November

www.whxb.pku.edu.cn

C₅₀ 富勒烯及其二聚物 C₁₀₀、C₁₀₁ 的光学性质

李晓东*

(南京师范大学化学与环境科学学院,南京 210097)

摘要: 运用 B3LYP 方法在 6-31G*基组水平上对 C₅₀ 富勒烯以及它的两个不同二聚物 C₁₀₀、C₁₀₁ 的几何构型进 行了全优化. 在优化所得构型的基础上, 采用 TDB3LYP 方法在 3-21G*基组水平上对其激发态性质、电子吸收 光谱进行了研究, 根据计算得到的态态间跃迁偶极矩和跃迁能等数据, 结合使用态求和公式进一步计算得到了 它们不同光学过程中的三阶非线性极化率. 结果表明, 当 C₅₀ 富勒烯二聚以后, 其电子吸收光谱的最大波长吸收 峰发生了明显的红移, 三阶非线性极化率有了较大的提高. 其中, [5,5]-[5,5]哑铃型二聚物 C₁₀₁ 有着比[2+2]闭环 型二聚物 C₁₀₀ 更大的三阶非线性极化率.

关键词: C₅₀富勒烯; 二聚物; 吸收光谱; 三阶非线性光学极化率 中图分类号: O641; O644

Optical Properties of C_{50} Fullerene and Its Two Dimers C_{100} and C_{101}

LI Xiao-Dong*

(College of Chemistry and Environment Science, Nanjing Normal University, Nanjing 210097, P. R. China)

Abstract: Configurations of C_{50} fullerene and its two dimers C_{100} and C_{101} were optimized at B3LYP/6-31G^{*} level. On the basis of the optimized geometrical structures, their excited states, electronic absorption spectra and third-order nonlinear optical polarizabilities in different optical processes were investigated at TDB3LYP/3-21G^{*} level coupled with sum-over-states method. The results obtained from the electronic absorption spectra showed that the largest wavelength absorption peaks of C_{50} fullerene dimers had a remarkable red shift compared with that of C_{50} fullerene, and their third-order nonlinear optical polarizabilities increased after the dimerization. Especially, [5,5]-[5,5] dumbbell-like C_{50} fullerene dimer C_{101} had a larger third-order nonlinear optical polarizability than [2+2]-closed C_{50} fullerene dimer C_{100}

Key Words: C₅₀ fullerene; Dimer; Absorption spectrum; Third-order nonlinear optical polarizability

富勒烯的发现引起了各学科的广泛关注,随着 富勒烯化学的不断发展,许多哑铃状富勒烯二聚物 的全碳分子,如 C₁₂₀、C₁₂₁、C₁₂₂、C₁₄₁等已通过不同的 化学方法被合成. 1997年, Komatsu 等¹¹用高速振动 磨技术(HSVM)以 KCN 为催化剂在固相中使 C₆₀发 生反应成功合成了 C₁₂₀. C₁₂₂于 1998年由 Strongin 等¹²合成,并用高效液相色谱(HPLC)分离得到. 在这 之后不久, Dragoe 等¹³合成并分离出了 C₁₂₁. 2004年 Zhao 等¹⁴又合成出了 C₁₃₁和 C₁₄₁. 富勒烯的二聚物分 子作为聚合物科学、纳米结构、超分子化学的模型近 年来被广泛研究[5-7].

2004年Xie等¹⁸合成出了新型稳定的C₅₀Cl₁₀,成功 地用氯捕获和稳定了小富勒烯C₅₀.此后,Xie等¹⁹运 用含时密度泛函理论(TDDFT)方法对C₅₀Cl₁₀、C₅₀H₁₀、 C₅₀Cl₆OCH₃的电子吸收光谱进行理论计算,从理论 上表征了它们的吸收光谱;Xu等¹⁰⁰对C₅₀O的八种可 能的异构体在B3LYP/3-21G水平上进行了计算,并 找到了其最稳定的异构体.Lu等¹¹¹通过对C₅₀ 富勒 烯及其衍生物C₅₀Cl₁₀的理论研究发现,五元环与五 元环相连的碳碳键是D₅₀对称性的C₅₀分子构型中

© Editorial office of Acta Physico-Chimica Sinica

[Note]

Received: May 7, 2007; Revised: July 19, 2007; Published on Web: September 3, 2007.

^{*}Corresponding author. Email: lixiaodong1@njnu.edu.cn; Tel/Fax: +8625-83598053.

南京师范大学校科研启动基金(2005103XGQ2B83)资助项目

化学活性最大的部位, 它可以与氯发生加成发应, 或 生成二聚物、多聚物等. Zhechkov 等^[12]通过对 C₅₀、 C₅₀H_x的低聚物、多聚物的研究发现, C₅₀ 易于生成低 聚物、多聚物. Yang 等^[13]通过理论计算表明, C₅₀Cl₁₀ 及其衍生物可能具有很好的非线性光学效应. 可以 说, C₅₀Cl₁₀ 的发现必将激起又一波关于富勒烯及其 衍生物的研究热潮.

本文将对 D_{5h} 对称性的 C₅₀ 富勒烯及它的[2+2] 闭环型二聚物 C₁₀₀、[5,5]-[5,5] 哑铃型二聚物 C₁₀₁ 的 几何构型运用 Gaussian 03 程序¹¹⁴中的从头算方法 进行全优化;在优化所得构型的基础上,运用含时 密度泛函理论对它们的激发态性质、电子吸收光谱 进行研究;高三阶极化率的非线性光学材料可以实 现全光学开关、调制和计算装置实际运作,满足信息 高速公路要求极快地处理和传输日益增多的数据和 信息,而具有离域化电子结构的共轭体系是首选的 后备材料.因此本文中还运用态求和方法计算了它 们在不同光学过程的频率相关的三阶非线性极化 率,讨论了三阶极化率的色散行为,分析了对三阶非 线性极化率起主要贡献的电子跃迁性质.

1 计算方法

在 *D*_{5h} 对称性的 C₅₀ 分子结构中, 共存在有六种 不同的碳碳化学键, 五元环与五元环共用边标记为 [5,5]键, 五元环与六元环共用边标记为[5,6]键, 六元 环与六元环共用边标记为[6,6]键, 其中, [5,5]键只有 一种, [5,6]键有三种, 在图 1 中分别标记为[5,6]a、 [5,6]b、[5,6]c; [6,6]键有两种, 分别记为[6,6]a、[6,6]b. 通过不同的碳碳化学键相连, 可以形成许多种二聚 物 C₁₀₀, 以及哑铃型二聚物 C₁₀₁. 但是在前人的研究 工作中发现^[11,12], *D*_{5h} 对称性的 C₅₀ 分子结构中, [5,5] 碳碳键具有最高的化学活性, 加成反应优先发生在 [5,5]碳碳键上, 同时研究表明[2+2]闭环型的二聚物 在能量上比[2+4]、[4+4]及[2+2]开环型的二聚物要 稳定. 因此, 本文把C₅₀、[2+2] 闭环型的二聚物C₁₀₀、 [5,5]-[5,5]哑铃型二聚物C₁₀₁作为目标分子进行研究. 图1给出了它们的几何构型及部分原子标号.

首先运用 Gaussian 03^[14]程序中的密度泛函理论 采用 B3LYP^[15]方法在 6-31G*基组水平上对研究对 象的几何构型进行全优化.在优化过程中采用了对 称性限制,得到的 C₅₀构型具有 D₅₄ 对称性, C₁₀₀ 具 有 D₂₄ 对称性; C₁₀₁ 具有 D₂₄ 对称性.在优化所得构 型的基础上,再运用含时密度泛函理论^[16-18]采用

图 1 C₅₀、C₁₀₀和 C₁₀₁的几何构型及部分原子的原子标号 Fig.1 Optimized geometrical configurations and corresponding atomic numbering of C₅₀, C₁₀₀, and C₁₀₁ TDB3LYP 方法在 3-21G*基组水平上计算它们的基 态 S₀ 到激发单态 S_n 的垂直跃迁能及振子强度、态态 间的跃迁能、跃迁偶极矩, 根据所得数据可得它们 的电子吸收光谱. 最后结合态求和方法根据公式 (1)^[1920]可计算得到它们三种不同光学过程:三次谐 波产生(THG)、电场诱导的二次谐波产生(EFISHG)、 简并四波混合(DFWM)中的三阶非线性光学极化率 及它们的色散行为.

$$\gamma_{abcd}(-\omega_{p};\omega_{1},\omega_{2},\omega_{3})=\left(\frac{2\pi}{h}\right)^{3}K(-\omega_{P};\omega_{1},\omega_{2},\omega_{3})e^{4}\times$$

$$\left\{\sum_{p}\left[\sum_{i,j,k}\frac{\langle o | r_{a} | k \rangle \langle k | r_{b}^{*} | j \rangle \langle j | r_{c}^{*} | i \rangle \langle i | r_{d} | o \rangle}{(\omega_{ko}-\omega_{p})(\omega_{jo}-\omega_{1}-\omega_{2})(\omega_{io}-\omega_{1})}\right]-$$

$$\sum_{p}\left[\sum_{j,k}\frac{\langle o | r_{a} | j \rangle \langle j | r_{b} | o \rangle \langle o | r_{c} | k \rangle \langle k | r_{d} | o \rangle}{(\omega_{jo}-\omega_{p})(\omega_{jo}-\omega_{1})(\omega_{ko}+\omega_{2})}\right]\right\} (1)$$

上式中各符号的物理意义和取值规定见文献[19].

2 结果和讨论

2.1 C₅₀、C₁₀₀、C₁₀₁的几何构型

图 1 给出了 C₅₀、C₁₀₀、C₁₀₁ 的几何构型,表 1 列出 了它们的主要构型参数.

在 D₃₀ 对称性的 C₅₀ 中, 六种不同的化学键键长 [5,5]、[5,6]a、[5,6]b、[5,6]c、[6,6]a、[6,6]b 分别为 0.1470、0.1465、0.1469、0.1417、0.1415 和 0.1391 nm. 在它的二聚物 C100 和 C101 中,其聚合位置附近的构 型参数有了大的变化:在 C₁₀₀ 中, C2-C3 和 C3-C4 键长分别为 0.1562 和 0.1523 nm, 比 C50 的分别 增大了 0.0092 和 0.0106 nm; C4-C5 和 C6-C7 键 长分别为 0.1435 和 0.1384 nm, 比 C50 的分别减小了 0.0034 和 0.0031 nm; 在 C101 中, 构型参数也有类似 的变化: C2-C3 和 C3-C4 键长分别为 0.1574 和 0.1506 nm, 比 C₅₀的分别增大了 0.0104 和 0.0089 nm; C4-C5 和 C6-C7 键长分别为 0.1440 和 0.1382 nm, 比 C₅₀ 的分别减小了 0.0029 和 0.0033 nm. 可以看出, 在二聚物中, 键 C2-C3 和 C3-C4 比 C₅₀ 中表现出更多的单键性质, 而键 C4-C5 和 C6-C7 比 C₅₀ 中表现出更多的双键性质. 在 C₁₀₀ 中, 连接两个 C₃₀ 的化学键 C1-C2 为 0.1593 nm, 而在 C101 中, C1-C2 键长为 0.1488 nm. 在键角方面, C50 二聚以后, 变化最为明显的是键角 C2C3C4 和 C3C4C5,在C100中,它们分别为105.0°和110.0°,分 别比 C₅₀减小和增大了 3.8°和 3.2°; 在 C₁₀₁ 中, 它们 分别为 105.0°和 110.3°, 分别比 C50 减小和增大了 3.8°和 3.5°. 此外, 键角 C1C2C3 在 C100 和 C101 中分 别为 90.0°和 58.1°. 在二面角方面, 二聚后也有大的 变化, 比如, 二面角 C3C4C5C6 在 C100 和 C101 中比在 C50 中分别增大了 7.7°和 6.2°.

表 1 C₅₀、C₁₀₀ 和 C₁₀₁ 的主要构型参数 Table 1 Some optimized geometrical parameters of C₇₀, C₁₀₂ and C₁₀₁

$c_{50}, c_{100}, and c_{101}$						
		C ₅₀	C ₁₀₀	C ₁₀₁		
Bond length (nm)	C1—C2		0.1593	0.1488		
	C2—C3	0.1470	0.1562	0.1574		
	C3—C4	0.1417	0.1523	0.1506		
	C4—C5	0.1469	0.1435	0.1440		
	C5—C8	0.1391	0.1420	0.1417		
	C6—C7	0.1415	0.1384	0.1382		
	C8—C9	0.1465	0.1443	0.1447		
Bond angle (°)	C1-C2-C3		90.0	58.1		
	C2-C3-C4	108.8	105.0	105.0		
	C3—C4—C5	106.8	110.0	110.3		
	C4-C5-C6	108.6	109.9	109.5		
	C6-C5-C8	118.9	120.2	119.8		
Dihedral angle (°)	C1-C2-C3-C4		122.0	119.5		
	C2-C3-C4-C5	2.4	-2.3	-1.4		
	C3-C4-C5-C6	-3.8	3.9	2.4		
	C7—C6—C5—C8	2.4	-2.0	-1.4		

2.2 激发态和电子吸收光谱性质

分子的电子吸收光谱可以根据计算得到的从基 态到高能激发单态的垂直跃迁能及相应的振子强度 所获得.

表 2 列出了 C_{50} 、 C_{100} 、 C_{100} 的从基态 S_0 到激发单 态S。的垂直激发能、对应波长、振子强度及主要电 子跃迁形式.从表中可以看出,Caa富勒烯的第一激 发单态的跃迁能为0.7626 eV, 与C60(2.4351 eV)[21]的相 比小了很多,说明其化学活性比C@要大,它对应于电 子从最高占据轨道(HOMO)到最低空轨道(LUMO) 的跃迁. 它的第一个定则允许的电子跃迁为从基态 S₀ 到激发单态 S₈ 的跃迁, 对应为电子从 (HOMO-8) 到 LUMO 的跃迁, 振子强度为 0.0103, 对应的吸收 波长为 564.8 nm. 其最强吸收峰出现在 238.2 nm, 振子强度为0.2382, 对应于电子从(HOMO-10)到 (LUMO+3)的跃迁. 在它的二聚物 C100 中, 第一激发 单态的跃迁能为 1.3594 eV, 对应于电子从 HOMO 到 (LUMO+1)的跃迁. 它的第一个定则允许的电子 跃迁为基态 S₀ 到激发单态 S₂的跃迁,对应为电子从 HOMO到LUMO的跃迁, 振子强度为0.0188, 对应的 吸收波长为901.0 nm,与C50相比其吸收峰的位置发 生了较大红移.其最强吸收峰出现在 572.2 nm, 振子 强度为0.1290, 对应于电子从HOMO-4到 LUMO+1 的跃迁. 在它的二聚物 C₁₀₁ 中, 第一激发单态的跃迁 能为 1.2422 eV, 对应于电子从 HOMO 到 LUMO 的 跃迁.同时它也是第一个定则允许的电子跃迁,振子 强度为 0.0082, 对应的吸收波长为 998.2 nm, 与 C₅₀ 相比其吸收峰的位置发生了较大红移.其最强吸收

表 2 C_{50} 、 C_{100} 和 C_{101} 的电子吸收光谱 Table 2 The electronic absorption spectra of

$C_{50}, C_{100}, and C_{101}$								
	Excited	Transition)/nm	f	Transition			
	state	energy (eV)	λ/ШΠ	J	nature			
C_{50}	S_1	0.7626	1625.9	0.0000	$MO_{150} \rightarrow MO_{151}$			
	S_8	2.1949	564.8	0.0103	$MO_{142} \rightarrow MO_{151}$			
	S_{16}	3.0101	411.9	0.0203	$MO_{148} \rightarrow MO_{152}$			
	S_{97}	5.2051	238.2	0.2382	$MO_{140} \rightarrow MO_{154}$			
C_{100}	S_1	1.3594	912.1	0.0000	MO ₃₀₀ →MO ₃₀₂			
	S_2	1.3761	901.0	0.0188	MO ₃₀₀ →MO ₃₀₁			
	S_{12}	2.0198	613.8	0.0110	$MO_{299} \rightarrow MO_{304}$			
	S_{19}	2.1668	572.2	0.1290	$MO_{296} \rightarrow MO_{302}$			
C_{101}	S_1	1.2422	998.2	0.0082	$MO_{303} \rightarrow MO_{304}$			
	S_7	1.8037	687.4	0.0386	$MO_{303} \rightarrow MO_{306}$			
	S_{16}	2.0785	596.5	0.0527	$MO_{302} \rightarrow MO_{307}$			
	S_{17}	2.1751	570.3	0.1867	MO ₂₉₉ →MO ₃₀₄			
		a 11						

f: oscillator strength

峰出现在 570.3 nm, 振子强度为 0.1867, 对应于电子从(HOMO-4)到(LUMO+1)的跃迁.

从上述讨论中可以看出,当C₅₀二聚后,其电子 吸收光谱无论是最大波长吸收峰还是最强吸收峰与 C₅₀富勒烯相比都发生了明显的红移.

2.3 不同光学过程中的三阶非线性极化率及其色 散行为

在讨论三阶极化率与输入光子能量的变化之前,有必要先讨论三阶极化率与选取态数目的收敛 情况.图2给出了在 DFMW 过程中 C₅₀、C₁₀₀和 C₁₀₁ 的三阶极化率与选取态数目的收敛情况.

从图2中可以看出, C₅₀的收敛较为缓慢, 因此对 其截取了100个态.而C₁₀₀和C₁₀₁的收敛较快, 对其截 取了80个态.从图2中可以看出, 对于C₅₀富勒烯, 在 第96个态之前曲线相对较平, 前96个态对γ₃₂₂约有 23%的贡献, 而从态97开始曲线变陡, 其中第97态对 γ₃₂₂的贡献约54%, 可见对C₃₀的γ₃₂₂值起主要贡献的 态为第97态.对于C₁₀₀来说, 在图2中的*a*方向代表*x*轴 方向, 也就是说其γ₃₂₂对〈γ〉贡献最大.从图中可以看 出, 对C₁₀₀的γ₃₂₂贡献最大的态是第12态; 对于C₁₀₁来 说, 在图2中的*a*方向代表*z*轴方向, 也就是说其γ₃₂₂对 〈γ〉贡献最大. 从图中可以看出, 对C₁₀₁的γ₂₀₂贡献最大的态是第16态.

图 3 为频率范围从 0.0 到 1.0 eV· h^{-1} 的不同光 学过程的动态 $\langle \gamma \rangle$ 曲线图. 在输入光子能量为零的 静态条件下,同一个分子在不同物理过程中的 $\langle \gamma \rangle$ 值是一样的. 其相应值 C₅₀ 为 0.11×10⁻³⁴ esu, C₁₀₀ 为 0.52×10⁻³⁴ esu, C₁₀₁ 为 1.00×10⁻³⁴ esu. 可以看出, 静态 时二聚物 C₁₀₁ 的 $\langle \gamma \rangle$ 值最大.

当输入的光子能量为 0.65 eV 时, C_{50} 的 $\langle \gamma(\omega) \rangle$ 、 $\langle \gamma(2\omega) \rangle$ 和 $\langle \gamma(3\omega) \rangle$ 分别为 0.13×10⁻³⁴, 0.15×10⁻³⁴ 和 0.27×10⁻³⁴ esu; C_{100} 的 $\langle \gamma(\omega) \rangle$ 、 $\langle \gamma(2\omega) \rangle$ 和 $\langle \gamma(3\omega) \rangle$ 分 别为 1.1×10⁻³⁴、1.8×10⁻³⁴ 和 15.5×10⁻³⁴ esu; C_{101} 的 $\langle \gamma(\omega) \rangle$ 、 $\langle \gamma(2\omega) \rangle$ 和 $\langle \gamma(3\omega) \rangle$ 分别为 2.0×10⁻³⁴、3.1×10⁻³⁴ 和 15.8×10⁻³⁴ esu. 可以看出, 在输入光子能量为 0.65 eV 时, 二聚物 C_{101} 的值同样是最大的.

从上述讨论中可以看出, C₅₀ 富勒烯二聚以后, 可以明显提高其三阶非线性极化率.在 C₅₀中,态97 对三阶极化率的贡献最大,其基态到第 97 激发单态 的跃迁偶极矩和跃迁能分别为 3.4736 a.u 和5.2051 eV;在 C₁₀₀中,态 12 对三阶极化率的贡献最大,其 基态到第 12 激发单态的跃迁偶极矩和跃迁能分别

电子跃迁形式的相应分子轨道 Fig.4 The corresponding molecular orbitals of electronic transition largely contributing to thirdorder polarizability for C₅₀, C₁₀₀, and C₁₀₁

为 1.1992 a.u 和 2.0198 eV; 在 C101 中, 态 16 对三阶 极化率的贡献最大,其基态到第16激发单态的跃迁 矩和跃迁能分别为 4.7577 a.u 和 2.0785 eV. 由此可 以看出,在C₃₀中,尽管其跃迁偶极矩较大,但由于 其跃迁能也比较大,从而使得其三阶极化率较小; 在 C101 中, 它的跃迁能与 C100 相差很小, 但由于其有 较大的跃迁偶极矩,从而使其有大的三阶极化率.图 4给出了对三阶极化率起主要贡献的电子跃迁形式 的相应分子轨道,从图 4 中可以看出,在 C₅₀,C₁₀₀ 和 C_{101} 中,其电子跃迁形式主要是 π - π 跃迁,同时发现 在 C₅₀ 的二聚体 C₁₀₀ 和 C₁₀₁ 中, 它们的电荷分布更为 广泛,也即电荷的离域性较大,不单单是局限于某一 C50 笼上,由此也可以解释正是由于它们的电荷离域 性的增强,从而使其电子吸收光谱红移,电子跃迁能 减小,最终导致其三阶非线性极化率的增强.对于这 两种不同的 C₅₀ 富勒烯二聚物,由于其单体间连接 方式不同,分子所属点群不同,导致其电子结构也有 所不同, [5,5]-[5,5]哑铃型二聚物 C₁₀₁ 有着比[2+2]闭 环型二聚物 C100 更大的跃迁偶极矩,从而也就有相 对更大的三阶非线性极化率.

3 结 论

C₅₀ 富勒烯二聚以后, 其电子吸收峰发生了明显的红移, 三阶非线性极化率有了较大的提高. 分析其产生主要贡献的电子跃迁形式及相应的分子轨道成

分发现,其吸收主要为 π-π 跃迁产生,在 C₅₀ 的二聚 体中,电荷的离域性明显增强,从而导致吸收峰的红 移和跃迁能的降低,最终导致了其三阶极化率的增 强.其中,[5,5]-[5,5]哑铃型二聚物 C₁₀₁ 有着比[2+2] 闭环型二聚物 C₁₀₀ 更大的三阶非线性极化率.

References

- Wang, G. W.; Komatsu, K.; Murata, Y.; Shiro, M. Nature, 1997, 387: 583
- Fabre, T. S.; Treleaven, W. L.; McCarley, T. D.; Newton, C. L.; Landry, R. M.; Saraiva, M. C.; Strongin, R. W. *J. Org. Chem.*, 1998, 63: 3522
- 3 Dragoe, N.; Tanibayashi, S.; Nakahara, K.; Nakao, S.; Shimotani, H.; Xiao, L.; Kitazawa, K.; Achiba, Y.; Kikuchi, K.; Nojima, K. *Chem. Commun.*, **1999**: 85
- 4 Zhao, Y. L.; Chen, Z. L.; Gao, X. F.; Qu, L.; Chai, Z. F.; Yuan, H.; Xing, G. M.; Yoshimoto, S.; Tsutsumi, E.; Itaya, K. J. Am. Chem. Soc., 2004, 126: 11134
- 5 Sun, D.; Reed, C. A. Chem. Commun., 2000: 2391
- 6 Forman, G. S.; Tagmatarchis, N.; Shirohara, H. J. Am. Chem. Soc., 2001, 124: 178
- 7 Gromov, A.; Ballenweg, S.; Giesa, S.; Lebedkin, S.; Hull, W. E.; Krätschmer, W. Chem. Phys. Lett., **1977**, **267**: 460
- 8 Xie, S. Y.; Gao, F.; Lu, X.; Huang, R. B.; Wang, C. R.; Zhang, X.; Liu, M. L.; Deng, S. L.; Zheng, L. S. Science, **2004**, **304**: 699
- 9 Xie, R. H.; Bryant, G. W.; Cheung, C. F.; Smith, V. H.; Zhao, J. J. J. Chem. Phys., 2004, 121: 2849
- Xu, X. F.; Xing, Y. M.; Yang, X.; Wang, G. C.; Cai, Z. S.; Shang,
 Z. F.; Pan, Y. M.; Zhao, X. Z. Int. J. Quantum Chem., 2005, 101:
 160
- Lu, X.; Chen, Z. F.; Thiel, W.; Schleyer, P. v. R.; Huang, R. B.; Zheng, L. J. Am. Soc. Chem., 2004, 126: 14871
- Zhechkov, L.; Heine, T.; Seifert, G. J. Phys. Chem. A, 2004, 108: 11733
- 13 Yang, Y.; Wang, F. H.; Zhou, Y. S. Phys. Rev. A, 2005, 71: 013202
- 14 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; *et al.* Pittsburgh PA: Gaussian, Inc., 2003
- 15 Becke, A. D. J. Chem. Phys., 1993, 98: 5648
- 16 Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys., 1998, 109: 8218
- 17 Bauemschmitt, R.; Ahlrichs, R. Chem. Phys. Lett., 1996, 256: 454
- 18 Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys., 1998, 108: 4439
- 19 Pierce, B. M. J. Chem. Phys., 1989, 91: 791
- 20 Orr, B. J. J.; Ward, F. Mol. Phys., 1971, 20: 513
- Li, X. D.; Cheng, W. D.; Wu, D. S.; Zhang, H.; Gong, Y. J.; Lan,
 Y. Z. Chem. Phys. Lett., 2003, 380: 480