[Article]

www.whxb.pku.edu.cn

ICIO₂ 异构化反应机理及电子密度拓扑研究

周俊红^{1,2} 曾艳丽¹ 张雪英¹ 孟令鹏¹ 郑世钧^{1,*}

(¹河北师范大学化学与材料科学学院,计算量子化学研究所,石家庄 050016; ²华东理工大学化学与分子工程学院,上海 200237)

摘要: 利用密度泛函理论方法研究了 ICIO₂ 异构化反应机理. 优化得到了七种异构体, 其中 OICIO 和 ICIOO 还 未见报道, 对各异构体的热力学稳定性进行了比较. 找到了异构化过程的过渡态, 并通过内禀反应坐标 (IRC)计 算确认了各个异构体之间的相互转化关系. 从量子拓扑学的角度, 对典型异构化反应通道 IRC 途径上的各点进 行了电子密度拓扑分析, 讨论了反应过程中化学键的断裂、生成以及化学键的变化规律, 找到了反应途径上的能 量过渡态(ETS)和结构过渡态(STS).

关键词: ICIO₂; 异构化; 能量过渡态; 结构过渡态 中图分类号: O641

Reaction Mechanisms and Topological Studies of Electron Density for IClO₂ Isomerization

ZHOU Jun-Hong^{1,2} ZENG Yan-Li¹ ZHANG Xue-Ying¹ MENG Ling-Peng¹ ZHENG Shi-Jun^{1,*} (¹Institute of Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050016; ²School of Chemistry and Molecular Engneering, East China University of Science and Technology, Shanghai 200237)

Abstract: The isomerization reactions of $IClO_2$ were studied by density functional theory. Seven isomers were optimized and two new isomers (OIClO and IClOO) were gained, IRC calculations were also been processed to validate the connection relationship of the isomers. From the view of topological analysis of the electronic density, the topological characters of the major critical points along the reaction pathway were analyzed, the changing rules of the chemical bonds were discussed, and the energy transition states (ETS) and structure transition states (STS) were found.

Key Words: ICIO₂; Isomerization; Energy transition state; Structure transition states

由于碘原子在臭氧损耗催化循环中扮演着重要的角色,因此人们对碘以及碘化合物参与的反应进行了大量研究^[1-13].实验测得碘氧自由基与氯氧自由基反应会产生碘原子与氯原子,从而会造成臭氧层的破坏,因此利用理论手段深入研究该反应的机理对认识该反应在臭氧催化循环中的重要程度具有特别重要的意义.在碘氧自由基与氯氧自由基反应过程中会生成一类重要的中间体 ICIO₂,而中间体 I-CIO₂具有多个不同的异构体. 深入研究这些异构体

的相对稳定性以及相互转化关系有助于更好地研究 碘氧自由基与氯氧自由基复杂的反应机理.本文利 用密度泛函理论方法研究了 ICIO₂ 异构体的相对稳 定性以及相互转化关系,并从量子拓扑学的角度,对 典型异构化反应通道 IRC 途径上的各点进行电子 密度拓扑分析,讨论异构化过程中化学键的断裂和 生成、化学键的变化规律以及反应途径上的能量过 渡态和结构过渡态的关系.

*Corresponding author. Email: sjzheng@mail.hebtu.edu.cn; Tel: +86311-86268143; Fax: 0311-86269217.

Received: January 24, 2007; Revised: April 28, 2007; Published on Web: June 14, 2007.

国家自然科学基金(20573032)、河北省自然科学基金(B2006000137)、河北师范大学博士基金(L2005B12)资助课题

C Editorial office of Acta Physico-Chimica Sinica

1 计算方法

利用 Gaussian 98 程序包的密度泛函理论 (B3LYP)方法优化了 ICIO₂ 异构体,其中 CI 和 O 元 素采用 6-311++G(3*df*)基组,I 元素采用 SDB-AUG-CC-PVTZ赝势基组^[14].在此基础上,讨论了异构体之 间相互转化的过程,优化出了各相互转化过程的过 渡态,并对异构化反应过程进行了 IRC 路径解析, 确认了异构体之间的转化关系.对异构体和过渡态 均做了振动分析,进一步确认其结构.

采用自行编制的电子密度拓扑分析 GTA-91 程 序^[15]及 AIM 程序^[16], 对各异构化反应过程中关键点 进行了电子密度拓扑分析.

2 结果与讨论

2.1 各异构体以及相互转化关系

本文共优化得到了 ICIO₂ 七种异构体,分别为 CIIO₂、CIOIO、IOOC1、IOCIO、ICIO₂、OICIO和ICIOO, 其构型见图 1. 其中 OICIO、ICIOO 两种异构体首次 优化得到. 计算得到了它们的能量.取 IO 和 CIO 自 由基能量和为能量零点,各驻点的相对能量分别

表 1 在 B3LYP/6-311++G(3df)水平上各异构体以及 过渡态的能量

Table 1Energies for the isomers and transitionstates of $IClO_2$ at the B3LYP/6-311++G(3df) level

Species	<i>E</i> (a.u.)	ZPE(a.u.)	$E_{\rm corr}({\rm a.u.})$	$\Delta E/(kJ \cdot mol^{-1})$
ClO+IO	-621.95934	0.00348	-621.95586	0.00
$ClIO_2$	-622.03080	0.00643	-622.02437	-179.87
ClOIO	-621.98925	0.00553	-621.98372	-73.15
IOOCl	-621.98186	0.00610	-621.98112	-52.25
IOCIO	-621.96772	0.00597	-621.96175	-15.46
$IClO_2$	-621.96381	0.00782	-621.95599	-0.34
OIClO	-621.94775	0.00527	-621.94248	17.65
IClOO	-621.93820	0.00653	-621.93167	63.51
TS1	-621.95430	0.00500	-621.94930	17.22
TS2	-621.94149	0.00516	-621.93633	51.28
TS3	-621.92967	0.00490	-621.92477	81.63
TS4	-621.92680	0.00645	-621.92035	93.23
TS5	-621.94347	0.00507	-621.93840	45.84
TS6	-621.91563	0.00546	-621.91017	119.96

为-179.87、-73.15、-52.25、-15.46、-0.34、17.65 和 63.51 kJ·mol⁻¹(见表 1). 其中 ClIO₂ 能量最低, ICIOO 能量最高. 各异构体之间的相互转化关系见图 2.图 2 中 TS1、TS2、TS3、TS4、TS5 和 TS6 分别为

bond length in nm, bond angle and dihedral angle in degree; values of Ref.[8] in brackets, at MP2/6-311++G(3df) level.

Fig.2 Energy curves of the transformation between isomers of IClO₂

ClOIO → ClIO₂, ClOIO → IOOCl, IOClO → IOOCl, IOClO → IClO₂, IOOCl ← →OIClO 和 IOOCl ← → IClOO 异构化过程的过渡态.由图 2 及表 1 可以得 出, ClIO₂ 与 IClO₂ 可以分别经过 TS1、TS4 转化为 ClOIO 与 IOClO, 势全分别为 197.09 和 93.57 kJ・ mol⁻¹,由此可以推断 ClIO₂ 比 IClO₂ 更加稳定; IOOCl 可以经过 TS2 和 TS3 分别转化为 ClOIO 和 IOClO, 势全分别为 103.53 和 133.88 kJ·mol⁻¹,也可 以经过 TS5 转化为 OIClO,势全为 98.09 kJ·mol⁻¹, 经过 TS6 转化为 IClOO,势全为 98.09 kJ·mol⁻¹, 以上几个过程势全都比较大,异构化难以进行,所以 IOOCl 比较稳定; ClOIO 与 IOClO 可以经过 TS1、 TS2、TS3、TS4 分别转化为 ClIO₂, IOOCl 和 IClO₂, 势全分别为 90.37、124.43、97.09 和 108.69 kJ·mol⁻¹, 由势垒大小可以得出 CIOIO 和 IOCIO 都比较稳定, 并且 CIOIO 比 IOCIO 更加稳定; OICIO 能量比较 高,可以经过 TS5 转化为 IOOCI (势垒为 28.19 kJ· mol⁻¹); ICIOO 能量最高,可以经过 TS6 转化为 IOOCI,势垒为56.45 kJ·mol⁻¹,因此OICIO与ICIOO 都不稳定.

由表1列出的能量值可见,在ICIO₂七种异构体中,CIIO₂、CIOIO、IOOCI、IOCIO、ICIO₂五种异构体能量比较低,比较稳定;OICIO和ICIOO能量高,不稳定,因此实验上尚未得到这两个异构体.综上所述,ICIO₂七种异构体的热力学相对稳定性顺序为CIIO₂>CIOIO>IOOCI>IOCIO>ICIO₂>OICIO>ICIOO,该结论与文献[13]用MP2方法计算的稳定性顺序(IOOCI>CIIO₂>CIOIO和CIIO₂>IOOCI>CIOIO)有所不同,有待实验与理论的进一步验证.

2.2 反应途径电子密度拓扑分析

根据 Bader 等人提出的"分子中的原子"理论^[17], 一个分子中其电子密度分布的拓扑性质取决于电荷 密度的梯度矢量场 $\nabla \rho(\mathbf{r})$ 和 Laplacian 量 $\nabla^2 \rho(\mathbf{r})$,并 且有 $\nabla^2 \rho(\nabla) = \lambda_1 + \lambda_2 + \lambda_3$,此处 λ_i 为键鞍点处电荷密度 的 Hessian 矩阵本征值.如果 Hessian 矩阵三个本征 值为一正两负,记作(3, -1)关键点,称为键鞍点(BCP), 表明两原子间成键.如果相邻的两个原子之间存在 着成键作用,那么一定有一条从键鞍点出发连接两 原子的键径存在.如果三个本征值为两正一负,记作 (3, +1)关键点,称为环鞍点(RCP),它的存在有利于 形成环状结构.本文对典型反应通道 IRC 路径上的

表 2 异构化过程中关键点的拓扑性质 Table 2 Topological properties of the critical points for the isomerization

(a) IOCIO→TS3→IOOCl								
S_3	-0.40	0.00(ETS)	+0.40	+0.50(STS)	+0.60	+0.90	+1.20	+1.60
RCP								
ho	0.0373	0.0386	0.0399	0.0401	0.0402	0.0404	0.0406	0.0405
λ_1	-0.0407	-0.0419	-0.0432	-0.0433	-0.0434	-0.0435	-0.0435	-0.0430
λ_2	0.0038	0.0249	0.0314	0.0315	0.0311	0.0286	0.0234	0.0077
λ_{3}	0.2581	0.2498	0.2487	0.2489	0.2491	0.2497	0.2514	0.2557
O_3 — Cl_1								
ho	0.0507	0.0493	0.0483	0.0465	0.0455	0.0443	0.0430	0.0420
λ_1	-0.0545	-0.0525	-0.0511	-0.0488	-0.0474	-0.0457	-0.0440	-0.0428
λ_2	-0.0491	-0.0455	-0.0420	-0.0375	-0.0338	-0.0286	-0.0206	-0.0020
$\lambda_{\scriptscriptstyle 3}$	0.3041	0.2986	0.2951	0.2887	0.2848	0.2802	0.2752	0.2689
$O_3 - O_2$								
ρ	0.0393	0.0406	0.0418	0.0444	0.0462	0.0487	0.0524	0.0548
λ_1	-0.0420	-0.0446	-0.0469	-0.0513	-0.0546	-0.0590	-0.0656	-0.0699
λ_2	-0.0023	-0.0192	-0.0260	-0.0361	-0.0420	-0.0493	-0.0590	-0.0650
λ_3	0.2732	0.2878	0.2978	0.3162	0.3288	0.3460	0.3702	0.3855

(b) $IOCIO \rightarrow TS4 \rightarrow ICIO_2$									
S_4	-1.05	-0.80	-0.60	-0.40	-0.28(STS)	0.00(ETS)	+0.10	+0.24	
RCP									
ρ	0.0137	0.0140	0.0141	0.0141	0.0143	0.0139	0.0136	0.0133	
λ_1	-0.0091	-0.0093	-0.0094	-0.0094	-0.0094	-0.0087	-0.0084	-0.0081	
λ_2	0.0009	0.0063	0.0079	0.0078	0.0097	0.0069	0.0049	0.0002	
$\lambda_{\scriptscriptstyle 3}$	0.0668	0.0627	0.0610	0.0610	0.0582	0.0585	0.0588	0.0598	
I_4 — Cl_1									
ρ	0.0137	0.0144	0.0149	0.0148	0.0163	0.0176	0.0181	0.0185	
λ_1	-0.0091	-0.0096	-0.0100	-0.0100	-0.0112	-0.0123	-0.0127	-0.0133	
λ_2	-0.0009	-0.0054	-0.0068	-0.0068	-0.0096	-0.0118	-0.0125	-0.0130	
λ_{3}	0.0679	0.0712	0.0728	0.0734	0.0746	0.0745	0.0744	0.0742	
I_4 — O_3									
ρ	0.0188	0.0178	0.0171	0.0168	0.0158	0.0143	0.0138	0.0133	
λ_1	-0.0138	-0.0127	-0.0120	-0.0117	-0.0106	-0.0089	-0.0085	-0.0081	
λ_2	-0.0131	-0.0120	-0.0112	-0.0108	-0.0090	-0.0061	-0.0045	-0.0004	
λ_{3}	0.0650	0.0636	0.0621	0.0615	0.0616	0.0625	0.0616	0.0600	
(c) IOOCl→TS5→OIClO									
S_5	-15.20	-7.80(STS)	-1.90	-8.50	-11.50	-6.50	-5.50	0.00(ETS)	
RCP									
ho	0.0173	0.0229	0.0102	0.0233	0.0213	0.0210	0.0189		
λ_1	-0.0113	-0.0180	-0.0076	-0.0182	-0.0155	-0.0165	-0.0146		
λ_2	0.0015	0.0368	0.0020	0.0359	0.0198	0.0340	0.0288		
λ_{3}	0.0729	0.0874	0.0392	0.0890	0.0829	0.0807	0.0729		
I_4 — Cl_1									
ho	0.0173	0.0384	0.0558	0.2423	0.0235	0.0438	0.0474	0.0658	
λ_1	-0.0113	-0.0339	-0.0568	-0.5366	-0.0161	-0.0409	-0.0456	-0.0698	
λ_2	-0.0015	-0.0289	-0.0450	-0.5197	-0.0144	-0.0339	-0.0372	-0.0541	
λ_{3}	0.0735	0.1344	0.1602	4.0280	0.0970	0.1439	0.1493	0.1787	
$O_3 - O_2$									
ρ	0.2892	0.0637	0.0102	0.0814	0.2233	0.0405	0.0289		
λ_1	-0.6990	-0.0949	-0.0077	-0.1330	-0.5170	-0.0503	-0.0308		
λ_2	-0.6706	-0.0848	-0.0019	-0.1190	-0.4700	-0.0453	-0.0284		
λ_3	1.4025	0.4164	0.0392	0.5311	1.1727	0.2472	0.1580		

关键点进行了电子密度拓扑分析,计算结果列于表 2(a)-2(c). 绘制了IRC途径上一些重要点的电子密 度梯度径图(图3(a)-3(c),取三元环、四元环所在平 面为 xy 平面. 表 2(a)-(c)以及图 3(a)-(c)中, S_3 表示 IOCIO→TS3→IOOCI 过程中的反应坐标, S_4 表示 IOCIO→TS4→ ICIO₂ 过程中的反应坐标, S_5 表示 IOOCI→TS5→OICIO 过程中的反应坐标.

对于 IOClO→IOOCl 过程(表 2(a)及图 3(a)),当 S_3 =-0.40 时 (S 表示反应坐标),新键 O₃—O₂ 开始形 成,出现了一个环鞍点,即出现了一个 Δ 型结构过 渡区,此时环鞍点与 O₃—O₂ 键鞍点重合.随着反应 的进行,新键 O₃—O₂ 不断变短,旧键 O₃—Cl₁ 不断 变长,环鞍点逐渐向旧键 O₃—Cl₁ 靠近,当 S_3 =+1.60 时,环鞍点与旧键 O₃—Cl₁ 键鞍点重合,旧键 O₃— Cl₁开始断裂,环鞍点消失,我们将 S_3 =-0.40 到 S_3 = +1.60 定义为该反应的结构过渡区.在 S₃=+0.50 时, 环鞍点 RCP 处 λ₂ 值达到最大,将该点定义为该反 应的"结构过渡态"(STS)^{118]}.为了区别于结构过渡态, 我们定义传统意义上的过渡态为"能量过渡态" (ETS).结构过渡态一般不与能量过渡态重合.该反 应过程是放热过程,结构过渡态出现在能量过渡态 TS3 之后,与我们提出的"放热反应结构过渡态出现 在能量过渡态之后"的结论^[18,19]一致.在结构过渡区 内,O₃—O₂键鞍点处的ρ值由 0.0393 增加到0.0548, 进一步表明该键逐渐增强,O₃—Cl₁键鞍点处的ρ值 由 0.0507 减小到 0.0420,进一步表明该键逐渐减弱.

对于 IOClO→IClO₂ 过程(表 2(b)及图 3(b)),结 构过渡区出现在 S_4 =-1.05 到 S_4 =+0.24 之间,结构过 渡态出现在 S_4 =-0.28 处. 在该过渡区内, I_4 —Cl₁ 键 鞍点处的 ρ 值由 0.0137 增加到 0.0185,表明该键逐

图 3 异构化过程 IRC 途径上一些重要点的电子密度梯度径图 Fig.3 Gradient paths of the electronic density on the IRC path of the isomerization processes

渐增强, L—O₃ 键鞍点处 ρ 由 0.0188 减小到 0.0133, 表明该键逐渐减弱. 该反应过程是吸热过程, 结构过 渡态出现在能量过渡态 TS4 之前, 与我们提出的 "吸热反应结构过渡态出现在能量过渡态之前"的结 论^[18,19]—致.

对于 IOOCl→OIClO 过程(表 2(c)及图 3(c))结 构过渡区出现在 S_5 =-15.20 到 S_5 =-5.50 之间,结构 过渡态出现在 S_5 =-7.80 处.该反应过程是吸热过程, 结构过渡态出现在能量过渡态 TS5 之前,与我们提 出的"吸热反应结构过渡态出现在能量过渡态之前" 的结论^[18,19]→致.在该过渡区内, I₄—Cl₁ 键鞍点处的 ρ 值由 0.0173 增加到 0.0474,表明该键逐渐增强, O₃—O₂ 键鞍点处的 ρ 值由 0.2892 减小到 0.0289,即 该键逐渐减弱.

IOCIO→IOOCI与 IOCIO→ICIO₂分别形成三 元环结构过渡态, IOOCI→OICIO 形成四元环结构 过渡态. IOCIO→IOOCI 过程为放热反应, 结构过渡 态出现在能量过渡态之后, IOCIO→ICIO₂与 IOOCI→OICIO 过程为吸热反应, 结构过渡态均出 现在能量过渡态之前,与我们提出的"吸热反应结构 过渡态出现在能量过渡态之前,放热反应出现在能 量过渡态之后"结论^[18,19]一致.

IOCIO→IOOCI 过程放热 36.79 kJ·mol⁻¹, 对应 的结构过渡区为 S_3 =-0.40→+1.60; IOCIO→ICIO₂ 过 程和 IOOCI→OICIO 过程分别吸热 15.12 kJ·mol⁻¹ 和 69.90 kJ·mol⁻¹, 对应的结构过渡区分别为 S_4 = -1.05→+0.24 和 S_5 =-15.20→-5.50.进一步验证了我 们以前提出的"吸热或放热程度越大, 对应的结构过 渡区越长"的结论^[20].

3 结 论

(1) 优化得到了 ICIO₂ 的七种异构体的构型, 其中 OICIO 和 ICIOO 构型为首次报道, 振动分析确认 了该两种构型为稳定构型. 七种异构体的热力学相 对稳定顺序为 CIIO₂>CIOIO>IOOCI>IOCIO>ICIO₂> OICIO>ICIOO.

(2) 找到了各异构化过程的过渡态,并通过内禀 反应坐标(IRC)计算确认了各个异构体之间的相互 转化关系.

(3) IOCIO→IOOCI 与 IOCIO→ICIO₂ 分别经历 三元环结构过渡态, IOOCI→OICIO 经历四元环结 构过渡态, 以上结构过渡态与能量过渡态的相对位 置都与本课题组提出的"吸热反应结构过渡态出现 在能量过渡态之前, 放热反应出现在能量过渡态之 后"的结论一致.

(4) IOCIO→IOOCI 过程放热 36.79 kJ·mol⁻¹, IOCIO→ICIO₂ 过程和 IOOCI→OICIO 过程分别吸 热 15.12 kJ·mol⁻¹和 69.90 kJ·mol⁻¹, 对应的结构 过渡区分别为 S_3 =-0.40→+1.60, S_4 =-1.05→+0.24 和 S_5 =-15.20→-5.50. 进一步验证了我们以前提出 的 "吸热或放热程度越大, 对应的结构过渡区越长" 的结论.

References

- Solomon, S.; Garcia, R. R.; Ravishankara, A. R. J. Geophys. Res., 1994, 99: 491
- Turnispeed, A. A.; Gilles, M. K.; Burkholder, J. B.; Ravishankara,
 A. R. Chem. Phys. Lett., 1995, 242: 427
- Bedjanian, Y.; Le Bras, G.; Poulet, G. Chem. Phys. Lett., 1997, 266: 233
- Gilles, M. K.; Turnispeed, A. A.; Burkholder, J. B.; Ravishankara,
 A. R. *Chem. Phys. Lett.*, **1997**, **272**: 75
- 5 Laszlo, B.; Kurylo, M. J.; Huie, R. E. J. Phys. Chem., 1995, 99: 11701
- Harwood, M. H.; Burkholder, J. B.; Hunter, M.; Fox, R. W.;
 Ravishankara, A. R. J. Phys. Chem. A, 1997, 101: 853

- 7 Bedjanian, Y.; Le Bras, G.; Poulet, G. J. Phys. Chem. A, 1997, 101: 4088
- 8 Turnipseed, A. A.; Gilles, M. K.; Burkholder, J. B.; Ravishankara,
 A. R. *J. Phys. Chem. A*, **1997, 101**: 5517
- Gilles, M. K.; Turnipseed, A. A.; Brukholder, J. B.; Ravishankara,
 A. R.; Solomon, S. J. Phys. Chem. A, 1997, 101: 5526
- 10 Laszlo, B.; Huie, R. E.; Kurylo, M. J.; Miziolek, A. W. J. Geophys. Res., 1997, 102: 1523.
- 11 De More, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. Chemical kinetics and photochemical data for use in stratospheric modeling. NASA, JPL, California Institute of Technology: Pasadena, CA: 1994
- 12 Atkinson, D. B.; Hudgens, J. W.; Orr-Ewing, A. J. J. Phys. Chem. A, 1999, 103: 6173
- 13 Papayannis, D. K.; Melissas, V. S.; Kosmas, A. M. Chem. Phys. Lett., 2001, 349: 299
- Martin, J. M. L.; Sundermann, A. J. Chem. Phys., 2001, 114(8):
 3408
- 15 Zheng, S. J.; Cai, X. H.; Meng, L. P. QCPE Bull., 1995, 15(2): 25
- 16 Biegler-König, F. AIM2000, Version 1.0. University of Applied Science, Bielefeld, Germany
- 17 Bader, R. F. W. Chem. Rev., **1991, 91**(5): 893
- 18 Zeng, Y. L.; Zheng, S. J.; Meng, L. P. Inorg. Chem., 2004, 43: 5311
- 19 Zheng, S. J.; Meng, L. P.; Cai, X. H.; Xu, Z. F.; Fu, X. Y. J. Comput. Chem., 1997, 18: 1167
- Sun, C. H.; Zeng, Y. L.; Meng, L. P.; Zheng, S. J. Acta Chim. Sin., 2005, 63: 295 [孙翠红, 曾艳丽, 孟令鹏, 郑世钧. 化学学报, 2005, 63: 295]