[Note]

www.whxb.pku.edu.cn

# K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-H<sub>2</sub>O四元体系 273 K 介稳相平衡

桑世华1,\* 殷辉安1 倪师军2 张成江2

(1成都理工大学材料与化学化工学院,成都 610059; 2成都理工大学地球化学系,成都 610059)

**摘要:** 采用等温蒸发平衡法研究了四元体系 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-H<sub>2</sub>O 在 273 K 时的介稳相平衡及平衡液 相的密度. 研究发现该四元体系为简单共饱和型, 无复盐及固溶体形成, 根据溶解度数据绘制了相图, 相图中有 一个共饱点 E, 三条单变度曲线 E<sub>6</sub>E, E<sub>2</sub>E, E<sub>4</sub>E; 三个平衡固相分别为 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·4H<sub>2</sub>O<sub>5</sub>Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·10H<sub>2</sub>O 和 LiBO<sub>2</sub>· 8H<sub>2</sub>O. 并简要讨论了实验结果.

关键词: 水盐体系; 介稳相平衡; 硼酸盐 中图分类号: 0642

## Metastable Equilibrium Solubilities of Solutions in the Quaternary System of K<sub>2</sub>B<sub>4</sub>O<sub>7</sub> -Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> -Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub> -H<sub>2</sub>O at 273 K

SANG Shi-Hua<sup>1,\*</sup> YIN Hui-An<sup>1</sup> NI Shi-Jun<sup>2</sup> ZHANG Cheng-Jiang<sup>2</sup> (<sup>1</sup>Institute of Materials and Chemistry & Chemical Engineering, Chengdu 610059, P. R. China; <sup>2</sup>Department of Geochemistry, Chengdu University of Technology, Chengdu 610059, P. R. China)

**Abstract:** Metastable equilibrium solubilities and densities of the quaternary system of  $K_2B_4O_7$ - $Na_2B_4O_7$ - $Li_2B_4O_7$ - $H_2O$  at 273 K were studied by isothermal evaporation method. Based on the solubility data, the metastable equilibrium phase diagram of the system was plotted, which consists of one invariant point E; three univariant curves  $E_1E$ ,  $E_2E$ , and  $E_3E$ , three crystallization fields  $Na_2B_4O_7 \cdot 10H_2O$ ,  $K_2B_4O_7 \cdot 4H_2O$ , and  $LiBO_2 \cdot 8H_2O$ . Potassium borate ( $K_2B_4O_7$ ) had the largest solubility in the system.

Key Words: Salt-water system; Metastable phase equilibrium; Borate

相图与相平衡研究是无机化工生产所必须的基础性研究.高矿化度的盐湖卤水是重要的液态资源. 我国青藏高原由于特殊的地理气候,盐湖众多,除富 有巨量的石盐、芒硝、镁盐等普通盐湖外,还富有锂、 硼、钾等元素的特种盐湖.西藏境内的扎布耶盐湖卤 水中,锂、硼、钾浓度之高在世界盐湖卤水中也是非 常罕见的<sup>[1-3]</sup>.该盐湖属碱性盐湖,其主要成份为Li<sup>+</sup>、 K<sup>+</sup>、Na<sup>+</sup>、Rb<sup>+</sup>、Cs<sup>+</sup>、B<sub>4</sub>O<sup>2+</sup>、CO<sup>2</sup><sub>3</sub>、Cl<sup>-</sup>、SO<sup>2+</sup>、H<sub>2</sub>O等.建立 太阳池初步分离富集无机盐初级产品需要相应卤水 体系的多温介稳相平衡的研究成果做指导.因此,开 展该盐湖复杂多组分体系低温介稳相平衡及平衡溶 液物化性质的研究,对于开发该盐湖资源,制定卤水 综合利用方案,揭示盐湖卤水的地球化学平衡行为, 是必不可少的基础性研究工作.

在相平衡的研究中,由于条件的改变,一个相会转变为另一个相,但在没有干扰或缓慢冷却等条件下,相转变过程阻滞或延迟,这时体系处于介稳状态,体系的介稳状态有转变为稳定态的趋势.但是,有的需要在相对较长的时间内完成.介稳平衡是一种没有达到相平衡的现象,一般用介稳平衡相图来表达溶液体系的液固介稳平衡关系.盐湖是天然存在的水和盐类共同存在的复杂体系,对于水盐体系

Received: February 26, 2007; Revised: April 27, 2007; Published on Web: June 8, 2007.

<sup>\*</sup>Corresponding author. Email: sangsh@cdut.edu.cn, sangshihua@sina.com.cn

国家自然科学基金(40303010)和中国博士后科学基金(20060390324)联合资助项目

C Editorial office of Acta Physico-Chimica Sinica

相平衡的研究,仅仅研究稳定相平衡是不够的,在盐 湖卤水自然蒸发结晶过程中,不同程度地存在介稳相 平衡现象.对于介稳现象的研究,能够客观地反映和 再现开放体系的自发卤水蒸发结晶过程及液固相相 互作用和数量关系.近年来,金作美、苏裕光等人[4-9] 分别完成了海水型多温五元体系介稳相图; 房春 晖、郭智忠等人™进一步进行了25℃碳酸盐型和硫 酸盐型五元 (Na+, K+//Cl-, SO<sup>2-</sup>, CO<sup>2-</sup>-H<sub>2</sub>O) 和四元 (Li+, Mg<sup>2+</sup>//Cl<sup>-</sup>, SO<sup>2-</sup>-H<sub>2</sub>O)体系介稳相平衡的研究.本 文作者前期研究工作中针对扎布耶盐湖卤水的组成 已开展了部分四元体系,即288K含硼酸盐的介稳 相平衡研究<sup>[9,10]</sup>, 但该硼酸盐低温四元子体系 273 K 介稳相平衡的研究尚未涉及亦未见文献报道.本文 对该四元体系进行了详细的研究,测定了 273 K 各 组分溶解度及相应平衡液相的密度,并绘制出该体 系介稳相图.

#### 1 实 验

#### 1.1 实验试剂及仪器

实验中所用试剂 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·4H<sub>2</sub>O<sub>5</sub>Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·10H<sub>2</sub>O, Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>均为分析纯.实验过程中配制溶液和分析用 标液均用去离子水(pH≈6.6,电导率<1×10<sup>-4</sup> S·m<sup>-1</sup>), 配制溶液前煮沸除去 CO<sub>2</sub>.

实验仪器: 恒温蒸发控制箱, 精度为±0.1℃.



采用密度瓶法测量溶液的密度.

#### 1.2 实验方法

在恒温恒定风速的蒸发室内进行等温蒸发实 验,按照预计相图点的组成配制成合成卤水放置于 硬质塑料盒(长 24 cm, 宽 14 cm, 高 7 cm)中进行等 温蒸发实验.实验温度为 *T*=(0±0.1) ℃.

观察卤水蒸发过程中析出固相的变化,定期取 液相及析出的固相样品进行化学分析,固相在偏光 显微镜下观察晶形,并用 X 射线粉晶衍射法进一步

表 1 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>- Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>- Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>- H<sub>2</sub>O 四元体系 273 K 介稳平衡溶解度数据和密度 Table 1 Solubilities and densities of solution in the metastable equilibrium quaternary system of K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-H<sub>2</sub>O at 273 K

| No.              | Composition of solution(100w) |                                      |                 |                             | $N(K_2B_4O_7+Na_2B_4O_7+Li_2B_4O_7)=100\%$      |                 |                                      |           | Call dath and |
|------------------|-------------------------------|--------------------------------------|-----------------|-----------------------------|-------------------------------------------------|-----------------|--------------------------------------|-----------|---------------|
|                  | $w(K_2B_4O_7)$                | $w(\text{Li}_2\text{B}_4\text{O}_7)$ | $w(Na_2B_4O_7)$ | $\rho/(g \cdot cm^{\circ})$ | $N(\mathbf{K}_{2}\mathbf{B}_{4}\mathbf{O}_{7})$ | $N(Na_2B_4O_7)$ | $N(\text{Li}_2\text{B}_4\text{O}_7)$ | $N(H_2O)$ | - Sona phase  |
| 1,E <sub>3</sub> | 14.30                         | 0.65                                 | 0.00            | 1.0927                      | 95.65                                           | 4.35            | 0.00                                 | 568.90    | kb+lb         |
| 2                | 13.79                         | 0.56                                 | 0.20            | 1.1180                      | 94.78                                           | 3.85            | 1.37                                 | 587.29    | kb+lb         |
| 3                | 13.50                         | 0.42                                 | 0.31            | 1.1286                      | 94.87                                           | 2.95            | 2.18                                 | 602.74    | kb+lb         |
| 4                | 13.20                         | 0.43                                 | 0.36            | 1.1288                      | 94.35                                           | 3.07            | 2.57                                 | 614.80    | kb+lb         |
| $5, E_1$         | 0.00                          | 1.56                                 | 2.56            | 1.0135                      | 0.00                                            | 37.86           | 62.14                                | 2327.18   | lb+nb         |
| 6                | 0.68                          | 1.47                                 | 2.60            | 1.0320                      | 14.32                                           | 30.95           | 54.74                                | 2005.26   | lb+nb         |
| 7                | 1.33                          | 0.94                                 | 2.20            | 1.0424                      | 29.75                                           | 21.03           | 49.22                                | 2137.14   | lb+nb         |
| 8                | 3.26                          | 0.63                                 | 1.63            | 1.0652                      | 59.06                                           | 11.41           | 29.53                                | 1711.59   | lb+nb         |
| 9                | 3.28                          | 0.42                                 | 1.28            | 1.0834                      | 65.86                                           | 8.43            | 25.70                                | 1908.03   | lb+nb         |
| 10               | 9.36                          | 0.59                                 | 1.13            | 1.0969                      | 84.48                                           | 5.32            | 10.20                                | 802.53    | lb+nb         |
| 11,E             | 13.06                         | 0.37                                 | 0.86            | 1.1334                      | 91.39                                           | 2.59            | 6.02                                 | 599.79    | lb+nb+kb      |
| $12, E_2$        | 11.16                         | 0.00                                 | 1.26            | 1.1379                      | 89.86                                           | 0.00            | 10.14                                | 705.15    | kb+nb         |
| 13               | 10.96                         | 0.13                                 | 0.85            | 1.1264                      | 91.79                                           | 1.09            | 7.12                                 | 737.52    | kb+nb         |
| 14               | 11.06                         | 0.13                                 | 0.83            | 1.1267                      | 92.01                                           | 1.08            | 6.91                                 | 731.95    | kb+nb         |
| 15               | 13.98                         | 0.17                                 | 0.49            | 1.1317                      | 95.49                                           | 1.16            | 3.35                                 | 583.06    | kb+nb         |
| 16               | 13.71                         | 0.15                                 | 0.47            | 1.1292                      | 95.67                                           | 1.05            | 3.28                                 | 597.84    | kb+nb         |

kb: K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>•4H<sub>2</sub>O, nb: Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>•10H<sub>2</sub>O; lb: LiBO<sub>2</sub>•8H<sub>2</sub>O; w: mass of fraction in solution; N: Janecke index

#### 鉴定.

### 1.3 分析方法

K<sup>+</sup>用四苯硼钠-季胺盐返滴定法分析; B<sub>4</sub>O<sup>2</sup>在甘 露醇存在下,用碱量法滴定分析; Li<sup>+</sup>用原子吸收分 光光度法测定; Na<sup>+</sup>用差减法分析.

#### 2 结果及讨论

四元体系介稳溶解度及密度的测定结果列于表 1中,由其溶解度数据和对应的平衡固相绘制了其 273 K介稳平衡相图,见图 1.

由图 1 及表 1 可见,该四元体系介稳相图属简 单共饱和型,无复盐及固溶体生成.其介稳平衡相图 有 3 个结晶区,分别为  $K_2B_4O_7 \cdot 4H_2O$  (BE<sub>2</sub>EE<sub>3</sub>B), Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> · 10H<sub>2</sub>O(AE<sub>2</sub>EE<sub>1</sub>),LiBO<sub>2</sub> · 8H<sub>2</sub>O(CE<sub>1</sub>EE<sub>3</sub>C),其 中,共饱点E的组成(质量分数,下同)为13.06% (K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>),0.86%(Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>),0.37%(Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>),所对应的 平衡固相为 Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> · 10H<sub>2</sub>O+K<sub>2</sub>B<sub>4</sub>O<sub>7</sub> · 4H<sub>2</sub>O+LiBO<sub>2</sub> · 8H<sub>2</sub>O;三条单变度曲线为 E<sub>1</sub>E、E<sub>2</sub>E、E<sub>3</sub>E;平衡固相 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub> · 4H<sub>2</sub>O 结晶区最小,对应的溶解度最大,而 LiBO<sub>2</sub> · 8H<sub>2</sub>O所对应的固相结晶区最大,所以在该四 元体系介稳273 K相平衡体系中,Li<sub>2</sub>B<sub>4</sub>O,溶解度最小.

低温273 K介稳平衡条件下, 与288 K的稳定相 图相比, Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>和Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>的溶解度下降明显<sup>[11]</sup>.

硼酸盐溶解行为复杂,在溶液中极易形成过饱 和溶液,硼酸根在溶液中随着硼浓度、pH值、溶剂等 条件不同而以不同的聚阴离子存在<sup>[12]</sup>, B<sub>4</sub>O<sup>2+</sup>是溶液 中各种可能存在的硼酸根离子的综合统计形式<sup>[13]</sup>, 因此,硼酸盐的溶解度分别以 Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>、K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>和 Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>表示,在该体系中,当溶液与固相达到固液 平衡时,不同的聚阴离子发生缩聚或解聚反应而以 B<sub>4</sub>O<sub>5</sub>(OH)<sup>2+</sup>和B(OH)<sup>4+</sup>形式存在,在该四元介稳平衡 体系中,平衡固相K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·4H<sub>2</sub>O, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·10H<sub>2</sub>O完整 分子式为K<sub>2</sub>[B<sub>4</sub>O<sub>5</sub>(OH)<sub>4</sub>]·2H<sub>2</sub>O 及 Na<sub>2</sub>[B<sub>4</sub>O<sub>5</sub>(OH)<sub>4</sub>]· 8H<sub>2</sub>O,而LiBO<sub>2</sub>·8H<sub>2</sub>O完整的分子式为[Li(H<sub>2</sub>O)<sub>6</sub>· B(OH)<sub>4</sub>]<sup>[14]</sup>.

### 3 结 论

(1)通过等温蒸发平衡法获取了四元体系 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-H<sub>2</sub>O 273 K 时介稳平衡溶解 度数据,并测定了相应的平衡液相的密度,绘制了介 稳平衡相图. (2) 研究发现, 该四元体系介稳平衡相图为简单 共饱和型, 1 个共饱点, 3 条单变度曲线, 平衡固相为 Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>•10H<sub>2</sub>O、LiBO<sub>2</sub>•8H<sub>2</sub>O 和 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>•4H<sub>2</sub>O.

(3) 四元体系 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>H<sub>2</sub>O 273 K 时介稳平衡体系中 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>溶解度最大; Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>和 Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>溶解度和 288 K 的稳定相图相比下降明显, 而 K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>溶解度变化较小.

#### References

- Zheng, X. Y.; Zhang, M. G.; Xu, Y.; Li, B. X. Salt lakes of China. Beijing: Science Press, 2002: 130 [郑喜玉, 张明刚, 徐 昶, 李秉孝. 中国盐湖词: 北京: 科学出版社, 2002: 130]
- Zheng, X. Y.; Tang, Y.; Xu, Y.; Li, B. X.; Zhang, B. Z.; Yu, S. S.
   Salt lakes of Tibet. Beijing: Science Press, 1988: 62 [郑喜玉,
   唐 湖, 徐 昶, 李秉孝, 张保珍, 于昇松. 西藏盐湖. 北京: 科学 出版社, 1988: 62]
- 3 Zheng, M. P.; Xiang, J. Salt lakes of Qingzang plateau, Beijing:
   Science Press, 1989: 149 [郑棉平, 向 军, 青藏高原盐湖. 北京:
   科学出版社, 1989: 149]
- 4 Jin, Z. M.; Xiao, X. Z.; Liang, S. M. Acta Chimica Sinica, 1980, 38(4): 313 [金作美,肖显志,梁式梅. 化学学报, 1980, 38(4): 313]
- 5 Su, Y. G.; Li, Y.; Jiang, C. F. J. Chem. Ind. Eng., **1992**, **43**(5): 549 [苏裕光, 李 军, 江成发. 化工学报, **1992**, **43**(5): 549]
- Jin, Z. M.; Zhou, H. N.; Wang, L. S. Chem. J. Chin. Univ., 2001, 22
  (4): 634 [金作美,周惠南,王励生.高等学校化学学报, 2001, 22(4): 634]
- 7 Fang, C. H.; Niu, Z. D.; Liu, Z. Q. Acta Chimica Sinica, 1991, 49:
   1062 [房春晖, 牛自得, 刘子琴. 化学学报, 1991, 49: 1062]
- 8 Guo, Z. Z.; Liu, Z. Q.; Chen, J. Q. Acta Chimica Sinica, 1991, 49:
   937 [郭智忠, 刘子琴, 陈敬清. 化学学报, 1991, 49: 937]
- 9 Sang, S. H.; Yu, H. Y.; Cai, D. Z. Chinese Journal of Inorganic Chemistry, 2005, 21, 1316 [桑世华, 虞海燕, 蔡冬珠. 无机化学 学报, 2005, 21: 1316]
- 10 Sang, S. H.; Yin, H. A.; Xing, W. Z. J. Chem. Thermodynamics, 2006, 38: 173
- Sang, S. H.; Yin, H. A.; Tang, M. L.; , Zhang, Y. X. Chem. Engin., 2003, 31(8): 68 [桑世华, 殷辉安, 唐明林, 张允湘. 化学工程, 2003, 31(8): 68]
- 12 Li, J.; Gao, S. Y. J. Salt Lake Science, **1993**, **1**(3): 62 [李 军, 高世杨. 盐湖研究, **1993**, **1**(3): 62]
- Gao, S. Y.; Li, B. X. Acta Mineralogica Sinica, 1982, 2:107 [高 世扬, 李秉孝. 矿物学报, 1982, 2:107]
- 14 Yao, Z. L.; Gao, S. Y.; Zhu, L. X. Acta Phys. -Chim. Sin., 1995, 11:1048 [姚占力, 高世扬, 朱黎霞. 物理化学学报, 1995, 11:1048]