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Abstract. The current paper reviews the experimental setup
of the CarboEurope Experimental Strategy (CERES) cam-
paigns with the aim of providing an overview of the instru-
mentation used, the data-set and associated modelling. It
then assesses progress in the field of regional observation
and modelling of carbon fluxes, bringing the papers of this
special issue into a somewhat broader context of analysis.

Instrumental progress has been obtained in the field of
remotely monitoring from tall towers and the experimental
planning. Flux measurements from aircraft are now capable,
within some constraints, to provide regular regional observa-
tions of fluxes of CO2, latent and sensible heat.

Considerable effort still needs to be put into calibrating
the surface schemes of models, as they have direct impact on
the input of energy, moisture and carbon fluxes in the bound-
ary layer. Overall, the mesoscale models appear to be ca-
pable of simulating the large scale dynamics of the region,
but in the fine detail, like the precise horizontal and vertical
CO2 field differences between the models still exist. These
errors translate directly into transport uncertainty, when the
forward simulations are used in inverse mode. Quantifica-
tion of this uncertainty, including that of inadequate bound-
ary layer height modelling, still remains a major challenge
for state of the art mesoscale models. Progress in inverse
models has been slow, but has shown that it is possible to
estimate some of the errors involved, and that using the com-
bination of observations. Overall, the capability to produce
regional, high-resolution estimates of carbon exchange, exist
in potential, but the routine application will require consid-
erable effort, both in the experimental as in the modelling
domain.

Correspondence to:A. J. Dolman
(han.dolman@geo.falw.vu.nl)

1 Introduction

The determination of sources and sinks of CO2 from the ter-
restrial surface is fraught with difficulties. At small scale, lo-
cal measurements with eddy covariance towers can indicate
a net sink or source (Dolman et al., 2008), at large, continen-
tal scale the “inverse” method determines sources and sinks
of CO2, albeit with substantial uncertainty (Stephens et al.,
2007). How to link the two methods is subject of an active
and growing area of investigations (e.g. Gerbig et al., 2009).
The linkage between the local and regional to continental
scale is non trivial, however, understanding of the processes
involved at this scale change is key to improving our capabil-
ity to determine sinks and sources with reduced uncertainty
and at high resolution. Reducing the uncertainty is important
to allow credible assessments of emissions and uptake that
are relevant to climate treaties such as UNFCCC (United Na-
tions Framework Convention on Climate Change). Reducing
the scale is critically important to understand the absolute
variation in source and sink strength and attribute specific
processes to particular regions, or land use management sys-
tems.

At the regional, sub continental scale, loosely defined here
as areas of a few hundred kilometres wide and long, CO2
injected in the lower atmosphere becomes subject to flow
patterns that are sub-grid in the sense of current weather
forecasting and climate models. The use of observations to
constrain estimates of sources and sinks by inverse methods
(e.g. Gurney et al., 2002) through inverse models at continen-
tal scale is then subject to errors involving representativeness
and aggregation and these need to be quantified. Also, in-
creasing the resolution of the source and sink estimates, re-
quires high-resolution observations and flow patterns to be
established. How to determine these, and how to establish
the required limit of our observational and modelling capac-
ity is largely unknown.
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These flow patterns can only be represented by the new
generation of mesoscale models (Pielke et al., 1992; Nicholls
et al., 2004; Denning et al., 2003). Van der Molen and
Dolman (2006) were among the first to use these models to
address the problems involved in deriving meaningful area
mean values of CO2 concentration for a spatially heteroge-
neous area. They showed that mesoscale topographical ef-
fects in Central Siberia induced significant perturbations in
the mean concentration field that would have to be taken
into account when using locally observed concentration val-
ues in inversion studies. The perturbations were also visible
in the experimental record. From a preliminary analysis on
current stations of the global monitoring network they con-
cluded that more than 50% of those stations could be subject
to regional or mesoscale perturbations caused by topography
or sea breezes. Further studies (Ahmadov et al., 2007; Sarrat
et al., 2007a) corroborated this view and showed that sea-
breezes and other meso-scale flows affected the mean con-
centration and induced significant representation errors (Tolk
et al., 2008). Ahmadov et al. (2007) suggested that these
spatial effects should be treated similarly to the diurnal and
seasonal rectification effects (Denning et al., 1996) in large-
scale inversions and suggested to call them 3-D rectification
effects. Common practice in large scale inversions is to select
the data from continuous monitoring stations around noon, so
as to suffer little from any mesoscale of diurnal rectification
effects. How to extract the correct data when spatial rectifica-
tion effects occur is less obvious, and would probably depend
very strongly on the conditions surrounding the local and re-
gional monitoring site. The complex diurnal concentration
patterns that arise from these mesoscale circulations remain
however a potential large source of information on the fluxes
of the surrounding area, and it is a major challenge to retrieve
that information (e.g. Gerbig et al., 2009).

Several experiments in the last few years have started to
address the regional spatial variation of atmospheric CO2 ex-
perimentally to determine the spatial distribution of sources
and sinks. Examples are the CO2 Budget and Rectification
Airborne study (COBRA; Gerbig et al., 2003) and the Coop-
erative LBA Airborne Regional Experiment (LBA-CLAIRE-
98; Andrea et al., 2002). Gioli et al. (2004), Schmitgen et
al. (2004), and Vila-Guerau et al. (2004) describe elements
of several of these pilot experiments in Europe. Gerbig et
al. (2003) report that at scales starting around 10–30 km sig-
nificant atmospheric CO2 variations occur, and that these
need to be represented accurately when using the concentra-
tion profiles and transects to infer fluxes. These experiments
suggested that regionally large concentrations gradients de-
velop that can only be observed with high accuracy measure-
ments and be only meaningfully interpreted with high reso-
lution transport models.

Based on experience from these experimental and mod-
elling studies, the regional experiment CERES (CarboEu-
rope Regional Experiment Strategy, Dolman et al., 2006) was
planned to combine various types of ground-based carbon

cycle-related measurements and atmospheric observations
with remote sensing to infer a regional carbon budget. The
original aim was to derive a regional scale carbon budget at
2 km resolution for about 20 years. This goal was very ambi-
tious but the project effectively set some major steps towards
that goal by executing a series of field experiments and by
using and improving mesoscale models for estimating fluxes
and transport. The current paper briefly reviews the experi-
mental setup of the CERES campaigns with the aim of pro-
viding an overview of the instrumentation used and of the
data-set. It then tries to assess progress in the field of regional
observation and modelling of carbon fluxes, thus bringing the
papers of this special issue into a more coherent context of
analysis. We finish with a set of recommendations for work
that remains to be done before the overall aim of a developing
region carbon data budgeting system can be achieved.

2 Experimental set-up

The methodology of CERES consisted of making concentra-
tion measurements both within and above the boundary layer
and to couple those via a modelling/data assimilation frame-
work to the flux measurements at the surface and within the
boundary layer. To achieve this, we instrumented a region
near the Landes forest with ground- and air-based measure-
ments at high spatial and temporal resolution. This area was
chosen because of the wealth of supporting data that exist
from the previous HAPEX-MOBILHY experiment (André
et al., 1986) and the vicinity of Ḿet́eo-France in Toulouse
with state-of-the-art forecasting tools.

The experimental domain covers an area of about
250 km×150 km in southwest France (Fig. 1). It is bounded
to the west by the Atlantic Ocean, the shoreline being almost
rectilinear along a north-south orientation. The western half
of the domain is dominated by the Landes forest, of which
80% is included in the Regional Experiment area. The forest
is mainly composed of maritime pine (Pinus pinaster Ait.).
There are clearings of various size, which contain agricul-
tural land, mainly maize, but also grassland and pasture (in
the southern part of the forest), or other cultivars like veg-
etables. Elsewhere in the domain, the land is covered by
cereals, such as maize, with the exception of the Garonne
River valley (crossing the domain from southeast to north-
west) where there are fruit trees and winter crops, and the
large “Bordeaux” vineyards, east and northwest of Bordeaux
city. There are mostly winter crops towards the southeast,
whereas summer crops increase toward the Landes forest.
The northeast corner is a vast, little-cultivated region, mainly
composed of woods and pastures. Two major cities are lo-
cated close to the southeast (Toulouse) and northwest (Bor-
deaux) corners of the domain. The Landes forest and the val-
ley of the Garonne River are relatively flat areas, whereas the
rest of the domain is mainly composed of gentle hills. Out-
side the domain, to the south, the Pyréńees mountain range
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Figure 1. Map of surface vegetation cover over the CERES domain with experimental 
network (grey squares are flux stations) 
 
 
 
 
 
 

 
 

 
 
 
 

Fig. 1. Map of surface vegetation cover over the CERES domain with experimental network (grey squares are flux stations).

presents a solid west-east barrier rising occasionally above
3000-m height. This has a strong influence on the generation
of local winds in the domain.

A set of ground-based surface flux measurements, regular
radio-soundings, determining the profiles of temperature, hu-
midity and wind speed through the atmosphere, and wind and
temperature profilers for the lowest few hundred meters of
the atmosphere were installed (details can be found athttp://
carboregional.mediasfrance.org/experiment/index). Aircraft
measurements with low flying flux aircraft were also per-
formed. Boundary layer sampling with small aircraft took
place and long transects were flown with aircraft sampling
concentrations of CO2 and various other trace gasses (see
Dolman et al., 2006 for an extensive description of the the
first campaign). Three campaigns were executed to sample
the seasonal variation of activity of the land surface from
16 May to 25 June 2005 and in April and September 2007.
The previously executed experiments essentially indicated
that to be able to retrieve a full regional scale carbon not only
a set of observations needs to be available to be assimilated
in to a model, but that also some extra observations need to
be available for validation of estimates. Several of the flux
towers and aircraft data served this purpose.

Table 1 gives an overview of the experimental activity
of these campaigns. The 2007 experimental set-up differs
from the 2005 one. In the 2007 case, the CERES 2005

measurements have been completed by CO2 concentration
observation from a tall tower of 60 m height (Bellegarde-
Saint-Marie’s tower, near Toulouse), in addition to the Bis-
carosse and Marmande towers.

Eight surface stations were measuring continuously the
CO2 and energy surface fluxes, at representative ecosystems
of the region (pine forest, young tree, 2 maize, grassland,
sunflowers, wheat, fallow). Radio-soundings were launched
during Intensive Observation Periods (IOP) days in Toulouse
in April and in September in Toulouse and at La Cape Sud
(the central site in the Landes forest, already installed in
2005).

Three aircraft, the Dimona (MetAir) and two Sky Arrows
(IBIMET and ALTERRA) were flying over the Landes forest
or near Toulouse during IOP days when the meteorological
conditions were favourable. The second and third campaign
took place in April (from the 18th to the 23rd for 6 days
continuously and during 8 days in September (7–8 and from
the 10th to the 15th.
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Table 1. Observations made during the three CERES campaign.

Types of Observations May–June 2005 April 2007 September 2007

Number of IOP days 22 days 6 days 8 days
RS 128 RS + 11 BVC 19 RS 22 RS

Toulouse + La Cape Sud Toulouse Toulouse + La Cape Sud
Piper-Aztec:
[CO2] & dynamic 23 flights 0 0
Dimona: 10 flights 3 flights South 3 flights South
[CO2] & dynamic 8 flights Landes 8 flights Landes
Sky Arrow Ibimet 52 flights 11 flights 4 days of measurements
Flux measurements
Sky Arrow Alterra 0 11 flights 7 days of measurements
Flux measurements
Sky Arrow Isafom 15 flights 0 0
CO2 conc. towers 2 3 3

Biscarosse, Marmande Biscarosse, Bellegarde, Biscarosse, Bellegarde,
Marmande Marmande

Flux Stations 10 8 8

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Mean CO2 concentration measured at the Biscarosse tower (blue) and at the 
Bellegarde-Sainte-Marie tower at different height (green and black), during the April 
(above) and September (below) 2007 campaigns (data provided by LSCE). 
 
 
 
 
 

 
 
 
 
 

Fig. 2. Mean CO2 concentration measured at the Biscarosse tower (blue) and at the Bellegarde-Sainte-Marie tower at different height (green
and black), during the April (above) and September (below) 2007 campaigns (data provided by LSCE).
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Figure 3: Dimona aircraft trajectory (left) on the 19th of April 2007 over the croplands, 
the Landes forest and the ocean, and the vertical cross section of the CO2 concentration 
measured as the function of the distance flown by the aircraft (right). 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Dimona aircraft trajectory (left) on 19 April 2007 over the croplands, the Landes forest and the ocean, and the vertical cross section
of the CO2 concentration measured as the function of the distance flown by the aircraft (right).

3 Progress in instrumental deployment and experiment
planning

Although several of the techniques used for observing fluxes
and CO2 concentrations were used in earlier experiments
and form part of the CarboEurope or FLUXNET network
(e.g. Jarosz et al., 2009), we highlight here five areas of de-
velopment that represent significant progress compared to
these previous experiments.

First, in addition to the single high precision observation
“tall” tower at Biscarosse on the coast, of the 2005 campaign,
we operated a second tower near the town of Bellegarde-
Sainte-Marie, more inland, in the two 2007 campaigns. Both
towers contained a CARIBOU instrument, a Non Dispersive
Infra-Red spectrometer developed at CEA, Paris, France.
The system is based on a modified commercially available
LI-6262 infrared gas analyzer, but is capable of remote oper-
ation, sending data through a (mobile) phone line.

The accuracy of the CARIBOU instrument is approxi-
mately 0.02 ppm (RMS). The availability of these instru-
ments represents a major step in our capability to remotely
observe and control high accuracy measurements of CO2
concentrations.

As an example of the data, Fig. 2 shows the diurnal cycle
of the measurements at the two towers, with a CO2 maximum
observed during the night due to the accumulation of CO2 in
the night-time boundary layer as a result of anthropogenic
and biospheric emissions. At Bellegarde the diurnal cycle
is much more pronounced in April (22 ppm vs 10 ppm) than
in September. This is most likely due to strong diurnal land
uptake through biospheric activity in April linked to a higher
LAI compared to September, but also to a strong nocturnal
respiration due to the soil water content, higher in April than

in September, that could favour a higher soil microbiological
activity. The diurnal pattern of CO2 at Biscarosse shows less
seasonal variation, as it is more influenced by the CO2 from
the marine sources. The amplitude of the diurnal cycle at
Biscarosse is higher in September compared to April (13 ppm
vs. 8 ppm), as a result of the summer photosynthetic activity
of the Northern hemisphere.

Second, the concentration observations made from tow-
ers were complimented by observations made from aircraft
platforms. In the first campaign a Piper Aztec (PA23-250)
and a DIMONA (Met Air, Switzerland,http://www.metair.
ch/SYSTEMS.htm) were flown together, in 2007 we flew
only the DIMONA. Both aircraft used a modified LI-6262 for
CO2 concentrations, while the DIMONA also used an open
path LICOR 7500 and sampled flask for a posteriori calibra-
tion. The accuracy of these instrument setups is 0.2 ppm,
making it possible to detect small gradients in the boundary
layer.

The use of these aircraft measurements, although not
completely novel, in both vertical and horizontal profiling
makes it possible to detect regional patterns (Dolman et al.,
2006; Ahmadov et al., 2007) and to validate predictions of
mesoscale models (Sarrat et al., 2007). In 2007, the Dimona
flew (Fig. 3) over the western part that revealed an east-west
CO2 gradient with higher values at low levels over the crops
and the Landes forest than near the ocean coast. Most of the
flights show that this gradient remains in the afternoon, al-
though the regional differences are reduced because of the
boundary layer vertical mixing. Higher values of CO2 con-
centrations over land at this time of the year is probably re-
lated to relatively high value of soil respiration (wet condi-
tions), low value of CO2 uptake and reduced vertical mixing
in the atmospheric boundary layer.
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Third, flux measurements from aircraft were obtained with
two Sky Arrow 650 ERA’s (Environmental Research Air-
craft). The SkyArrow is a commercially produced, certified
small aircraft equipped with sensors that measure three di-
mensional wind and turbulence together with gas concentra-
tions and other atmospheric parameters at high frequency.
The aircraft has a cruise flight speed of 45 m s−1 with an en-
durance of 3.5 h, allowing it to cover flight distances of up
to 500 km. Operating altitudes can range from 10 m above
ground level to more than 3500 m above sea level (Gioli et
al., 2006).

The aircraft hosts the Mobile Flux Platform (MFP), which
consists of a set of sensors for atmospheric measurements.
The actual wind components (horizontal U, V and vertical
W) relative to the ground are calculated introducing correc-
tions for three-dimensional velocity, pitch, roll and heading
of the aircraft using a combination of GPS velocity measure-
ments and data from two sets of three orthogonal accelerom-
eters mounted at the centre of gravity of the aircraft and in the
centre of the hemisphere. Eddies of wavelengths larger than
1.4 m can be detected. The probe is equipped with a fast ther-
mocouple to measure air temperature with a response time of
0.02 s. A platinum resistance thermometer is used for a mean
air temperature reference. For CO2 a LI-7500 is used posi-
tioned on the top of the nose of the aircraft.

In April 2007, the Sky Arrow IBIMET flew horizontal
transects in the western part of the domain, the measurement
methodology is described by Miglietta et al. (2009). Fig-
ure 4 shows the fluxes of sensible and latent heat and CO2
observed at 100 m above ground by the aircraft observations.
One can note the systematically high value of CO2 uptake by
n the northwestern section of the transect whereas the CO2
flux over the forest is relatively weak. The latent heat flux
is relatively high due to large water availability in the soil
following a prolonged rainy period

Fourth, availability of a considerable amount of experi-
mental data has made it possible to add complementary ex-
periments to the existing efforts, such as shown by Rascher
et al. (2009). They performed additional airborne measure-
ments of solar induced fluorescence in combination with
extensive ground-based quantification of leaf- and canopy-
level processes in support of ESA’s Candidate Earth Ex-
plorer Mission, FLEX. During three measurement periods in
2007 structure and functional characteristics over 20 differ-
ent types of vegetation in the Landes region were extensively
characterized. On the larger spatial scale, the aim of this
campaign was to test if fluorescence can be detected from
airborne platforms and if this remote sensing signal can be
used to improve estimates of plant mediated exchange on
the mesoscale. For that purpose canopy fluorescence was
quantified from three airborne platforms: (I) a hyperspec-
tral spectrometer that was installed on the Dimona deliv-
ered fluorescence in the oxygen A band along transects dur-
ing 12 day courses, (II) the prototype airborne sensor Air-
FLEX was installed in a twin engine aircraft (Piper Seneca

III) quantified fluorescence in the oxygen A and B bands and
(III) the first employment of the high performance spectro-
imager SIM.GA HYPER (Galileo Avionica, Firenze, I), a
512+256-spectral-band push-broom sensor with VNIR and
SWIR imaging capability which delivered spatially resolved
and multi-temporal transects across the whole region. Addi-
tionally, high resolution geolocated hyperspectral data cubes
along the whole optical spectrum, including the thermal re-
gion were gathered with theAirborne Hyperspectral Scan-
ner (AHS) which is an 80-bands airborne imaging radiome-
ter (SensyTech Inc.). Both sensors were operated jointly in
a C-212-200 airplane operated by the Spanish Institute for
Aerospace Technology (INTA) Several transects and flight
lines were successfully recorded during the three measure-
ment periods.

Finally, as mentioned in the introduction the location of
the experiment was chosen because of the wealth of previ-
ous data on land cover, soils and the possibility to use the
mesoscale forecasting system of CNRM to plan the experi-
ment. Using forecasted meteorological fields from the oper-
ational mesoscale model ALADIN the Stochastic Time In-
verted Lagrangian Transport model (STILT, Lin et al., 2003)
was used for planning the aircraft operations, as it provided
every day for several routine meteorological forecast esti-
mates of the source region of particular observation patterns.
This made the planning of flights considerable more reliable
and accurate.

4 Progress in modelling

4.1 Forward modelling

The focus on the regional scale calls for assessing the per-
formance of the current generation of mesoscale models to
simulate adequately the transport mechanisms at meso-beta
(sea-breeze, topographically induced flow) and meso-gamma
(flux heterogeneity, boundary layer cloud) scale. During
the project we used three different mesoscale models, The
French, Meso-NH system, the Regional Atmospheric Mod-
elling System (Pielke et al., 1992) and the Weather Research
and Forecasting (model WRF; Skamarock et al., 2005).
Ultimately one would be able to use the transport of the
mesoscale models in backward models to calculate the re-
gional sources and strengths. To be able to do that first the
capability of the current models needs to be assessed against
the observational data obtained during the campaigns.

Early modelling results of the CERES 2005 campaign
were compared and analysed by Sarrat et al. (2007b). They
compared five different meso-scale models with various set-
tings and versions to see how they represented the evolution
of the atmospheric carbon dioxide fields. To some extent,
this intercomparison provided the starting point and bench-
mark for the modeling aspects of CERES. The complex spa-
tial distribution as well as the temporal evolution of CO2 in
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Figure 3: Dimona aircraft trajectory (left) on the 19th of April 2007 over the croplands, 
the Landes forest and the ocean, and the vertical cross section of the CO2 concentration 
measured as the function of the distance flown by the aircraft (right). 
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Fig. 4. Sky Arrow Ibimet measurement of sensible heat flux(a), latent heat flux(b) and CO2 flux (c) (data provided by IBIMET, Beniamino
Gioli).

interaction with the surface fluxes was somewhat realistically
simulated compared to the aircraft observations. This holds
in particular for the large-scale features. Between the models
there was considerable variation in the more fine scale struc-
ture of for instance the CO2 field. However, this raised hope
that the meso-scale models may provide adequate transport
of CO2 and other tracers at high resolution, when further fine
tuned.

The dynamic parameters at the synoptic scale (tempera-
ture and relative humidity at 2 m) but also at the local scale
(potential temperature at various sites) were also validated
by Sarrat et al. (2007b). All models were able to simulate the
surface meteorology reasonably well. Some discrepancies
with observations were also noted such as a cold bias in the
initial temperature at 2 m. This could have been due to an er-
ror in the initialization, but these errors could also be caused
by the failure of the land surface parameterization schemes

to correctly reproduce the partitioning of fluxes at the sur-
face. Some models consistently simulated too large latent
fluxes, resulting in too low and too humid boundary layers.
There appeared no clear signal in the statistics of the bias
during the diurnal cycle. The importance of entrainment at
the top of the boundary layer was earlier noted Vila-Guerau
et al. (2004) and lack of adequate parameterization may have
contributed to the failure of some of the models to correctly
estimate the boundary layer height.

Further work of Ahmadov et al. (2007) and Sarrat et
al. (2007a) presents new simulations of specific events of the
campaigns and shows significant improvement of model per-
formance when elements of the land surface energy balance
are better calibrated and simulated. Ahmadov et al. (2007)
highlighted the complexity of the three dimensional structure
that arises from meso-scale flows. They introduced WRF-
VPRM as a new modeling system that couples a diagnostic
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Figure 5. CO2 distribution and wind vectors on the vertical plane along  

44°25′N, 00°34′W for the 27 May case, at (a) 0000, (b) 0600, (c) 1000,  

and (d) 1400, (from Ahmadov et al., 2007). 

 

 

Fig. 5. CO2 distribution and wind vectors on the vertical plane along 44◦25′ N, 00◦34′ W for the 27 May case, at(a) 0000,(b) 0600,(c)
1000, and(d) 1400, (from Ahmadov et al., 2007).

biosphere model, a high-resolution emission inventory, and
realistic boundary conditions from a global CO2 transport
model with a weather forecasting model in order to simulate
fluxes and concentrations of CO2 at high spatial and tempo-
ral resolution. They applied the modeling tool for two dif-
ferent days of the CERES 2005 regional experiment, with
different conditions in both meteorology and biospheric ac-
tivity. Due to its high spatial resolution the model captured
meso-scale transport processes such as the sea-land breeze
circulation. Figure 5d shows the horizontal distribution of
near-surface CO2 and wind vectors at 14 h on 27 May 2003.
Over the shore an area the wind convergence can be seen as
well as a large area of enhanced CO2. This area extends to a
few tens of kilometers inland, where strong decrease of CO2
starts and covers almost all of the eastern part of the region.

Over the ocean, near the coastline a turning of the low-level
winds from southerly to south- westerly toward the coast-
line is found, which is clear evidence of the afternoon sea
breeze. An interesting feature in the CO2 distribution is the
patch of relatively low concentration over the coastal ocean,
which can also be recognized in the western part of Fig. 5d.
This plume did not yet arrive at this latitude at 1000 (Fig. 5c).
The low CO2 patch originates from photosynthesis over the
vegetated part of the domain.

Although the exact magnitude and direction of the sea
breeze circulation was not always simulated perfectly, the
main flow patterns were. Ahmadov et al. (2007) con-
cluded that measurements made at coastal stations do not al-
ways see large-scale representative CO2 signals in onshore
air flows, but that in cases of a sea breeze circulation the
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spatio-temporal patterns show a strong meso-scale charac-
ter. This conclusion echoes the conjecture made by van der
Molen and Dolman (2007) that some of the data used in large
scale inversions may be subject to what we could call “meso-
scale rectification effects”.

Following this work Ahmadov et al. (2009) show how only
the meso-scale models as WRF are able to simulate well the
diurnal course of CO2 concentrations. This is an important
issue, as this makes it in principle possible to start using
the full information of the diurnal cycle in the observations.
Lower resolution models are not quite capable of following
the meso-scale perturbations caused by local topography and
meso-scale dynamic processes. They ran WRF-VPRM for
the period covering the intensive period of the CERES exper-
iment, using the CO2 fields from the global model LMDZ for
initialization and lateral boundary conditions. The compar-
ison of modeled CO2 concentration time series against ob-
servations at the Biscarosse tower and against output from
two global models – LMDZ and TM3 – clearly revealed that
WRF-VPRM can capture the measured CO2 signal much
better than the global models with lower resolution. Also the
diurnal variability of the atmospheric CO2 field caused by re-
circulation of nighttime respired CO2 is simulated by WRF-
VRPM reasonably well. Analysis of the nighttime data indi-
cates that with high resolution modeling tools such as WRF-
VPRM a large fraction of the time periods that are impossi-
ble to utilize in global models, can be used quantitatively and
help constraining respiratory fluxes.

Tolk et al. (2008) used the meso-scale modeling system
RAMS (Pielke et al., 1982) to further quantify the errors that
arise from neglecting the 3-dimensional nature of the flow
such as noted by Ahmadov et al. (2007, 2009) and Sarrat et
al. (2007b). They defined the representation error in rela-
tion to the values of CO2 concentration in a 2 km resolution
run with the mean value at a coarser resolution of 10, 20, 50
and 100 km. They found that representation errors are caused
by variations in topography, specific meso-scale circulations
such as sea breezes and flux variability of the land surface.
Note that the scale of the latter is smaller (meso-gamma)
compared to the scale of the sea breezes (meso-beta). During
the day, the sea breeze, leading to a small band of convergent
flow where large errors arose, caused the largest representa-
tion errors. At night unresolved topography in the low reso-
lution runs caused substantial errors due to accumulation of
respired CO2.

The April 2007 campaign was simulated with the meso-
scale model Meso-NH (Sarrat et al., 2009). This study shows
how aircraft observations of CO2 concentration can be used
to identify surface modeling errors and to calibrate the CO2
components of the surface model, particularly the LAI. They
show also the improvement of the atmospheric CO2 simula-
tion highly dependent of the on-line coupled surface scheme
and its characteristics such as LAI.

4.2 Inversion modelling

The forward modeling discussed in the previous section has
shown how spatially complex patterns of CO2 distribution
can arise as a result from meso-scale atmospheric perturba-
tions. Filtering out these perturbations from observational
data has been the norm when site data are used in large scale
inversions (e.g. Gurney et al, 2006). However as, for instance
suggested in Ahmadov et al. (2009) and Gerbig et al. (2009),
the variability in atmospheric concentration could also be
used to put realistic constraints on surface inversions at re-
gional scale. The prime requirement for this to be successful
is a good simulation of the 3-D flow fields. However, even
when this is achieved providing adequate a priori fields still
remains a challenge.

In order to estimate the transport model error in the simu-
lation of CO2 concentrations, Lavaux et al. (2008) studied the
characteristics of a statistical ensemble of meso-scale simu-
lations. Their ensemble consisted of ten members and a ref-
erence simulation. The ensemble of simulations was created
by perturbing the initial and boundary conditions. The re-
sulting ensemble represents then the model dependence on
the boundary conditions which is a part of the model un-
certainty (not including the intrinsic error of the mesoscale
model itself). The variance of the ensemble was estimated
over the domain, with associated spatial and temporal cor-
relations. On the horizontal plane, the calculated variance
of CO2 of the ensemble followed the discontinuities of the
meso-scale structures during the day, but remained locally
driven during the night. This corresponds with the analysis
of Tolk et al. (2008) who found a similar covariance. In the
vertical, the surface layer variance of CO2 showed large cor-
relations with the upper levels in the boundary layer (>0.6),
down to 0.4 with the low free troposphere. Large temporal
correlations were found during the afternoon (>0.5 for sev-
eral hours), that were reduced during the night. Using the
ensemble to back calculate the fluxes, they found that the
posterior error reduction on the inverted CO2 fluxes showed
a predominance of the temporal over the spatial correlations
when using tower-based CO2 concentration observations.

In a further study, Lavaux et al. (2009) use observations
of the CERES campaigns to derive correction on a priori
fluxes modeled by the ISBA-A-gs (Calvet et al., 1998). They
used concentration measurements from the two tall towers
in CERES 2007 to derive a correction for the fluxes, which
were then subsequently validated by observations from eddy
covariance towers and an aircraft (Gioli et al., 2006). They
found a significant error reduction compared to the prior es-
timates of land surface fluxes. This error reduction also ap-
plied to the time evolution of the fluxes, which was substan-
tially improved by the inversion.
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Figure 6. Schematic diagram showing the variables and process involved in determining 
the regional carbon balance 
Fig. 6. Schematic diagram showing the variables and process in-
volved in determining the regional carbon balance.

5 Discussion and conclusion

The CERES experiment and associated modeling improved
our understanding of variations in CO2 concentration at the
regional scale. The papers in this special issue bear witness
to that. Figure 6 shows the interrelationships, and potential
for feedbacks that are involved in studying the regional ex-
change of CO2. Experimentally the three campaigns were
successful. The combination of high accuracy concentration
measurements from both aircraft and tall towers proved to
yield the required data. Concentration fields were used in
the analysis of specific events (Dolman et al., 2006), but also
for validation of mesoscale models (Sarrat et al., 2007a, b,
2009; Ahmadov et al., 2007, 2009). The flux data both for
surface energy balance and CO2 exchange, obtained from
several vegetation types proved essential data for calibrat-
ing the land surface schemes (e.g. Ahmadov et al., 2007) and
for investigating and understanding fundamental differences
in sequestration capacities Jarosz et al. (2009) and Stella et
al. (2009). While observations on additional sites were only
obtained during the experimental campaigns, the backbone
of sites was part of the CarboEurope network of sites and
these potentially allow for further studies involving question
of representability and interannual variation.

The flux aircraft allowed repeated sampling of the same
transect (forest, agriculture) under various environmental
conditions. Although there are still issues requiring further
investigation, such as the accurate quantification of the ver-
tical flux divergence associated to the sign of the entrain-
ment fluxes at the boundary layer top (Vila de Arellano et
al., 2004), and temporal scale sampling issues associated to
very low frequency energy and mass carrying turbulent ed-
dies (Vickers and Mahrt, 2006), the technology used in these
aircraft is by now becoming reliable and robust enough to be
used in field experiments. Obtaining regional flux estimates
provided not only for the development of relatively simple
scaling techniques (Miglietta et al., 2007) but also gave the

first inverse models at regional scale independent validation
data (Lavaux et al., 2009) and provided key input into the
analysis of the 2005 campaign (Dolman et al., 2006). Migli-
etta et al. (2009) furthermore show how the data can be used
to validate remote sensing based estimations of sensible and
latent heat at the regional scale.

At the start of the project the intercomparison showed
agreement of several atmospheric variables with observa-
tions, albeit within relatively large errors (Sarrat et al.,
2007a). These errors were attributed to differences in the
surface parameterizations, that were subsequently better cal-
ibrated, with improvement in the model results as a conse-
quence. The experience with CERES models shows however
that considerable effort still needs to be put into calibrating
the surface schemes, as they have direct impact on the input
of energy, moisture and carbon fluxes in the boundary layer.
Overall, the models appear to be capable of simulating the
large scale (meso-beta) dynamics of the region, but in the fine
detail, like the precise horizontal and vertical CO2 field dif-
ferences between the models still exist. These errors translate
directly into transport uncertainty, when the forward simula-
tions are used in inverse mode. Quantification of this un-
certainty, including that of inadequate boundary layer height
modeling, still remains a major challenge for state of the art
mesoscale models.

One of the key question that evolved from executing the
CERES campaigns was how much variability there is present
in the atmospheric CO2 signal and how much of this vari-
ability can be explained by meso-scale processes and the in-
teraction of the land surface with the atmosphere. As doc-
umented in Dolman et al. (2006) the variability can be large
and substantial, and can only be understood when meso-scale
processes such as sea breezes, differences in land surface
uptake patterns and 3-D flow fields are analyzed together.
The progress in developing and testing the meso-scale mod-
els that have CO2 included has much been improved during
the course of this project (e.g. Sarrat et al., 2007; Ahmadov
et al., 2009; ter Maat et al., 2009; Tolk et al., 2008). How-
ever, the work also showed up errors in mass balance clo-
sure in the models that needed to be corrected before realis-
tic CO2 fields could be obtained (Meesters et al., 2008). The
models are now capable to realistically simulate diurnal pat-
terns of carbon uptake and the associated atmospheric vari-
ability. Further progress in this area can be expected when
the meso-scale models, probably with dynamical phenology
models incorporated, will start to tackle questions of regional
variability at seasonal time scales. Sarrat et al. (2009) show
the importance of correctly representing leaf area develop-
ment in mesoscale models for the 2007 campaign, while ear-
lier results (Dolman et al., 2006) showed the importance of
correctly specifying for instance the difference in winter and
summer crops.

The observation that the source areas of receptor points
like tall towers vary strongly dynamically, suggest that anal-
ysis of the meso-scale flow field around tall towers is a real
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critical item in a quality assessment of these towers (e.g. van
der Molen and Dolman, 2006; Gerbig et al., 2009). Progress
in using the modelled flow fields with observed concentration
in a regional inversion framework has been slow, but signif-
icant (e.g. Lavaux et al., 2009). Further work using several
techniques such as MLEF (e.g. Peters et al., 2007) or La-
grangian tracer models (Lin et al., 2004) is needed to show
the viability of this approach at regional scale.

Figure 6 shows not only the surface and atmospheric prop-
erties that need to be observed and modeled, but arguably
more important, also the potential for feedback between
these properties. This is what makes mesoscale modeling
indispensable, maybe even despite its current shortcomings,
for understanding the regional carbon fluxes. Most of the
analysis in CERES has concentrated on days with no cloud
and relatively “easy” boundary layer development. The im-
pact of surface heterogeneities on for instance cloud devel-
opment has not been studies, and it can be argued that for
seasonal prediction or assimilation of CO2 fluxes, such stud-
ies are urgently needed. This is a major next step.

Overall the papers in this special issue show how the com-
bination of a highly dense observation network, coupled with
advanced meso-scale atmospheric models leads to a fruitful
analysis of regional carbon fluxes. During the experiment
novel techniques such as Langrangian (constant pressure)
balloons were used to track air masses. As already noted, in
the 2007 campaigns the experiment was extended to include
several new remote sensing techniques from aircraft. With-
out an integrated experiment such as CERES, these innova-
tions would not have been possible. The data will become
available athttp://carboregional.mediasfrance.org/.
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