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Abstract. Modelling of wetland CH fluxes using wetland ments of wetland Cldmodelling will result from improve-
soil emission models is used to determine the size of this natment of wetland vegetation data.

ural source of ClJ emission on local to global scale. Most
process models of CHormation and soil-atmosphere GH
transport processes operate on a plot scale. For large scale

emission modelling (regional to global scale) upscaling of1 Introduction

this type of model requires thorough analysis of the sen-

sitivity of these models to parameter uncertainty. We ap-Together with water vapour and carbon dioxide O
plied the GLUE (Generalized Likelihood Uncertainty Anal- methane (Chj) is an important greenhouse gas, because of
ysis) methodology to a well-known GHemission model, the  its strong global warming potential of 230, on a 100-year
Walter-Heimann model, as implemented in the PEATLAND- time scale. The atmospheric mixing ratio of £Has in-

VU model. The model is tested using data from two temper-creased with 15£25%, since pre-industrial times. About
ate wetland sites and one arctic site. The tests include expef0% of the global Clj emission is of antropogenous ori-
iments with different objective functions, which quantify the gin. From the natural sources (wetlands, termites, oceans,
fit of the model results to the data. methane seeps and hydrates), the wetland environments are

The results indicate that the model 1) in most cases is capahe major natural source of atmospheric methafRCC,
ble of estimating CH fluxes better than an estimate based on200]). Moreover, the atmospheric methane concentration ap-
the data avarage, but does not clearly outcompete a regregears to be strongly linked to climate change during the last
sion model based on local data; 2) is capable of reproduc800 000 yearsl(oulergue et a|.2008.
ing larger scale (seasonal) temporal variability in the data, Understanding of feedbacks between climate and wetland
but not the small-scale (daily) temporal variability; 3) is not CH4 emission, in particular in boreal/arctic regions, is a
strongly sensitive to soil parameters, 4) is sensitive to paramproblem for predicting future climate changBgnhman et
eters determining Cltransport and oxidation in vegetation, al., 2007). Wetland CH emission is also influenced by land
and the temperature sensitivity of the microbial population.management (e.g\an Huissteden et al2006 Hendriks et
The GLUE method also allowed testing of several smalleral., 2007). With the need to reduce greenhouse gas emis-
modifications of the original model. sions, the relation between wetland £eimission and wet-

We conclude that upscaling of this plot-based wetlandland management may become an important question in the
CH,4 emission model is feasible, but considerable improve-future. Predictive models may contribute to a better under-
standing of feedbacks between climate and,@&rhission,
or the effects of wetland management on&hission (e.g.
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sensitivity testing and uncertainty analysis is required, in par-by varying a few key model parameters and input data and
ticular when models are scaled up from a local to regional ordetermining the resulting variation in model output, without
global scale. As yet, existing GHemission models have not further analysis of the model uncertainfan Huissteden et
been subjected to rigorous uncertainty analysis going beyondl. (2006 tested the PEATLAND-VU model on sensitivity
simple model-data comparisons. Here, we present an uncete climate and water table input data and a limited number
tainty analysis of a wetland GHemission model, based on of model parametersGranberg et al(2007) consider in the

the GLUE (Generalized Likelihood Uncertainty Estimation) data-model comparison also the standard error of the data,
methodology lamb et al, 1998 Beven 2001and references which can be large compared to the measurements in case
therein). of CH4 emission. Wania (2007 tests the senitivity of her

Methane emission from wetland soils is essentially the netmodel by regressing output on parameter values for a range
result of a balance between gprroduction by methanogenic  of model parametersBerritella and Van Huisstedg2009
bacteria in anaerobic soil zones, and Lhbixidation by tested a large scale GHlux model with varying complex-
methanotrophic bacteria in aerated soil zones and in plantsty. However since they modelled paleo-wetland {ftiixes
Several process models of wetland soil methane emissioa rigorous data-model comparison was impossible.
have been designedMalter, 2000 Segers and Leffelaar Plot-scale models have the advantage that they can be val-
2001 Granberg et al.2001, Segers et al.200L Wania idated against site CHflux measurements under a variety
2007). These papers and references therein give an overviewf conditions (e.g.Walter, 2000 Granberg et al.2001, Pe-
of the processes involved. Glit generated by methanogenic trescu et a].2008 and can make use of detailed on-site mea-
bacteria in anaerobic parts of the soil, when other electron acsurements of key parameters of soil physical and chemical
ceptors for organic matter oxidation are exhausted or unavaileonditions. Larger scale modelling of GHuxes always re-
able (nitrate, sulfate, Fe and Mn oxides). The substrate foquires aggregated and simplified information on vegetation
methanogenesis is mainly derived from labile organic com-and soil and are more difficult to validate. However, to prop-
pounds, produced by the roots of the wetland vegetationerly understand interactions of wetland £Emission with
In wetlands very rapid transfer (1-2 days) of photosynthe-climate or wetland management, large scale modelling of
sis products to Chihas been observelifig and Reeburgh  these emissions and coupling to climate or hydrological mod-
2002. The two major reaction pathways for methanogen-els is highly importantRetrescu et 8120090. For that pur-
esis are C@ reduction and acetate splitting (e.8réas et  pose itis necessary to know at which level of detail processes
al., 200)). transport of CH from soil to atmosphere occurs need to be modelled to represent the interactions between cli-
along three pathways: diffusion in soil pores, bubbles risingmate or management correctly. ¢Huxes are known to be
to the surface (ebullition), and transport through plant rootsspatially highly variable on a small scale (e \gan Huisste-
and stems. In particular during diffusive transport in the soil den et al. 2005 Hendriks et al.20093. Water table position
and plant-mediated transport, @k$ subject to oxidation by is the most important variable, but also difference in vege-
methanotrophic bacteria (e.Whalen et al. 1996 Raghoe- tation and soil properties have been shown to be influential
barsing et al.2005 Van Huissteden et al2008. (Hendriks et al.20093.

Several models have been developed to model methane An approach that can give information on the required
fluxes either at a plot scal&\alter, 200Q Granberg et al. model complexity for large scale modelling, is to test the
2001 Segers and Leffelaa200% Segers et gl.2001) or parameter sensitivity of the more detailed, plot-scale mod-
on a larger scale, ranging from regional to global scBle-(  els Beven 2001). If a model parameter has a strong in-
trescu et al.2009a b), usually coupled to climate models fluence on the modelled fluxes on the plot scale, it is likely
(e.g.,Cao et al. 1996 Kaplan 2002 Gedney et a).2004 that it also has a large influence in an upscaled version of
Van Huissteden2004 Wanig 2007). Process-based mod- this model. Depending on model structure, this may hold
elling of methane fluxes from wetland environments is dif- also for other models that use the same or similar parame-
ficult because of the complicated interactions between soiters. In that case large-scale modellers should focus on ob-
biochemistry, vegetation and soil chemical and physical protaining correct values of this parameter, or at least obtain-
cesses; most of these processes require parameters that amg a good proxy estimate, for example from remote sensing
difficult to measure and generally not available (e/dgajter, of vegetation cover. Conversely, model parameters that do
2000. In fact, many 'process’ based models therefore con-not contribute significantly to model-data fit on the plot scale
tain rather course bulk parameterizations of key processewyill neither contribute to large-scale modelling of fluxes. To
and the more detailed the process formulation in a modeldistinguish influence from specific local conditions, models
the higher the parameter requirements of the model. Thisieed to be tested with several data sets, from spatially and
may result in overparameterized models, containing paramenvironmentally different locations. In particular for large-
eters that do not contribute significantly to a better fit of the scale modelling also simpler, reduced complexity modelling
model to field data. Careful parameter sensitivity analysisapproaches should be considered (eBgtritella and Van
is therefore necessary to assist model improvement. UsuHuissteden2009. For model testing the following questions
ally CH4 emission or soil respiration models are tested onlyshould be asked:
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1. What is the uncertainty in the model results, given the observed for the PEATLAND-VU modeMan Huissteden et
uncertainty in input parameters? al., 2009. For instance, PEATLAND-VU can generate ¢H

) o o flux time series with a good model-data fit using different
2. What is the sensitivity of the model results to variations -qomninations of microbial Chiproduction rates and plant
in parameter values, in particular those that vary spa-yyidation rates.

tially?? GLUE makes no assumptions about the nature of the op-

_timal parameter set of the model. The approach specifically
frecognizes the occurrence of non-unique solutions of model
optimization. GLUE is based on a large number of model
simulations with randomly generated parameter sets. Each

4. Can optimum parameter sets be found? Are thereparameter can vary within a specified range; multiple param-
unigue parameter sets or multiple sets that produce reeters are changed at each model run. For each run also an

3. What is the interaction with other model parameters
does variation in one parameter affect the sensitivity o
another parameter?

alistic model simulations? objective function value is generated. Although there will
be one most optimal value of the objective function among
A widely used plot-scale process model is thatVigl- the simulations, there may be many that are nearly as good

ter (2000; modified versions have been incorporated in and may represent also valid parameter sets. By studying
PEATLAND-VU (Van Huissteden et al.2006 Petrescu the distribution of the objective function values for all model
et al, 2008 Petrescu et g1.20093, and WetlandDNDC  simulations that are well-behaved, not only optimal parame-
(Zhang et al.2009. The model ofWalter (2000 includes  ter sets can be found but also conclusions can be drawn on
methane generation by bacterial consumption of labile soithe parameter sensitivity, parameter interaction and predic-
organic matter, bacterial methane oxidation, and transport ofive uncertainty of the modeFfeer and Beveri996 Lamb
methane to the atmosphere by ebullition, diffusion and fluxeset al, 1998 Beven 2009.
through plants. This model contains several site-specific pa-
rameters that are difficult to quantify properly. We tested
the version of this model included in PEATLAND-VWYén 2 The model
Huissteden et 312006, which is a slightly modified version
of the Walter (2000 model (for a description of the model PEATLAND-VU is a process-based, plot scale model o6CO
and modifications of the original model ¥falter (2000 see  and CH; emission from peat soils at various climate scenar-
below). We use the GLUE (Generalized Likelyhood Uncer- ios. The model has been used \@3n den Bos et a2003
tainty Estimation) methodologyLémb et al, 1998 Beven and Petrescu et ak20091 for regional scale simulation of
2001and references therein), with validation data from threeCO, and CH, fluxes in the NetherlandsVan Huissteden
different sites, including a natural and a managed temperat€2004 andBerritella and Van Huisstedg2009 employed
wetland and a permafrost tundra wetland. the model for simulation of paleo-GHluxes from wetlands
GLUE is an approach that includes a combined evalua4in Europe during the last glacigPetrescu et a(20094 have
tion of model result uncertainty and parameter sensitivity. Itused the model for global scale simulation of present-day bo-
has been applied extensively to hydrological modBksven real and arctic wetlands, by coupling the model to a global
2001 and overcomes several problems that usually arise witthydrological model. PEATLAND-VU consists of four sub-
model calibration and sensitivity analysis in complex envi- models: a soil physics sub-model to calculate temperature,
ronmental models. In simple cases, for model calibration thewater saturation and ice content of the soil layers, a -
outcome of a model for a given parameter set is compared tonodel, a CH sub-model and a soil organic matter (SOM)
observation data on the modelled system using an objectiv@roduction sub-model. For a complete model description we
function. This objective function indicates with a goodness-refer toVan Huissteden et a2006. Here only recent modi-
of-fit measure to what extent the model results agree withfications are discussed. The @blLib-model is based aifal-
the observed values. The parameter set that yields modder (2000. The model ofWalter (2000 includes: (1) CH
results with the best agreement between model and observgroduction depending on substrate availability/labile organic
tions (lowest value of objective function) is chosen as the op-matter; (2) CH oxidation within the aerated soil topsoil and
timal parameter set. This is a straightforward approach wherin plant roots and stems; (3) GHtransport by diffusion above
a clear optimal value of the objective function exists and theand below the water table; (4) transport by ebullition below
number of model parameters is small and their value rangghe water table; and (5) transport through plants.
well constrained. However, in complicated systems like hy- The PEATLAND-VU model requires as input a soil pro-
drological and soil systems the number of relevant paramefile description with organic matter content, dry bulk den-
ters that have to be considered may be prohibitive. Also theresity and soil moisture retention curve for each soil horizon,
may be considerable interaction between the parameters. land time series for soil surface or air temperature, water
such cases widely different parameter sets may yield simitable depth and snow cover for each model time step of
lar model results (equifinality). This situation also has beenl-10 days. To diminish the influence of initial boundary
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conditions (soil temperature profile, methane concentratiorin similar marsh soils. In PEATLAND-VU CH production
profile) the model is run with one spin-up year. The output above the water table is modelled as a fractipgn4e) of the
of the model consists of surface @fluxes, including con- the production below the water table. This fraction depends
tributions from the different transport pathways. The input linearly on the pore water saturation fraction. The slope of
data for the PEATLAND-VU Model can be obtained from this relation, fanaes is the model parameter that determines
generic data, e.g. soil profile descriptions and weather dat@anerobe
stations Yan Huissteden et al2006.
According to Walter (2000, the production factor for  fo,i . atec= { < L:panaer= fanaer fsaturated 0= panaer=1 @)
methane from labile organic compounds in the soil (termed = L:panaer=1
Ro in Walter's model description) should be regarded as a
tuning parameter to adapt the model to different sites and; Study sites and field methods
climatic conditions. In PEATLAND-VURg has been made
dependent also on soil pH, using an empirical linear rela-3.1  Sites
tion derived byDunfield et al.(1993 (Van Huissteden et al.
2006. Additionally, the model appears sensitive to param- Horstermeer (521430" N, 5°5'E) is located SE of Amster-
eters influencing the soil-atmosphere Ciransport through  dam, in a drained lake. The water level in the ditches is at
plants {/an Huissteden et al2006 Petrescu et gl2008, in approximately 3.5m below sea level, and up to 2m below
particular to the fraction of Cldthat is assumed to be ox- that of surrounding areas. The area is subject to strong seep-
idized during plant transpoi®yy). Also parameters related age, in particular in the drainage ditches. The soil consists of
to primary production and distribution of labile organic com- 2 m of clayey gyttja (organic lake sediment), erosively over-
pounds in the SOM production submodel potentially influ- lying eutrophic fen peat on Pleistocene sand. Until 1997 the
ence modelled fluxes: the Net Primary Production (NPP),area was a grazed pasture, thereafter the water level has been
and the fraction of NPP transferred to labile organic com-raised to 0.2—-0.4m below the surface, to create a wetland
pounds. This fraction in turn is determined in PEATLAND- nature reserve. The present vegetation, a degraded pasture,
VU by the fraction of below-ground organic productifigots is not harvested or managed otherwise. Dominant species
and the fraction offyootsthat is transferred to rhizodeposition in the wetter parts arelolcus lanatus Equisetum palustre
(dead root material and exudatggep). Glyceria maximandTypha latifolig dryer patches are dom-
With respect to the the model description¥gn Huisste-  inated byUrtica dioicaandPhalaris arundinaceaAt the site
den et al(2006 andWalter(2000, modifications have been ten chamber flux measurement stations have been installed,
made to the model. Field observations suggest that after af which two are located on ditches, the others on the land
dry period in wetland soils, a time lag occurs between a risesurface. Data have been collected from May 2003 until Au-
of the water table at the onset of rain and the increase of CHgust 2008 with monthly to weekly intervals. The average
fluxes Hendriks et al. 2007 Hendriks et al.20093. This annual air temperature is 9.& and an average precipita-
time lag is caused by the decrease of redox potential in poréion of 793 mm yr!. The site was extensively described by
water due to progressive oxidation of labile organic com-Hendriks et al(2007).
pounds (e.gSegers et al.2001). Within the PEATLAND Ruwiel (521030”N, 4°56'30"E) is a small nature re-
model lowering of redox potential is not explicitly modelled serve (Armenland Ruwiel) with a high water table. Climatic
by modelling the successive redox processes since it wouldonditions are the same as those of Horstermeer. It is a
require addition of extra soil chemical parameters. Howeverspecies-rich, mesotrophic hay pasture, dominated by sedges
it can be mimicked by assuming an exponential increase ofCarexsp.) and Eriophorum angustifolium, and has never
CHg production to its maximum rate, depending on the time been manured or fertilized. It is mown only once a year.
lag Isat (days) after the onset of completely water saturatedThe water table is kept artificially 0.3—0.5 m higher than that
conditions in a soil layer that has previously been unsat-of the surrounding agricultural land. Within the reserve, the
urated, and the availability of labile organic carbopfe water level varies between 0 to 30 cm below the surface, out-
(umol Ckg™1). This is modelled as follows: side the reserve it varies between 20 and 60cm below the
surface. The soil is a clayey fen peat. Four measurement sta-
tions have been installed in the winter of 2003—2004 in the
where kgelay (range 0.01-0.05) is a constant defining the reserve. Clg flux chamber measurements were taken with a
restoration rate of maximum GHproduction. bi-weekly to monthly interval from 22 January, 2004 till 20
Second, our field observations at the Horstermeer site (seBecember, 2005.
below) suggest that in dense, partly oxidized fen peats CH Kytalyk is a tundra wetland site, located in Northeast-
production also may occur above the water table at lowern Siberia, in the Indigirka lowlands near Chokurdakh
stands in summer, presumably due to the presence of anagf70°48 N, 14726 E, elevation 48 m). The climate is arctic,
obic microsites in the soilWagner and Pfeiffe1997 have  with an annual average temperature measured at the Chokur-
found viable methanogenic bacteria above the water tablelakh airport weather station ef14.3°C, the warmest month

Sdelay=1— ¢~ kdelay (sat Ciabile) o
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being July, the coldest January. The research site consists ¢ibn for the model. For the Horstermeer and Ruwiel sites also

two different morphological units: a river floodplain, and the soil pH was available, and pF curve estimates. The pF curve
bottom of a former thaw lake, both underlain by continu- estimates for Kytalyk have been based on average pF curve
ous permafrost with a network of ice wedge polygons. Thedata from peat profiledetrescu et gl2008.

area is characterized by silty soils with a peaty topsoil. The For data-model comparison, also error sources in the data
CH, flux measurements have been made on both the thawhould be considered. In the case of the chamber flux mea-
lake bottom and the river floodplain. The sites at the river surements, these consist of:

floodplain are situated in Carex/Eriophorum or Arctica fulva

thaw lake bottom is more varied, with hummocks and pools

dominated bySphagnumCarex/Eriophorunmeadows and
vegetation dominated bBetula nanaor Eriophorumhum-

mocks on higher parts. Compared to the river floodplain,
the fluxes are modest, being lowest in the Sphagnum vege-
tations, despite high water table. Air temperature, precipita-
tion and snow data are based on local site measurements in
summer, supplemented with data from the Chokurdakh air-
port weather station. COflux measurements using cham-

bers and eddy covariance started in 2003, @tix measure-

ments using chambers in the summer of 2004. From 2004 till
2006, CH; flux was measured only once a year in short (4—

6 days) field campaigns, from 2007 onwards measurement
campaigns included the months of July and part of August,
with a higher measurement frequency. The measurement sta-
tions sample the entire range of wetland vegetation types in 3

the area. The site and its G@nd CH; flux measurement
methodology have been described extensivel\Way Huis-
steden et al(2005 andVan der Molen et al(2007). A first
attempt at modelling the CHfluxes was undertaken tRe-
trescu et al(2008.

3.1.1 Field methods and error sources

The flux measurements were carried out using closed cham-
bers (non-transparant PVC, of different sizes; in Kytalyk a
smaller sized chamber was used). The measurement proce-

dure has been described in detail Hgndriks et al(2007),
and Van Huissteden et a(2009. For each flux measure-

ment, at least five gas concentration measurements were4.
taken at regular time intervals per chamber per flux measure-
ment. Before May 2004 (Horstermeer and Ruwiel sites) CH
concentrations were determined from syringe samples taken
from the chambers and analysed on a gas chromatograph.
Thereafter ClH analysis was performed in the field using an
Innova 1312 photo-acoustic gas analyser, fitted with & CO

(sodalime) and KO (silica gel) filter to prevent interference
of high concentrations of these gases with the,;Gidaly-

sis. A cross-check was made with flux measurements at the
Ruwiel site to check the agreement between the two meth-
ods, no significant differences were detected. Thereafter, the
Innoval312 has been frequently calibrated according to the

recommendations of the manufactureait Huissteden et al.
2005 Hendriks et al.2007).

For all sites analysis of soil organic matter content and dry
bulk density was available as input for soil profile informa-

www.biogeosciences.net/6/3035/2009/

inherent to the method of flux calculation. This con-
sists of calculating the gradient of GHoncentration
vs. time using regression. This gradient is subject to sta-
tistical error, which is specified as a standard deviation
on the flux.

2. The flux calculation method. Here, we assumed that

the time-CH, concentration relation is linear, which is a
common approach and is valid when the measurement
period is kept as short as possible. However, the re-
lation may not be linear, for instance as a result of a
decreasing soil-chamber concentration gradient during
the measurement. In that case a linear approximation
causes underestimation of the fluxéauizbach et al.
2007).

Other technical errors of the flux measurements (con-
centration analysis errors, chamber leakage, other dis-
turbances of the measurement) may result in faulty mea-
surements. In particular on extremely wet sites with
soft soils, excessive CHflux by ebullition is easily
induced by site access. This results in overestimation
of fluxes. With the Innova 1312 such events are de-
tected by high starting concentrations of the measure-
ment, otherwise these errors can be detected by plotting
the time-CH, concentration relation for every measure-
ment and checking for irregularities. However, it can-
not be excluded that faulty measurements remain unno-
ticed.

Spatial and temporal variability of the GHluxes. Al-
though observed fluxes are generally related to water
table, soil temperature and vegetation, the variability of
fluxes within measurement points with similar soil type,
vegetation and water table position is usually high (e.g.,
Van Huissteden et al2005 Hendriks et al. 20093.
This small-scale spatial variation is probably related
to unquantified differences in vegetation characteristics
and soil. Also small-scale (daily and shorter) tempo-
ral variation in CH fluxes occurs. This variation has
been observed with CHlux measurements using eddy
covariance, but is unnoticed with daily chamber flux
measurements. This temporal variation may be caused
by air pressure variations and variations in near-surface
turbulence KHendriks et al. 2008 Wille et al, 2008.
Also the diurnal variation of Clifluxes may be strong,

as is the case at the Horstermeer shier{driks et al.

Biogeosciences, 6, 30832009
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20090. Since during the day fluxes at Horstermeer are4.2 Objective functions

higher than during the night, the daytime flux chamber

measurements result in an overestimation of the fluxesWe tested three different objective functions for use in sub-
These sub-daily variations and processes are not insequent analysis. In the case of £Hixes, data-model com-

cluded in the PEATLAND-VUWalter (2000 model. parison fluxes can be performed in different ways. Com-
paring the model results with a single measurement station

appears obvious, but because of the high spatial variability
of fluxes mentioned above, it can be argued that the model
should reproduce the average flux of a group of measurement
points with similar soil, hydrology and vegetation (grouped
sites hereafter), rather than the measurements of single sta-
tions. We tested both approaches. Also it may be desirable
to account for errors of the measurements in the data-model
comparison. In case of grouped sites, the within-group vari-

of one or more parameters of the model is chosen randomI)ZlqnCe can be taken as a statls_tlca_ll error on t_he flux. 1f the
o ; odel results are compared with individual sites, the statis-
within a pre-defined value range. The parameter values ha

Vi . . .
. N . . ﬁcal error of the flux measurements is taken. This results in
been sampled from a uniform distribution, assuming no prior . . I .

he following choice of objective functions:

knowledge of the correct parameter value. The results o}

each model run are compared with the data from the study 1 The Nash-Sutcliffe efficiency (NS hereaftétash and
site being considered. The performance of the model run  gytcliffe, 1970 is often used for model-data compari-
is summarized by an objective function value, derived from son @even 200)). It is defined as

the differences between data and model. Different types of
objective functions can be chosen, depending on the desired

4 GLUE application
4.1 Procedure

The GLUE method is based on Monte Carlo simulations of
the model with randomly chosen parameter valugsvén

2009. Monte Carlo simulations are large sets of model sim-
ulations, for each single simulation within this set the value

o2

features of the data to which the model should fit best (see ~ E=1— 0—62 ()
below). We used 5000 model runs for each site/data set sep- ¢
arately. 2. .

After completion of all model runs, the distribution of whereo; is the error variance,
the objective function values over the value range of the -
parameters is used to analyse the sensitivity of the model. ~ 2_ LZ(YA — ) @)
In particular the difference of this distribution for “be- ¢ T-14 o

havioural” (model runs that that fit well to the data) and
“non-behavioural” (poorly fitting model runs) indicates to

which parameters the model outcome is sensitive, and the
range of parameter values that contribute to a good model-

data fit Hornberger and Speat981, Young, 1983. The se-

lection of behavioural models is based on the objective func-
tion value, different criteria can be used. In this study we se-

lected the 2% of all runs with the highest objective function

in which y;is the predicted value at timeandy, the ob-
served value, and? the variance of the observationss.

has the value of 1 for a perfect fit, and values close to,
or below 0 when the error variance is of the same mag-
nitude or larger than the variance of the observations. In
that case the model performs not better, or worse than a
flux estimate simply based on the average of the data.

value as “behavioural”, which allows to study the parameter

sensitivity for all sites irrespective of the maximum objective
function value. To plot the results of the behavioural model
runs the 1% best runs have been selected.

A large difference between the cumulative distribution of

the behavioural runs and that of all model runs indicates a

strong sensitivity for the parameter in question. The Kol-
mogorov D statistic for testing of differences in distribution
functions is a measure of the parameter sensitivity. Dhe

value should be seen as a qualitative measure of the differ-
ence between the distributions, since for large numbers of

simulations the statistical test fap is not robust Beven
2001).
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. Regression Comparison (RC). Since the methane flux
can also easily be modelled by regression of local flux
data on water table and soil surface temperature (e.g.,
Van Huissteden et al2009, we also tested a variant of
the NS objective function, that compares the model re-
sults with an estimate from a regression model. In this
Regression Comparison (RC) functiorﬁ is replaced
by the variance of the residuals of a multilinear regres-
sion with water table position and soil temperature as
independent variables. A value close to, or below 0 in-
dicates that the model performs not better, or worse than
the regression equation.

. Summed Z score accounting for data error. The NS and
RC objective functions do not account for the statistical
error in the data outlined above. Therefore an objective

www.biogeosciences.net/6/3035/2009/
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function that accounts for this error has also been tested, The following test procedure has been applied:
based on the summedscores of the deviation between

modelled and measured flux: 1. For the Ruwiel site, analysis of GH produc-
tion/oxidation and vegetation parameters, to compare
2 =G — yi) /oy (5) the objective functions described above, and to compare

the effects of using data from individual measurement
stations versus grouped stations. Based on these tests,
an objective function is selected for subsequent analy-
sis. The Ruwiel site has been chosen because previ-

HereZl iS the absolute Standardized model'observaﬁon ous mode”ing experiments Showed a good mode'_data
deviation at time, ando; the standard error of the flux fit for this site (/an Huissteden et al2006).

measurement. To combine these in a single measure

the z scores are summed and divided by the number of 2. All sites: CH; production/oxidation and vegetation pa-
observations. To convert this to an objective function rameters, to test parameter sensitivity and its consis-
value which increases with better model-data fit and to tency among different wetland sites, and effects of using
scale between 0 and 1, the exponential of the result is  data time series of different length.

computed, withS as a shape parameter. This scales the

objective function value between 1 and 0. Depending 3: All sites, combining soil, Cll production/oxidation and
on S, Z rises rapidly with low values OEszlzr, al- vegetation parameters, to study the effects of soil pa-
lowing good discrimination of best fitting model runs. rameters.

This objective function can be easily adapted for data-
model comparison using grouped measurement points ) _
by comparing with the average flux of the group. In this 5 Results and discussion
case of theZ score objective function, denoted below
as Zgroup: the standard deviatios, is the group stan-
dard deviation. This has the effect that the data error ofT
individual measurements is not included in the objective
function, but the within-group spatial variation instead.

7 = o= SClaz)/ T (6)

5.1 Objective function selection

he tests for the Ruwiel site shows the effects of selection
of the objective function. From the site, three measure-
ment points with similar vegetation (species-rich grasses and
The NS and RC objective functions also can be used forsedges) and water table (frequently at or above soil surface)
grouped measurement points as well as single points. SincBave been selected for data-model comparison, in grouped
NS and RC are based on comparison of variances, signifiand single station mode. The number of observations for
cance of the objective function values can be evaluated usinﬁ""ch measurement station is 26. Monte Carlo simulations
an F (variance ratio) test, with the degrees of freedom deterave been made for all GHproduction/oxidation and vege-
mined by the number of observations on which the objectivetation parameters in Table 1. Figure 1 shows the objective

function value is based. function values of NS plotted against parameter value for
each parameter, Fig. 2 the plots of the parameter distributions
4.3 Model parameters and analysis procedure of the behavioural model runs. Figure 1 indicates that there is

strong equifinality. Behavioural model runs that exceed the
The model parameters that potentially influence the @ik F testp = 0.1 probability limit (NS> 0.3937) are realized
and hence are tested, can be grouped into 1) microbial rewith quite different sets of parameters; for all parameters the
action rate parameters, 2) vegetation parameters and 3) saéntire parameter range is covered.
physical and chemical parameters (horizon thicknesses and |n Fig. 2, the deviations of the parameter distributions of
properties). We used for all sites a soil profile definition con- the behavioural model runs from the original parameter dis-
sisting of two horizons, in the case of the Horstermeer andribution, measured with th® statistic, indicates the param-
Ruwiel sites this was a aggregation of a detailed soil profileeter sensitivity. Here we take the behavioural model runs as
with more horizons (Table 1). The ranges of the parametershe best 2% runs (NS 0.6408) in stead of thé test cri-
are based oWalter(2000 andVan Huissteden et 82009,  terion, for comparison with the other sites. The sensitivity
or for the soil parameters, on parameter ranges measured g highest for maximum root deptioo, With a value for
the sites. Parameter ranges are derived from literature anghe D statistic of 0.30. Other sensitive parameters are the
discussed byValter (2000. For a first approximation, pa- plant transport facto#ansp Q10 for CHy production and
rameters in group 1 and 2 and group 3 have been tested sefhe maximum primary production of the vegetation with val-
arately to select the parameters that have a significant influnes for D of respectively 0.29, 0.26 and 0.24. Model runs
ence on the model output. Next, a combination of sensitivewith relatively high 910, shallow root depth, low primary
parameters of all groups (soil and non-soil parameters) hagroduction and high plant transport factor tend to produce a
been tested. better fit to the data.

www.biogeosciences.net/6/3035/2009/ Biogeosciences, 6, 30832009
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Table 1. Model parameters of PEATLAND-VU which have been included in the GLUE analysis of the model, with value ranges of the

parameters.
Parameter Range Function
CHg production and oxidation (group 1)
Ro 0.5-2.0 pMhrl CHy production rate
Q10 3.0-8.0 temperature sensitivity of gHroduction
Tref 5-15% C reference temperature for temperature sensitivity
0100x 14-2.1 temperature sensitivity of Gldxidation by methanotrophs
Vmax 10-50 uMhr_1 maximum CH; concentration in Michaelis-Menten eq. gldxidation rate
K 3-5 uMhr1 half CH,4 concentration rate in Michaelis-Menten eq. £békidation rate
fanaerobe 0-3 slope of the linear relation of soil volume fraction producing@Hove
the water table to soil moisture; this assumes;@kbduction in anaerobic
microsites above the water table
kdelay 0.01-1 constant for exponential increase of anaerobic conditions after rapid water table rise
R peat 0-0.001 pMhr1 CHg production rate from peat substrate
Vegetation parameters (group 2)
Pox 0.1-0.9 fraction of Clj oxidized during plant transport
fex 0.1-0.5 fraction of below-ground primary production allocated to exudates
fshoots 0.3-0.7 fraction of net primary production allocated to shoots
Zroots 0.4-1.0m maximum root depth
S 0.1-1.0 correction on exudate production for stronger exudation in spring
Pmax 0.002-0.009 kgC#d~1  maximum net primary production
Viransp 0-15 plant CH transport rate factor
Soil parameters (group 3)
p 2.5-5% of local average  porosity / first value of pF curve
o 10-15% of local average  organic matter percentage
D 0.1-1.5m horizon thickness organic top horizon (lower boundary)
pH pH 4-pH 8 Soil pH
kfreeze 1.5-2.0 Soil texture dependent constant of relation ice content temperature

at subzero temperatures; tested for Kytalyk only.

Nash-Suttcliffe efficiency

0 ARG te 15,
0.02 0.04 0.06 0.08 0.1
R, _
delay transp

Fig. 1. Objective function values (Nash-Sutcliffe) for 5000 runs of PEATLAND with randomly chozen parameters using a uniform dis-

tribution over the parameter range. The model results have been compared with data from the Ruwiel measurement site 1, 2 and 3. Red

model runs of which the objective function value exceeds the 0.1 probability limit (F-test, see text); blue: non-behavioural runs below the
probability limit. For parameter explanation, see Table 1.

Biogeosciences, 6, 3033651 2009
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Table 2. Summary of objective function values for Monte Carlo runs for the Ruwiel site. The probabilities for the NS and RC objective
functions are based on dhvariance ratio test (see text). The cutoff value for behavioural runs is the lowest value of the best 100 (2%) runs,
and has been used for calculating hestatistic in Fig. 2.

Objective function Max. value shape pmax value at cutoff value
param.S value p=0.1 behavioural runs

Grouped measurement points

NS (Nash-Sutcliffe) all 0.7471 0.0003 0.3937 0.6408
RC (Regression Comparison) all 0.2978 0.182 0.3937 0.1913
Z, all 0.2836 1 0.2171
Individual measurement points
NS point 1 0.5291 0.028 0.3937 0.4445
NS point 2 0.6510 0.005 0.3996 0.5554
NS 3 0.7000 0.001 0.3937 0.5921
Z point 1 0.00024 1 0.00003
Z point 2 <0.0001 1 <0.0001
Z point 3 <0.0001 1 <0.0001
1 1 1 1
D=0.081 D=0.264 D=0.073 D=0.071
0.5 0.5 0.5 0.5
Q 0 0 Q
0.5 1 1.5 2 4 6 8 0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4
R, Q1o Pox fox
1 1 1 1
5' D=0.131 D=0.299 D=0.070 D=0.108
& o5 05 05 05
% 0 Q 0 0
0.3 0.4 0.5 0.6 0.4 0.6 0.8 1 02 04 06 08 5 10 15
£ fenoot z S Tret
S 1 1 1 1
5 D=0.077 D=0.125 D=0.101 D=0.240
_é 0.5 0.5 0.5 0.5
§ 0 0 0 0
1 1.6 1.8 2 3 4 5 10 20 30 40 50 2 4 6 8
Q1o Ko Vinax Pmax  x10°
1 1 1 1
D=0.089 D=0.192 D=0.137 D=0.288
0.5 0.5 0.5 0.5
0 0 0 0
0 1 p 2 3 0.02 0.04 0.06 0.08 0.1 0 RO,S 1 0 5 10 15

anaer delay opeat  x 107 Viransp

Fig. 2. Cumulative distributions of the parameters in the model runs of Fig. 1. Green: distribution of behavioural runs; red: distribution of
all runs. Behavioural runs are the best 2% of the Monte Carlo simulatibris. the Kolmogorov-SmirnoffD statistic for comparison of
distribution functions. For parameter explanation, see Table 1.

Similar plots for the other objective functions are not not be discussed further here since it behaves similar as the
shown, but Fig. 3 and Table 2 summarize the results for allNS function.
objective functions. The maximum value for theS effi- The Z objective function is a stricter requirement for
ciency in Table 2, 0.75, is quite high and indicates that themodel-data fit, since it does not test on variances over the en-
model explains the data significantly better than an estimatdire data range but requires a good fit for each individual data
based on the mean of the data. ThRedest shows that the point, weighed against the known data error. If the model is
variance of the model-data residuals is significantly smallercompared with the average fluxes of the three sites, a maxi-
(p <0.1) than the variance of the data. Also the maximum mum value forZgoup0f 0.28 results (shape parameses: 1).
value for RC, 0.30, is positive, indicating that the model per- However, when compared with individual sites, the results
forms better than a regression on water table and soil tembecome much worse, resulting in near-z&rwvalues. The
perature. However, the value does not indicate a signifi-model clearly cannot follow the individual data points of an
cant difference between the variance of the regression residndividual site. The large difference betwe&nand Zgoup
uals and the variance of the model-data differendeseSt,  also results from the fact that the within-group variance of
p=0.18> 0.1). Although revealing on the performance of a site group is much larger than the statistical measurement
the model with respect to a simple regression model, it will error of the individual measurements.

www.biogeosciences.net/6/3035/2009/ Biogeosciences, 6, 30832009
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Ruwiel D statistic points is explained by the occurrence of £ptoduction in
06 R anaerobic microsites in the soil at lower water tables in the
A roouare]. quite dense, clayey peat of this site.
Bz growed For individual measurement points, the model cannot cap-

ture flux differences that are related to small-scale spatial and
temporal variation (Table 2 and Fig. 3). This is most clearly
shown by the low values of th& function for individual
sites, but also the maximum NS value is lower for the in-
dividual sites than for the grouped sites. Figure 4 shows the

kil

Bioor mar anaer | mope 1% best model runs for the NS atiyroup functions, com-
Qo fex z Tef  Km  Pmax  kdely  Viransp pared with the data. For grouped sites, the NS function re-
: sults in a very slight positive bias with respect to the data, the
Ruwiel D statistic Zgroup function shows a slightly lower bias. However, multi-
06 S day temporal fluctuations in fluxes are captured much better
0s mwc . when the NS function is used. For both objective functions,
os ] By some model runs show high flux peaks. For the highest mea-
| | I i sured fluxes in the second summer season, these peaks may
%71 ! | be realistic, but cannot be checked against the data because
the data density is too low to reject unrealistic peaks that fall
between to measurement dates.

LWL ET RN T e A possible cause of the observed high flux peaks may be
RO Por  fshoof S Ql0ox  Vmex  fanaer  ROpeat ebullition events that are induced by air pressure variations

Qi fex z Tret  Km  Pmax  kdely  Vhansp (Whalen 20095, in particular for the high water table sites.
parameter The representation of ebullition in the model is very simple

and depends only on the pore water téncentration\(Val-
Fig. 3. Bar graphs showing th® statistic for the tested model pa- ter, 2000. However, for the Horstermeer site a statistically
rameters (see also Fig. 2) for all objective functions for the Ruwiel significant relation between air pressure and;Gdx mea-
site. For parameter explanation, see Table 1. AbaRestatis- sured by eddy covariance is absdreqdriks et al.2009h).
tic for grouped Ruwiel measurement sites 1, 2 and 3; below; the  concluding, the NS objective function performs best as it
same, evaluated for the measurement points indvidually. NS: Nashzq\,t5 in model runs that follow better the yearly and within-
Sutcliffe efficiency;R: Regression comparisot;: Z statistic (see N . .
text); Z grouped:Zgroup statistic for grouped sites (see text). y.ea.lr variations in the ﬂux.es’ and performs well also for in-
' dividual measurement points. The test on the other research
sites have been restricted to the NS function.

The tests for the three objective functions generally indi-5.2 Comparison between study sites
cate high sensitivity (highest values for tlie statistic) for
the Q10 andT,es parameters for Ciiproduction and the pa- A comparison of the sensitivity for the different sites
rameters related to vegetation biomass and plant transpo(Ruwiel, Horstermeer, Kytalyk) shows the parameter sen-
of CHa, Pmax Pox and Vyansp (Fig. 3). However, there are sitivity for sites that differ in geography and wetland type.
also conspicuous differences for the objective functions. TheOnly grouped measurement points have been considered, us-
Zgroup function indicates a much higher sensitivity fBgy, ing the NS objective function. For Ruwiel, the same sites
010 andTre than NS and RC and a lower sensitivity for have been selected as above (number of observatiors).
Viransp The parameterBox and Viranspmay affect plant Cig The Kytalyk site has been split into two contrasting mea-
transport rate antagonistically, in the absence of interactiorsurement point groups: the river floodplain with sedge and
with other parameters, a highranspmay be compensated by grass vegetatiom(= 30, Kytalyk Floodplain hereafter), and
a high Pox. Apparently, different objective functions select the oligotrophic terrace with submerg&phagnunvegeta-
one or the other parameter as the most sensitive @D tion (n = 27), mainly located in ice wedge polygon centres
and T, may affect differences in CHflux due to soil tem-  (Kytalyk Terrace hereafter). These are highly contrasting
perature and may result in a better fit of variations in4CH sites, both with high water table but different vegetation and
flux to seasonal and shorter term differences in temperaturestrongly different CH fluxes. Likewise, two site groups have
the Zgroup function weighs these differences more strongly been tested at Horstermeer: a site group consisting of sites
than NS and RC. Also the tests for individual measurementwith varying water table (high in winter, up to 35cm below
points show differences in the parameter sensitivities. Heresurface in dry spells in summer) and vegetation that is well
also thefanaerparameter proves to be sensitive. Apparently, capable of CH transport Holcus lanatugyrass,Equisetum
part of the spatial variation between individual measuremenpalustre Glyceria maximaJuncus effusyspoint nrs. 3-5,

Biogeosciences, 6, 3033651 2009 www.biogeosciences.net/6/3035/2009/



J. van Huissteden et al.: Sensitivity analysis of a wetland methane emission model 3045
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400 500 500 700 50 500 7000 Ti00 Fig. 5. Bar graphs showing th® statistic (see also Fig. 2) for all

aae sites indicated in Table 3. For parameter explanation, see Table 1.
Fig. 4. The 1% best runs for the NS and Zgroup objective functions

for Ruwiel points 1, 2 and 3. Grey: modelled fluxes; thick line with . .
error bars: data. analysis of the measurement data. However, if suspected data

points are deleted, the result only slightly improves to a still
negative maximum NS value 6{0.10.

n = 64), and two extremely marshy sites along ditches domi- Differences in the parameter sensitiviti (statistic) be-
nated byTypha angustifolimandGlyceria maximawhere the  tween the site tests are found for most parameters (Fig. 5),
water table is at a constant level throughout the year (nrs. 7-although in general the same parameters that were insensi-
8,n =24, Horstermeer Wet hereafter). For the varying watertive for Ruwiel are also insensitive for the other sites. Ex-
table sites at Horstermeer, a longer time series is availablegeptions are?y and Pox Which show a high sensitivity for all
the tests have been run for both a shorter time seties24) sites except Ruwiel. The sensitivity 10, Zoot, Tref, Pmax
for compatibility with the other sites, and the longer time fanaes Ro,peas Viransp@lSo vary among the sites. Within the
series to study the behaviour of the model over longer rundHorstermeer site, the sensitivity @fef, S, Q100x and Zroot
(Horstermeer 1 and Horstermeer 2 hereafter for respectivelyaries depending on the length of the data time series against
the short and long time series). which the model is tested. With the more difficult model fit

The results (Fig. 5, Table 3) show clear differences in thefor the longer times series these parameters also contribute
ability to model the CH fluxes for the sites. The model per- to a better model fit, while they contribute insignificantly for
forms best for Ruwiel; for Horstermeer 1 and for Kytalyk the shorter time series. With exceptionZbot, all these pa-
Terrace the model also performs significantly better than arrameters influence the temporal variation of émission
estimate based on average measured fluxes. For Horstethroughout the year. The sites also differ markedly in sen-
meer 2, and for Kytalyk Floodplain, also positive objective sitivity to Tref, the reference temperature for tigel0 rela-
function values are produced, but these do not exceed thtion of CHs production. Highest sensitivity is found for the
significance limit. For Horstermeer Wet only negative NS Kytalyk Terrace and Horstermeer 2 data; for the first, low
values were calculated, meaning that he model does worsealues ofTret give the highest objective function values, for
than an average of the data. the second higlfies values. Also for the Kytalyk Floodplain

The relatively poor fit of the model to the longer time se- Sites low Tt values result in a better model fit, but the ef-
ries at Horstermeer is caused mainly by high flux peaks obfect is strongest for the Terrace sites where the active layer
served in the third and fourth year. The model simulatesis thinner and soil temperatures generally lower. This agrees
flux peaks, but not exactly at the same dates as the obsewell with the expected differences in microbial communities
vations (Fig. 6). The same holds for the Horstermeer Wetbetween arctic and temperate wetland sites. Microbial popu-
and Kytalyk Floodplain (not shown). Remarkably, the model lations in arctic soils tend to show metabolic activity also at
performs less well for the eutrophic high water table sites.low temperaturesRivkina et al, 2007.
However, more tests on more sites would be necessary to Also within Kytalyk differences in parameter sensitivity
confirm whether this is a consistent feature of the model.arises between the Floodplain and Terrace sites, in particular
For Horstermeer Wet, the model completely fails to simu- for the plant oxidatiorPox transportViranspand Pmax primary
late the high measured fluxes. Measurement error cannot bgroduction parameters. The floodplain and terrace points
excluded here, since these sites are extremely sensitive to disaarkedly differ in biomass and probably also net primary
turbance during flux chamber measurements, despite precaproduction of the vegetation, with highest biomass occurring
tionary measures such as boardwalk construction and carefan the floodplain. The plots of objective function value vs.
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Table 3. Summary of objective function values for Monte Carlo runs for all sites. The probabilities for the NS objective function is based
on anF variance ratio test (see text). The cutoff value for behavioural runs is the lowest value of the best 100 runs, and has been used for
calculating theD statistic in Fig. 2.

Objective function Max. value pmax  value at cutoff value
value p=0.1 behavioural runs
Ruwiel 0.7471 <0.001 0.3937 0.6408
Horstermeer 1 (short time series) 0.5348 0.036 0.4193 0.3198
Horstermeer 2 (long time series) 0.1011 0.337 0.2773 0.0
Horstermeer Wet —0.1671 no behavioural runs
Kytalyk floodplain 0.1857 0.292 0.3827 0.0866
Kytalyk terrace 0.4110 0.092 0.3996 0.35
Horstermeer 1 (varying water table short dataset) Horstermeer Wet
:
80
NE_ 20 NE_ :2
E; 15 g: W
or h | ‘: v j

500 600 700 800 900 1000 1100 1500 1600 1700 1800 1900 2000

days Horstermeer 2 (varying water table long dataset) days

CH4 mg‘m‘z.h"
&

T [ | 1 1 T | e
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Fig. 6. The 1% best runs for Horstermeer points 3, 4, 5 and ditch sites (7, 8) compared with the data. Above left: Horstermeer 1 (varying
water table, short data set); above right: Horstermeer wet sites; below: Horstermeer 2 (varying water table, long data set).

parameter value for thByx andViranspparameters are shown 5.3  Soil parameters

in Fig. 7. For the terrace points, the model performs best with

a higher plant oxidation rate and a lower transport rate factornext to the parameters above, also soil parameters may in-
whilst for the floodplain this pattern is reversed. The sensi-flyence model results strongly and could explain the spatial
tivity pattern confirms the inferred processes that are responygyiapility of CH, fluxes. The soil properties tested for each
sible for the spatial difference in fluxes between river flood- horizon are the water-filled porositga;, organic matter per-
plain and terrace. On the terrace, the transport rate of CH centageo, thickness of the upper soil horizdi, soil pH,
through the dominating Sphagnum vegetation is low, whileang for Kytalyk, the shape parameter of the relation between
oxidation is high due to the presence of symbiotic methanyemperature and frozen water contéie,chas been added.
otrophic bacteria in the plant&@aghoebarsing et al2005  These parameters are combined in the test with the most sen-
confirmed by measurements on Sphagnum samples, N. Kifjtive vegetation and microbial population parametefs;
personal communication, 2008). On the floodplain, transporty 10, Py, Zioots Pmaxs fanaes k delay, Ro.peatand Viransp Al

rate through Carex and Eriphorum species is higin(Huis-  sjtes have been tested, for the Ruwiel site also the individual
steden et a].2009, with low oxidation rate. The results do measurement stations have been tested (Fig. 8).

not confirm that the net primary production on the floodplain
is high on the floodplain. For the Kytalyk Floodplain sites,
low Pmax values result in a higher objective function value.

With exception of the thickness of the upper soil horizon,
all soil parameters appear to be less sensitive than the veg-
etation parameters. Only soil pH has a somewhat higher
D statistic value, in particular for Kytalyk Floodplain. This
site shows the strongest sensitivities to soil parameters. A
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Kytalyk floodplain Kytalyk terrace

V \
transp transp

Fig. 7. Objective function value plot for the plant transport paramegggs(oxidation of CH during transport) andfransp(Plant transport
factor) for Kytalyk floodplain and terrace.

remarkable feature is the different sensitivities of pH for D statistic all sites with soil parameters
the Horstermeer long and short time series; apparently more os E—

model parameters need to be adjusted for making the mode oz i

fit to the longer time series. The sensitivity of thgeeze 08 e ot

parameter is inconsistent, it is more sensitive for Kytalyk  os
Floodplain than for Kytalyk Terrace. This may be a spurious “ o4
effect introduced by the generally low model fit for Kytalyk
Floodplain. Concluding, the model is not very sensitive to

uncertainty in soil characteristics. The thickness of the upper

soil horizon is the most critical soil parameter. O hoc ema kem vvaes 01 ot bsatd s
. . - . . Q10 z fanaer RO,peat H1 Bsat,1 02 pH2 kf,2

For the Ruwiel individual measurement stations, the soll parameter
parameters are hardly sensitive. Apparently variability in D statistic Ruwiel individual sites
soil properties does not contribute here to the observed small- 08 T
scale spatial variability in Clfluxes of individual measure- o7 o Ruviel2 |~
ment points within the site. Comparing Figs. 5 and 8, there 06
are no large differences in sensitivity of the vegetation and 0s
microbial parameters if tests are done with and without soll o4 i
parameters. The same parameters that showedhigthtis- 03 ] I
tic values without soil parameters also show high values with 02 ' !
soil parameters included. The only exception is the, @kb- 01L l l Lllkkuiii
duction factor from peatRo peas Which becomes less impor- O R0 'Pox  Pmax ki Vo 01 1 Gems

. . Q10 z fanaer RO,peat H1 Bsat,1 02 pH 2

tant for the Horstermeer site when soil parameters are added parameter

For other vegetation and microbial parametertends to be

higher when soil parameters are included, in particular forFig. 8. Above: bar graphs showing th statistic (see also Fig. 2)
the Horstermeer 2 and Kytalyk Floodplain data. We infer for all sites indicated in Table 4, including soil parameters. For
that model fit problems arising from soil parameters can beParameter explanation, see Table 1 and text. Below: the same for
compensated by adjustments of the vegetation and microbidfuWie! site, individual measurement stations.

parameters, in particular for sites where the model fit in gen-

eral is rather poor.

Adding the soil parameters does not improve the model fiteters from the experiments. If the Monte Carlo simulations
(Table 4). In particular for Ruwiel and Kytalyk Floodplain, are run with the complete parameter set on vegetation and
the maximum objective function value with the soil parame- microbial population and all soil parameters (23 parameters
ters included is lower than without the soil parameters. Thisin total), maximum objective function values result that are
might be caused by the deletion of some of the other parameloser to, or slightly better, than those of Table 3 (Table 4,

www.biogeosciences.net/6/3035/2009/ Biogeosciences, 6, 30832009
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Table 4. Summary of objective function values for Monte Carlo runs for all sites. The probabilities for the NS objective function is based
on anF variance ratio test (see text). The cutoff value for behavioural runs is the lowest value of the best 100 runs, and has been used for
calculating theD statistic in Fig. 2. X”: no behavioural model runs.

Objective function Max. value p max valueat cutoff value Max. value Max. value
value p=0.1 behavioural  without soil with all
runs parameters  parameters
(Tables 2, 3)

Ruwiel 1, 2, 3 0.5581 0.019 0.3937 0.4817 0.7471 0.7733
Horstermeer 1 short time series 0.5374 0.035 0.4193 0.3835 0.5348 0.5264
Horstermeer 2 long time series 0.0612 0401 0.2773 0.0000 0.1011 0.1034
Horstermeer Wet —0.3481 X —0.0968 —0.2429
Kytalyk floodplain 0.1029 0.386 0.3827 0.0000 0.19 0.1964
Kytalyk terrace 0.4128 0.091 0.3996 0.2502 0.4110 0.4532
Ruwiel 1 0.4085 0.090 0.3937 0.3313 0.5291
Ruwiel 2 0.5613 0.020 0.3996 0.4281 0.6510
Ruwiel 3 0.6350 0.006 0.3937 0.4374 0.7000

last column). In that case for all sites except Horstermeeiple emission factor approach based on averages of measure-
slight improvements of the model fit are resulting. ment data. In three of the six data sets the model results were
significantly better than an estimate of the fluxes based on
averaged data. In two data sets, the model still performed
better but the difference was not large enough to classify it
The parameter&geiay and fanaerwere newly added to the as significant. For one data set, the model did not perform
model, respectively to simulate time delay in restoration ofwell, but in that case data error cannot be excluded. For one
anaerobic conditions in the soil at rapid water table rise,data set (Ruwiel) the model also has been compared with a
and CH, formation above the water tabl¢anaeris sensitive  multilinear regression model derived from regression of the
only for the Horstermeer 2 datasételay for both Ruwiel  flux measurement data on soil temperature and water table.
and Horstermeer 2. For the other sitgg:aerinfluences the  Although the objective function values indicate better per-
model fit more strongly when the soil parameters are addedformance for the PEATLAND-VU model, it does not signif-
We conclude that both parameters may be useful dependingantly outcompete the regression model. However, a regres-
on site conditions, in case of a poor model-data fit these pasion model is less relevant for upscaling purposes since larger
rameters may improve the model fit to some extent. How-scale spatial upscaling based on regression results of individ-
ever, these parameters never appear to have a strong overatl sites depends strongly on local data availability compared

5.4 Recently added parameters

influence on model fit.

A parameter of the SOM production submodel, that is not

included in the original model byalter(2000 is the correc-
tion factor on stronger exudate production in sprii@van
Huissteden et 312006. In all tests, this factor attains only
low values for theD statistic, so it does not influence the
modelled CH emission significantly. Soil pH also has been
added to the originalValter (2000 model as a factor influ-
encing CH production in the modeMan Huissteden et al.

with a process model.

Details of spatial and temporal variatiorare poorly re-
produced by the model. Analysis of the model-data devia-
tions shows that the model is not capable of simulating short-
term temporal variation that may occur on a daily time scale.
However, the model simulates longer term temporal variation
(seasonal and weekly-monthly) correctly. Since longer term
variations and the average yearly cycle is more important for
temporal upscaling than timing of the peaks, this does not

2006. It proves an effective parameter in some cases (Ky-have to be a problem. We experimented with different types

talyk, Horstermeer).

6 Conclusions

With regard to theoverall model performanceve conclude

of objective functions in applying the GLUE method. One
type of objective function accounts for short-distance spa-
tial variability of the fluxes by comparing the model results
with averages of groups of points with homogeneous vege-
tation/soil characteristics, another objective function for the
flux measurement standard error. The first approach provided

that the PEATLAND-VU model is capable of simulating the best results since it averages out some of the small scale
CH, fluxes in temperate and arctic wetlands, under differ-spatial variability inherent to Cifluxes.

ent type of site conditions. However, not in all cases the

model improves prediction of emissions, compared to a sim-
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