertial and Earth-fixed system. If the
Earth’s gravity field were rotationally axial-symmetric, this
last term would be 0. In Eq. (4) only the geopotential is com-
puted in the Earth-fixed coordinate system, whereas all other
terms have to be evaluated in the inertial system.

At this point it should be mentioned, that in our compu-
tations, the second term in Eq. (4) is set to 0, i.e. assum-
ing that no non-conservative forces are acting on the satel-
lite. In this test run the geopotential used in Eq. (4) is the
OSU91a model complete up to degree and order 180. Fig-
ure 1b presents the deviations from the constant, which is in
the order of 10−5 m2 s−2, for a one year integration period.
The relative accuracy in the order of 10−13 demonstrates the
high precision of the GJ14 integrator.

3 Harmonic coefficient estimation

3.1 Numerical integration of orbit perturbations

In the following we are going to recover the spherical har-
monic coefficients based on the numerical integration of the
orbit and variational equations. Before proceeding with the
actual computations, we will perform a small test in order
to assess the linearization errors and their influence on the
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Fig. 1. (a) Position accuracy [m] and(b) energy loss [m2s−2] of
GJ14.

normal equations matrix. Additionally, we will perform a
small experiment to see which arc length should be used in
the further computations by highlighting the linearization er-
rors introduced in different scenarios.

The basic linear model for the observational equations as
defined in Eq. (1) for each arc is used. Since we are only
interested in the spherical harmonic coefficientsδββ, the ad-
ditional parameters (6 position and velocity initial conditions
parameters per arc) have to be eliminated properly for each
arc. In general, the normal equation matrix is a full matrix.
It is given for one arc as (Visser et al., 2001):[

Nxx Nxββ

Nββx Nββββ

] (
δx

δββ

)
= R =

(
Rx

Rββ

)
(5)

and the elimination of the initial state vector yields the re-
duced normal equation matrix for this arc:

[Nββββ − NββxN
−1
xx Nxββ ]δββ = Rββ − NββxN

−1
xx Rx (6)

whereN denotes the normal equation matrix,δββ represents
the unknown spherical harmonic coefficients,δx denotes the

(a)

(b)

Fig. 2. Linearization error for different initial conditions unknowns:
(a) velocity errors∼cm; (b) velocity errors∼mm.

initial state vector andR is the right-hand side. The final
normal equation matrix is obtained by summation of the re-
duced normal equations and the reduced right-hand sides of
each arc.

Now, we investigate the influence of the unknown initial
conditions on the linearization errors in the SST arc-wise
computation, using a 10-days orbit with a sampling rate of
5 s, an inclination ofi = 96.6◦, and a nominal height of
about 250 km. The spherical harmonic coefficients were in-
cluded in the orbit up to degree and order 50. At first the
standard orbit was computed applying the OSU91a model,
and in the second run, the EGM96 model was used as the
”true” gravity field. Furthermore, in the initial conditions,
discrepancies in the cm and mm range were introduced. If
we again take a look at our basic observation model as given
in Eq. (1), this means that now we know the right-hand side,
and by inserting these values into the observation model, we
can assess the sensitivity of our observational model with re-
spect to errors in the initial values, and with respect to the
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(a) cond=5.0E+009 (b) cond=1.6E+009

(c) cond=3.7E+008 (d) cond=2.7E+007

Fig. 3. Normal equation matrices for arc lengths(a) 18 h; (b) 12 h; (c) 6 h; (d) 2 h for the degree 50 solution. Corresponding coefficients
sorted by harmonic orderm, Clm andSlm separated (C2,0, C3,0, C4,0, . . . , C50,0, C2,1, C3,1, C4,1, . . ., C50,50, S2,1, S3,1, S4,1, . . .).

spherical harmonic coefficients. We observe, that if we keep
the initial condition unknowns at 0, almost no influence on
the linearization errors resulting from OSU91a and EGM96
model differences can be observed, because they match quite
well. On the other hand, introducing the initial condition un-
knowns may highly influence the linearization errors of the
SST model. Therefore, we expect to obtain a big correlation
between the initial conditions and the harmonic coefficients.

Figure 2 presents the obtained results for different values
of the initial conditions unknowns. In Fig. 2a the initial con-
ditions are inaccurate at the cm level and the initial velocity
errors are in the order of several cm/s, and consequently the
linearization errors after 4 h are about±30 cm, which is con-
siderably large, having in mind the accuracy of the POD of
a few cm. However, after about 2 h, they are within±3 cm,
which may give us a better understanding on choosing the
right arc length in our further computations. Actually, Fig. 2a
represents the realistic errors in the initial conditions, if we
assume that the positions coming from the POD have a rms
error of about 3 cm. If we reduce the initial conditions un-
knowns of the velocities to a couple of mm/s, keeping the po-
sition errors of the initial conditions at the cm-level (Fig. 2b),
we have a slightly improved scenario, but it should be men-
tioned that in practice velocity accuracies within a couple of

mm/s are difficult to obtain. Based on the results in Fig. 2 we
decided to use arc lengths of two hours for our further SST
tests. It is also interesting to see how the linearization errors
affect the normal equations matrix. For this purpose, we per-
formed another test with the orbit configuration mentioned
above, where different arc lengths were used in the spheri-
cal harmonics estimation procedure. The initial conditions
unknowns were kept in the the same order as in Fig. 2a.

Figure 3a demonstrates, that in the case of 18 h arcs a
strong correlation of the initial state vector unknowns with
the harmonic coefficients exists. The ordering scheme of the
normal equations is by harmonic orderm, leading to a dom-
inant block-diagonal structure, but also horizontal and verti-
cal off-diagonal bands can be distinguished. These resonance
bands are a system-intrinsic physical phenomenon, and they
occur close to the orbit resonance orders at 0, 16 and 32,
which represent the integer multiples of the orbital revolu-
tions per day. These resonances decrease as the arc length de-
creases, and in Fig. 3d almost no resonance frequencies can
be observed. Also, we notice the decrease in the condition
number of the normal equations as the arc length decreases.
This again suggests to use 2 h arcs in our future simulations.
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Fig. 4. Degree rms plots for different SST solutions.

3.2 Energy integral approach

As an alternative spherical harmonics estimation procedure,
we may also use Eq. (4), rewritten in the form (cf. e.g. Han
et al., 2002)

V + const=
1

2
|ṙ|

2
−

∑
k

∫ t

t0

F k ṙk dt + ω(XẎ − YẊ) (7)

It is obvious, that by application of the energy conserva-
tion law the harmonic coefficients can be obtained from the
orbit coordinates. We will use also Eq. (7) for spherical har-
monics estimation in the further context, since the model is
linear and immediately applicable to the orbit coordinates
and velocities. Compared with the classical numerical in-
tegration method, one of the major advantages of the energy
integral approach is the absence of resonance phenomena in
the normal equations.

3.3 Simulation and results

In order to assess the two solution techniques with respect
to the CPU time and obtainable accuracy, we performed the
harmonic coefficients estimation applying both the numerical
integration of the variational equations and the energy inte-
gral methods. This simulation is based on a sun-synchronous
59 days repeat orbit with a nominal altitude of 250 km, in-
cluding the gravity field complete up to degree and order 80
and a sampling rate of 5 s.

The results in terms of the degree RMS are presented in
Fig. 4. From these plots, one can deduce, that in the noise-
free scenario the energy balance approach (green curve)
shows a better accuracy than the numerical integration tech-
nique (black curve). A major difference is the run-time,
which is in the present configuration approximately 20 times
longer for the numerical integration approach. Therefore,
the ARCSST routine for the estimation of the harmonic co-
efficients based on the numerical integration approach was

adapted to allow run on a parallel platform (Graz Beowulf
cluster, cf. Plank, 2002).

For a more realistic scenario including measurement noise,
a realistic orbital error description in terms of propagated po-
sition variance/covariance matrices together with the corre-
sponding position noise distributions was provided by TU
Munich, where POD simulation was carried out based on the
kinematic POD approach (cf. Arsov et al., 2002).

As far as the energy balance approach is concerned, we
need both position and velocity noise information. If we
assume that velocities are derived as position differences, a
simple orbital energy propagation reveals that the major er-
ror term is related to the kinetic energy, and thus we can con-
clude that velocity errors play a dominant role in these error
considerations. The energy observation errorσobs can be ap-
proximated by

σobs ≈ |ṙ| σ|ṙ| ≈ |ṙ|

√
2

1t
σpos

√
1 − ρ (8)

whereσṙ is the velocity error, which can be roughly de-
scribed in terms of an error propagation of the orbit posi-
tion errorσpos . If the velocity is computed from orbit po-
sitions, its accuracy mainly depends on the correlationρ of
adjacent positions and on the sampling interval1t . How-
ever, it should be noticed that the interpolation error, which
occurs when the velocities are derived from the positions, is
counteracting.

Concerning the numerical integration method, in our sec-
ond run the noise of 3 cm rms in position provided by
TU Munich was superposed, and the corresponding vari-
ance/covariance information was included in the stochastic
model. The dashed black curve in Fig. 4 shows the degree
rms of the deviations of the numerical integration solution
from the initial OSU91a model.

As far as the energy conservation approach is concerned,
the same position noise data was used as in the numerical
integration approach, and the corresponding velocity noise
was obtained by error propagation. Assuming position errors
in the order of a few cm leads in the optimum case to velocity
errors in the order of 10−3 to 10−4 m/s. From Fig. 4 we can
also deduce that in order to obtain roughly the same accuracy
as the numerical integration, the velocities have to be known
with an accuracy of at least 10−4 m/s (red curve), and even
then we have a lower accuracy as the numerical integration
approach in the spectral region up to degree 35.

3.4 Summary and discussion

In this paper two methods of the determination of the Earth’s
gravity field from the high-low SST observations were in-
troduced and discussed: the numerical integration of the
orbit and the variational equations, and the energy integral
approach. In order to assess these methods, a closed-loop
simulation, based on a realistic GOCE orbit configuration,
was performed. The chosen orbit contains harmonic co-
efficients parameterizing the Earth’s gravity field complete
up to degree and order 80, and they are recovered applying
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both methods. The harmonic coefficients estimation was per-
formed both in the noise-free case and including a realistic
noise, coming from the simulated GOCE POD, with the sim-
plifying assumption that the non-conservative forces can be
perfectly modelled.

Summarizing these simulations, it can be concluded, that
the energy balance approach has several advantages, such as
strictly linear observation equations, or the absence of res-
onance effects, and it requires considerably less CPU time
than the numerical integration method. However, the accu-
racy of the coefficient estimates depends to a great extent
on the noise amplitudes of the observations, and it could
be demonstrated, that the energy balance method is highly
sensitive to velocity errors. Assuming presently achievable
POD accuracies, the numerical integration yields superior re-
sults concerning the accuracy of the estimated coefficients.
The normal equation matrix is numerically regular, which is
partly due to the short arc lengths of 2 h. The noise of 3 cm
rms in the orbit degrades the accuracy of the spherical har-
monics coefficients by about two significant digits compared
to the noise-free scenario.
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