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Abstract. Inter-annual variability in primary productionand 1 Introduction

ecosystem respiration was explored using eddy-covariance

data at a semi-arid savanna site in the Kruger Park, Soutarbon dioxide flux measurements using the eddy covariance
Africa. New methods of extrapolating night-time respiration technique generate a raw dataset with a very high temporal
to the entire day and filling gaps in eddy-covariance data infesolution (generally 10-20 Hz). The first step in the analysis
semi-arid systems were developed. Net ecosystem exchandg¥ these data is to screen them for spurious values, perform
(NEE) in these systems occurs as pulses associated with raiiyarious corrections, and then integrate the fluxes over peri-
fall events, a pattern not well-represented in current standar@ds of about 30 min. The half-hourly data provide impor-
gap-filling procedures developed primarily for temperate flux tant insights into many short-term physiological processes,
sites. They furthermore do not take into account the decreaseut most ecological and management-relevant questions are
in respiration at high soil temperatures. An artificial neu- framed over even longer timeframes — from days to years. A
ral network (ANN) model incorporating these features pre- matter of particular interest to both ecologists and ecosystem
dicted measured fluxes accurately (MAE 0.42 g8ftay), managers is the inter-annual variability of primary produc-
and was able to represent the seasonal patterns of photosy#on and carbon storage (Lauenroth et al., 2006). Semi-arid
thesis and respiration at the site. The amount of green lea$avannas are characterised by high inter-annual variability, in
area (indexed using satellite-derived estimates of fractionaleésponse to highly variable rainfall. This underlies many fea-
interception of photosynthetically active radiatigiapar). tures of their ecology, including the likelihood and intensity
and the timing and magnitude of rainfall events, were the twoof fires, the growth and migration of animal populations, and
most important predictors used in the ANN model. Thesethe stability of the tree-grass mixture (Higgins et al., 2000;
drivers were also identified by multiple linear regressions Tyson, 1986; Reed et al., 1994; Ma et al., 2007; Serneels et
(MLR), with strong interactive effects. The annual integral al., 2007), and makes savanna systems particularly hard to
of the filled NEE data was found to range frosil38 to =~ manage.

+155 g C/nfly over the 5 year eddy covariance measurement Accumulating 30 min flux measurements to longer time
period. When applied to a 25 year time series of meteorologPeriods is not a simple matter of adding them up, for two
ical data, the ANN model predicts an annual mean NEE ofmain reasons. The first is that even the best-run eddy covari-
75(+105) g C/ntly. The main correlates of this inter-annual ance datasets have gaps, due to instrument failure or weather
variability were found to be variation in the amount of ab- conditions that cause the eddy covariance flux assumptions
sorbed photosynthetically active radiation (APAR), length of to be violated. The second is that the eddy covariance mea-

the growing season, and number of days in the year whegurement, net ecosystem exchange (NEE), is often not what
moisture was available in the soil. is needed by ecologists who are often more interested in its

components, gross primary production (GPP) and ecosystem
respiration Reco):
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NEE=GPP+Rec, (Observing the convention that fluxes functional forms need to be developed before current gap-
from the atmosphere to the ground are given a negative signfilling methodologies can be applied globally.

A model is used to bridge the data gaps in what is intended Improving functional relationships to include extreme
to be an unbiased fashion. The same or different models canonditions would also be valuable in the context of climate
be used to deconvolve the NEE signal into its components. Achange. In coming decades, many ecosystems around the
wide range of standard procedures have been developed favorld are likely to be exposed to higher temperatures and
this process, largely for application in temperate ecosystemseduced moisture availability. Information on ecosystem re-
(Falge et al., 2001; Papale et al., 2006; Moffat et al., 2007).sponses to high temperatures and intermittent droughts will
These are not always appropriate for tropical wet-dry sys-be valuable in predicting responses to these changes.
tems. They use phenomenological models, neural networks \We present a statistical approach to estimating annual NEE
or process-based models to achieve their objectives. Théor a semi-arid savanna system in Southern Africa. We
readily-available ones do not work well for data from semi- tested the importance of six environmental drivers of daily
arid sites in Southern Africa. This is because they assumehotosynthesis (GPP) and respiratidtydo) at the Skukuza
the major controls on flux processes to be solar radiation andlux tower in the Kruger Park (25.035, 31.50 E). Predic-
temperature, whereas temperatures in the semi-arid tropicsors commonly used in temperate systems were included, to-
are almost always warm enough to permit physiological ac-gether with a range of environmental predictors chosen to
tivity, and insolation is sufficient, at least during non-cloudy reflect the effect of pulsed rainfall events. Predictive mod-
days, for light saturation of part or all of the typically-sparse els were then used to interpolate annual fluxes over a 25 year
canopy. In arid and semi-arid systems, the main control ortime period, and to investigate the degree and possible causes
the rate and duration of many ecosystem processes is sodf inter-annual variation in C@exchange.
moisture. Our approach was motivated by the fact that there was a

As a further complication, in low-rain, high-evaporation limited amount and duration of flux data (spanning six years
ecosystems, where the soils dry out between successi&ith many gaps, which is too short for a reliable estimate
rainfall events (so-called pulse-driven systems), the variousf variance), but that a full time series of daily meteorolog-
terms in the carbon budget are highly dependent on the reical and phenological data was available for a 25 year pe-
cent history of the system (Huxman et al., 2004). For exam-riod. Working at a daily time-step allowed us to bridge the
ple, following a rainfall event, respiration increases rapidly gap between the half-hourly flux data and the crucial annual
whereas it takes several days for the ecosystem to reactimescale, and to use the long-term meteorological data to
maximum photosynthesis (Huxman et al., 2004; Xu et al.,estimate inter-annual variability. Process-based modelling
2004). Similarly, the magnitude of the system response dewould be ideal for these systems where previous conditions
pends not only on the size of the current rainfall event, butaffect the response of the system to perturbation, but we
on the amount and timing of preceding events: after a longchose to limit ourselves to a statistical analysis, given our im-
drought the response to a rain event is larger than to a similarperfect understanding of the processes driving NEE in these
sized event during the middle of the rainy season, but the timaystems. Results from this research will be used to develop
taken to reach the peak response is longer (Veenendaal et amore process-based models.

2004). Therefore, it is not possible to use instantaneous mea- This paper aims to:

sures such as the soil moisture content as a sole proxy for

the state of the system. Gap-filling requires consideration of — Document new procedures for eddy covariance gap-
indices that have “memory”: for instance, accumulators of filling that are appropriate for dry, hot ecosystems;
water deficit. ) . )

Moreover, “phenomenological” models will only be ap- Explo_re t_he factors associated with short-term (daily)
propriate when they truly represent the underlying responses ~ variation in NPP, GPP anBleco
(Falge et al., 2001). Most current respiration models de-
fine the relationship between respiration and temperature us-
ing an exponential- or logistic-shaped function; i.e. functions
that either continually increase, or level off at a maximum
value (Moffat et al., 2007). These models were developed in
systems where temperature ranges are generally bef® 30 5  Methods
(Fang and Moncrieff, 2001; Lloyd and Taylor, 1994). Phys-
iologically, respiration is expected to decrease once temper2.1  Study site
ature exceeds the optimum for microbial activity (Yamano
and Takahashi, 1983), and photosynthesis shows a similai flux tower situated in a semi-arid savanna near Skukuza,
reduction at high temperatures (Hamerlynck and Huxmanjn the Kruger National Park has been collecting data since
2000). In tropical dry systems, the soil temperature in theFebruary 2000. The site is 370 mabove sea level with
top centimetres often exceeds°@ Thus more appropriate strongly seasonal rainfall occurring between November and

— Calculate annual estimates of NEE and explore the main
factors driving inter-annual variation in savanna carbon
exchange at the Skukuza flux site in South Africa.
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April. Mean annual rainfall is 556160 mm. The landscape Bt e il S
is gently undulating, consisting of broad-leav@dmbretum .
apiculatumdominated savanna on the coarse sand crests an( = °
fine-leavedAcacia nigrescensavanna on sandy clay loam in
the valleys (Scholes et al., 2001). The soils are about 0.6 m
deep. The eddy covariance flux tower is situated at the eco-
tone between the two vegetation types.
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The woody vegetation reaches 8-10m in height and the o2 4 & B W02 o2 4 6 B W02
flux sensors are at 17 m, giving the tower a footprint of about T
500m. The vertically projected tree canopy cover in this = - g

area is about 30% and woody basal area i ha1l. The an
grass layer is dominated Hyanicum maximum, Digitaria
eriantha, Eragrostis rigidorandPogonarthria squarrosa
The tower is instrumented with a sonic anemometer
(WindMaster, Gill Instruments Ltd., Lymington, UK) mea-
suring wind velocity in three dimensions and a closed-path T S S - R R
infrared gas analyzer (LI-6262, LI-COR Inc., Lincoln, NE,
USA) measuring water vapour and g@oncentration. The  Fig. 1. Showing monthly CG (Fc) and BO (LE) flux at the site
raw high frequency (10 Hz) data was processed followingfor the two main vegetation types (calculated from the wind direc-
(Lee et al., 2004) to produce half-hourly measures of abovetions). Fc fluxes are separated into daytime and night-time fluxes.
canopy turbulent fluxes of sensible heat, water vapour, andhe wind rose shows the dominant wind direction, as well as the
carbon dioxide. Heat and mass fluxes were calculated base@fea of the footprint which i#\caciasavanna (dark shaded area),
on conventional equations and corrections (see e.g. MonSombretunsavanna (open area) or intermediate (light shaded area).
crieff et al., 1997; Aubinet et al., 2000) and all fluxes are
reported as positive upward from the land to the atmosphere. _ ) ) _ )
Canopy storage flux was estimated from the half-hourly timetyPes was a slightly higher night time carbon flux in the
derivative of a 16 m column integral based on £@ncen- broad-leafed savanna during the dry months — this was not
trations measured at 0.75, 2.0, 3.5, 5.25, and 16 m, and add&@nsidered significant enough to justify separating the fluxes
to the above-canopy turbulent flux for data analysis. Incom-Nto two datasets with the consequent reduction in sample
ing and outgoing long- and shortwave radiation was mea-SiZ€: Kl_Jt_sch et_al. (2008) similarly notes that the data_“show
sured with a net radiometer, (NR Lite, Zipp & Zonen B.V., N0 significant differences between the savanna types in terms
Delft, The Netherlands), with the incoming and outgoing of f!uxes”. Whether this was due to alqck of ability to differ-
shortwave radiation measured with pyranometers (CM 21 €ntiate between fluxe_s from the two sites, or because at the
Zipp & Zonen B.V., Delft, The Netherlands) mounted at landscape level the differences are not significant, we chose
22m. to complete the rest of the analysis using all flux data as one
Average half-hourly volumetric soib} water content was uni'F. We used a model tp cregte an integra_lted site-level soil
estimated with 15 cm long frequency domain reflectometryMoisture record (For soil moisture modelling methods see
sensors (CS616, Campbell Scientific Inc., Logan, UT, usA)Archibald and Scholes, 2007). See Appendix A for a cali-
installed horizontally at soil depths of 3, 7, 16, 30, and 50 cmPration of measured vs modelled soil moisture.
in the clayeyAcacia— dominated soils downhill of the tower,
and 5, 13, 29, and 61 cm in the sand@wmbretum- dom- 2.3 Data processing and gap filling
inated soils uphill. Rainfall per half hour was measured
with a tipping bucket rain gauge (TE525, Campbell Scien-Flux data were available from February 2000 to December
tific Inc., Logan, UT, USA) located on the tower top, along 2005 (the site continues to operate, but with an open-path
with other standard meteorological variables such as air temlRGA). Of the half-hourly data, 41% was missing, which
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perature and humidity, wind speed and direction. is slightly more than the average among flux sites of 35%
(Falge et al., 2001). As rainfall occurs during summer
2.2 The effect of the ecotone months of November to April the flux data were summarised

by rainfall years (July to June) which provided five full years
The differences in soil properties and species compositiorof flux data — with data coverage ranging from 30-74 % an-
above and below the seepline were expected to be apparentially. Most of the data gaps were for a single half hour in-
in the flux data from the tower. To test this we separated theterval, but instrument failure due to lightning strikes resulted
half-hourly fluxes into predominantly broad-leafed and pre-in six gaps of over two months duration, usually occurring
dominantly fine-leafed (based on the wind direction (Fig. 1). during summer periods. These large, non-random gaps limit
The only observable difference between the two vegetatiorithe types of gap filling approaches that can be used.
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method breaks down, and the choice of “similar” meteoro-
logical conditions requires that the appropriate hydrological
indices are considered in the model — current implementa-
tions use only radiation, temperature, and vapour pressure
deficit (http://gaia.agraria.unitus.it/database/eddyproc/

We used artificial neural networks (ANN) as our gap-
filling approach, as this method accommodates non-linear
relationships between variables but requires &priori as-
sumptions on the relative importance of different variables or
their functional relationships. The usefulness of ANNs de-
pends entirely on the appropriate selection of input variables
7 —and we hoped to improve on standard methods available by
choosing variables which would reflect the pulsed response

e+ to soil moisture in arid systems. We also ran standard multi-
Jan’ Féb M Spr My Um Jil 0 Pug Sep Of N Dec ple linear regression models on the data to explore interactive
effects between the variables. This approach allowed us to
Fig. 2. Seasonal distribution of valid NEE data points from a six- investigate the important drivers of NEE, as well as develop
year long (2000 to 2005) dataset at the Skukuza flux tower. models which could be used for prediction using long-term
meteorological data.
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When au* filter of 0.1 m/s was applied to eliminate pe- 2.4 NEE, photosynthesis, respiration
riods of low turbulence during which eddy covariance mea-
surements are unreliable (Goulden, 1996), the missing fluHalf-hourly night-time fluxes were used to estimate the day-
data increased to 49%. Linear interpolation was used tdime respiration. A stricte* threshold of 0.25 mist(Kutsch
fill gaps <2h in duration, which reduced the data gaps to et al., 2008) was used for this analysis, as it was more impor-
44%. These half-hourly data were then summed to calcutant to have reliable data than large sample sizes. Respiration
late daily NEE values for all days with unbroken 30-min is controlled by temperature, which generally varies quite
time series. The result was 698 days of NEE data. Thesg@redictably over the course of a day, as well as variables such
days were not randomly distributed through the year, withas soil water content and the amount of actively photosynthe-
the rainy months (particularly December and January) havsising leaf material, which are relatively constant over a sin-
ing many fewer data points than the dry months of Junegle day, but vary over longer time scales. We therefore took a
through September (Fig. 2). Dry, winter conditions are there-two-scale approach to determining day-time ecosystem res-
fore over-represented in the sample. In addition, one of thepiration: we derived a temperature response curve by fitting
periods of most continuous and cleanest observations sparisto “optimum” respiration conditions — i.e. the maximum
an intense drought, 2002—2003 growing season, further biassalues measured at a range of temperatures (all valid half-
ing results. hourly night-time fluxes were used for this). This curve was

Simple gap-filling techniques using mean daily averagesused to estimate the maximum potential respiration rate for
are inadequate for filling gaps in the Skukuza data becauseach daylight interval, using the daytime temperature trend
the stochastic and variable NEE response over the course @fs input (see Appendix B for more details on this method).
a wetting event would not be well represented by a summaryTl'he actual respiration during any particular day was then es-
value and because gaps in the data often span several weekinated as the temperature-driven “potential” scaled by the
Non-linear regression methods work well when there is justratio of observed night-time respiration to the potential night-
one main driver of carbon uptake or release (in temperate sygime respiration for that day. By multiplying the temperature
tems, temperature is normally used to drive respiration, andesponse function aReco by the scaling parameter, the esti-
APAR to drive photosynthesis (Moffat et al., 2007). How- mated respiration values are shrunk towards the mean respi-
ever, the presence of multiple drivers at the Skukuza siteration value for that day, thereby resulting in a day-specific
means that single-parameter non-linear methods are unlikelfemperature response function &, This scaling factor
to be sufficient. was assumed to account for the effects of soil moisture and

Similarly, Marginal Distribution Sampling (MDS: Reich- physiological activity. Unlike the flux-partitioning method of
stein et al., 2005) uses a look-up table approach which fillsSReichstein et al. (2005) this method does not require a sep-
gaps by taking the average value for data collected undearate temperature response function to be derived for each
similar meteorological conditions within a certain window day.
of the missing data. In this way it accounts for tempo- Conventional exponential (e.g. Arrhenius, Lloyd-Taylor)
ral auto-correlation as well as co-variation with meteoro-temperature functions were not considered appropriate
logical drivers. However, when there are long gaps thisrepresentations of the response functions, as day-time
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temperatures at the site often exceed that which is optimum .
for microbial activity (Yamano and Takahashi, 1983). An
analysis of independently-collected respiration data from the
site, collected using soil chambers, indicated that a gener-
alised Poisson temperature relationship produced the best fi
to measurements of soil respiration (Kirton et al., unpub-
lished data).

We therefore used the following equation to describe the
optimal temperature response:

1.5

all respiration data
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Parameters were estimated using a non-linear least square =

by means of the Levenberg-Marquardt algorithm:
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where values in brackets represent the standard error of the o _

estimate. Only days when there were more than three validig- 3. Dlstr_lbuyon of observed (black) and interpolated (red) half-

night time flux values with which to estimate the scaling pa- hourly respiration values over temperature. Data are presented for
. . all conditions, for periods of low soil moisture, for periods with little

rameter were used to interpolate day-time fluxes. See Ap;

. i . . .1 leaf material (lowfapaR), and for conditions of low soil moisture
ptehndlx Bt;‘worddetalls on this method and a comparison with and fapar- Interpolated values lie well within the distribution of
other metnods.

observed values for all conditions. It is also clear that respiration
Negative night time fluxes were excluded from the model drops off at high temperatures, and that temperature-response func-

fitting, as there was no theoretical justification for negative tions need to include this reduction at high temperatures if they are

respiration. Interpolated respiration values that dropped beto be appropriate for this site.

low zero (which can occur at very high or low temperatures,

using the parabolic curve) were given a value of zero. This

method produces predicted respiration values with similar;

A h tor all < ¢ soil moi input predictors, in order that the models could be used in
distributions to those recorded for all conditions of s0il mOis- ¢, i\;nction with the long-term records to estimate NEE over
ture andfapar (Fig. 3).

. A _ periods much longer than the eddy covariance data would
Daily respiration Reco) Values were obtained by calculat-

. o permit. The daily time-course of temperature variables was
ing a half-hourly value (multiplying the per second value by ogimated from daily maximum and minimum air tempera-

6030) and summing this over the 48 half-hours. All other ture. Soil water content was modelled using a simple bucket

daily values were calculated in the same way. Daily Grossy,ge| and Penman-Monteith evapo-transpiration functions
Primary Production (GPP) was calculated by subtracting thetArchibaId and Scholes, 2007). The half-hourly meteorolog-

interpolated day-time respiration values from the recordedp) 4ata available at the flux tower was used to validate these
daytime NEE values, and summing over the daylight hours, 4015 (see Appendix A)

This resulted in a dataset with 372 valid daily records for

Recoand 529 for GPP. Three different measures were used to indicate the hydro-
logical state and history of the ecosystem: Relative Available
2.5 Drivers of NEE Water Content (RAWC); water deficit (a function which ac-

cumulates the deficit for all days of water stré@ssdi; un-

In temperate systems incoming solar radiation (PAR) andtil rewetting occurs); and time since wetting (the time since
temperature are the main drivers used to predict photosynthe last big wetting event — i.e. time sinééncreased above
thesis and respiration. In some models these are modifiedi). Equations for these indices can be found in Table 1.
by measures of LAl and soil moisture (Moffat et al., 2007). Mean air temperature — which correlates well with soil tem-
We chose to test six input variables as predictors of GPP angerature (Appendix A) — was used as the predictoRgfo,
Reco(see Table 1). whereas mean daytime temperature was used at the predictor

Only data that could be derived from standard daily Southfor GPP. The European Joint Research Centre 10fdayRr
African Weather Services (SAWS) climate records or long- product (Pinty et al., 2002) was linearly interpolated to create
term low-resolution satellite vegetation indices were used as daily fapar parameter. A relationship between AVHRR-
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Table 1. Defining the six input variables used in the models to predict GPPRagg All input variables were derived from data available

at a daily level from the SA Weather Services, so they could be used to produce long-term predictions. Relative available water content
(RAWC) is calculated as in the formula below where= volumetric soil moisture content, WP = wilting point and FC = field capacity.
Accumulated water deficit (wdef) is the accumulated difference bet@ggmndé while 6 is less thami; (plants under water stress) and

is 0 whenevep is greater than or equal &, (plants not under water stress). Time since wetting is the number of days that water deficit
has been 0 (plants have not been water stressed).

GPP Reco
Parameter Derivation predictor  predictor
Photosynthetically Active Radiation PAR Modelled (energy balance) X X
Mean temperature during the day prl Tmin + 0.75*(Tmax-Tmin) X
Soil temperature Tre (Tmax+Tmin)/2 X
Fraction of absorbed PAR fAPAR Modelled from satellite-derived reflectances

(JRC:http://fapar.jrc.ec.europa.eu/Home.php X X

Relative Available Water Content
(RAWC) orel (6-WP)/(FC-WP}¥100 X X
Accumulated water deficit water deficit (wdef) A¥Ocrit) = (6; — Orit) 1f(0>0¢yit) O X X
Period of wet soils time since wetting (while wdef=D)days since wdef=0 X X

derived NDVI (the “GIMMS data”, Tucker et al., 2005) and exploring the relationships between variables. Many of the
fapar Was used to define the dailgapar input for the pe-  meteorological variables, at least over a certain range, are
riod before 1998 which was when the Joint Research Centrexpected to have a near-linear relationship with respiration

(JRC) dataset started (see Appendix A). and photosynthesis. Temperature is an exception: therefore
guadratic terms of temperature were also included during the
2.6 Modelling approach model selection process.

Two different artificial neural network (ANN) methods were 2.7 Error estimation
tested: Generalised Regression Neural Network (GRNN)
and Multi-Layer Feed Forward Neural Network (MLF). The The random error component of the total error in the daily
GRNN is based on a kernel smoothing approach and hasarbon fluxes was considered in an attempt to obtain a confi-
the advantage of using non-parametric regression proceduratence interval for the annual estimates of NEE. The system-
(which makes no assumptions about the underlying datagtic component of the error was not assessed for this paper,
and can be trained quickly as only the smoothing paramebut this analysis will be carried out at a later stage. To es-
ter needs to be estimated and optimised. As has been fountimate the random error, the method described by Richard-
in other studies (Cigizoglu, 2005; Currit, 2002; Kisi, 2006) son et al. (2008) was used, where the model error was used
this method is efficient for modelling non-linear systems andas a surrogate for the random error. The error of the daily
worked as well as the more traditional MLF, which required ANN model prediction (difference between the observed and
excessive fine-tuning to optimise the system architecturemodelled daily fluxes) was calculated for all cases where
Three separate models were developed for predidking, the observed daily fluxes were available. The distribution
GPP, as well as daily NEE. Models were developed usingof these errors fitted a Laplace distribution better than a nor-
80% of the data for training and 20% for testing (proportions mal distribution (Chi-squared tests for goodness of fit were
of 70-30% were also tried, without substantially changing x2=37.37 compared witl2=111.01 for the normal distribu-
the results). tion). Richardson et al. (2008) also found the errors in half-
Multiple linear regression (MLR) equations with up to hourly flux data to be distributed according to the Laplace
three-way interactions were examined for both photosynthedistribution.
sis and respiration. A combination of backward selection We assumed the daily errors were independent and iden-
and stepwise selection was used to obtain significant pretically distributed. This allowed us to use the Central Limit
dictors in the model. The ability of the MLR to explore Theorem to assume normality for the annual sum of the er-
the importance of different variables separately and in com+ors in the fluxes. The expected value of the errors was as-
bination added value to the results of the ANN. However,sumed to be zero and the variance of the errors was esti-
there are strong theoretical reasons against using ordinamnated by the sample variance. The approximate standard
least squares (OLS) regression for data-filling (Richardsorerror for the annual estimates was then calculated to be
and Hollinger, 2005), which is why we restricted their use to 12.9 g Cnt?year !, leading to coefficients of variation from
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Fig. 4. Daily time-course of NEE averaged over 5 years of measurements and for six combinations of environmental conditions at the
Skukuza flux site. Maximum C&sequestration occurs when soil moisture is low but green leaves are still present. Wet conditions were
defined as periods when the soil moisture was greater than 9% volumetric water content, dry conditions, less than 6%. Periods with green
leaves were defined as periods when fagar value was greater than 0.2. The average number of days each year for each combination of
physiological and soil moisture conditions are shown, together with the average daily sum of NEI?(@e(ybrfor these conditions.

_8_30%' and t2herefolre the errorin th? annual NE_E eStImate%able 2. Comparison of model performance. Artificial neural net-
is 25.3gCn17year ™ with 95% confidence. This agrees ks (ANN) generally performed better than multiple linear re-
W|th the estimate Of I’andom error Obta|ned by R'Chardsongress|ons (MLR), but MLR’s still managed to exp|ain a |arge pro-
and Hollinger (2005), where they used the Monte Carlo sim-portion of the variance in photosynthesis. The MLR estimates for
ulation to estimate the error in the model parameters andNEE were obtained by summing the MLR estimates Rggo and
model estimates. GPP, and the model fit statistics were then calculated from these
Goulden et al. (1996) and Oren et al. (2006) both reportedvalues.
instrument error of approximately 5% for closed path eddy

covariance systems. If the same instrument error can be as- ANN MLR
sumed for the Skukuza data, this increases the error value by Reco GPP NEE Reco GPP NEE
between 4.1 and 15.5 g Crayear L.
MAE
(gC/néiday) 056 0.37 042 085 0.62 2.64
3 Results and discussion r2 - - - 0.41 0.68 0.04
n 372 529 698 372 529 698

3.1 Carbon balance

The diurnal time-course of NEE is highly responsive to soill

moisture and the presence of green leaves (Fig. 4). Interesg » Gap-filling: modellingReco and GPP

ingly, maximum CQ uptake occurs during periods of low

soil moisture when green leaves are still present, because umespite the relative paucity of daily data both the ANN and

der these circumstances the contribution of soil respiration isnyltiple regression methods produced models which reason-

low, but a substantial amount of photosynthESiS is still OCCUr-ab|y represented the input data (Tab|e 2) Mean absolute er-

ring using water stored in the plant, or accessed from deepefor (MAE) ranged from 0.37 to 0.56 g CAfulay, which com-

soil layers that do not contribute much to ecosystem respirapares favourably to the 1-1.5 g Gfday range of values re-

tion. ported by Moffat et al. (2007) for a range of gap-filling meth-
ods and vegetation types. Respiration was generally harder to
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Table 3. Relative importance (percentage) of the different variables used to predict ecosystem respiration, gross primary productivity, and
net ecosystem exchange using an ANN. Variables are defined in Table 1.

Reco GPP NEE
fAPAR 36% fAPAR 46% fAPAR 27%
RAWC 19% time since wetting 19% RAWC 26%
PAR 18% PAR 14% time since wetting 14%
time since wetting  14% RAWC 12% water deficit 14%
water deficit 13% water deficit 5% Tpn 10%
Tre 0% Tpn 4% Tre 6%
PAR 3%

Table 4a. Results of a multiple linear regression to predict ecosys- strate. For GPP the time since wetting event was the next

tem respiratior(a), and GPR(b). Parameters are displayed in or- MOSt important predictor, which corroborates findings of
der of decreasing significance and non significant parameters ar¥Vohlfahrt (2008) and Xu et al. (2004) that there is a delay in
excluded from the tables. The best respiration model includedthe pulse of photosynthetic activity after a rainfall event. In
faPAR, time since wetting, soil temperature, and relative avail- terms of water relations, soil moisture content was the best
able water content, and two-way interactions between these varipredictor for Reco, but water deficit and time since wetting
ables. This corroborates the findings of the ANN model, but doeswere also identified as important. Interestingly, temperature

not produce a good prediction4=0.41, MAE=0.85 g C/rf/day).
The best GPP model includefhpar, time since wetting, rela-

tive available water content, mean daytime temperature, and thre

way interaction between several variables. This also corrob
rates ANN results, and produces a reasonable prediotfar0(68,
MAE=0.62 g C/nf/day).

Std.

Estimate Error t-value P
fapaR: time
since wetting 1.21 0.33 3.70 0.000  ***
FAPAR 4591 1471 312 0.002 *
RAWC:
Tre 0.02 0.01 2.92 0.004  **
time since
wetting —-0.27 0.10 -2.80 0.005 **
fapar:PAR: time
since wetting —-0.13 0.05 -256 0.011 *
faPAR: time since
wetting: RAWC —0.03 0.01 -2.54 0.012 *
JAPAR:
Tre —1.48 0.62 -238 0.018 *
time since
wetting: RAWC 0.01 0.00 2.33 0.020 *
JAPAR:
RAWC —0.36 0.18 -—-1.97 0.049 *

did not prove to be important in predicting either respiration
or photosynthesis. This could reflect the daily time-step at

Svhich we did the analysis — in this sub-tropical system tem-

perature variation between days and over the growth season
is much less important than variation in leaf dynamics and
soil moisture in driving NEE.

For respiration models using MLRapar and time since
wetting were the most significant single predictors (Table 4).
Interactions between various soil moisture parameters and
fapar also significantly improved the fit of the respiration
model. As can be seen in Fig. 4, the effect of a parame-
ter like soil moisture greatly depends on the amount of pho-
tosynthesising green leaf material, so it is unsurprising that
these interaction terms are important.

In the photosynthesis model soil moisture was very signif-
icant, and three-way interactions betwegpar, soil mois-
ture, PAR, and time since wetting were important in im-
proving model fit. The importance of the interactive terms
perhaps goes some way to representing the delayed pho-
tosynthetic response to wetting events identified by Xu et
al. (2004). It usually takes 5—7 days in this system before
photosynthesis reaches its maximum after a wetting event,
and this response depends on how much leaf material is
present. Temperature was included in both the GPPraggl
models as it produced significant interactions with other vari-
ables, but as a main effect it was not significant. The ANN

predict than photosynthesis, and the linear models performedet ecosystem exchange model had the lowest error (Table 2),

badly in predictingReco (2 of 0.41, MAE of 0.85 g/rA/day).

The ANN identified available green leaf material (in-

dexed byfapar) to be the most important predictor of both
Reco and GPP, buifapar Was relatively more important for
predicting GPP than for predictinfeco, as would be ex-
pected (Table 3). We interpret the role ffpar in driv-

ing Recoas reflecting the availability of readily-respired sub-

Biogeosciences, 6, 25266, 2009

so this model was used to gap-fill the six year dataset .
3.3 Inter-annual variability
Annually-integrated net ecosystem exchange varied from

—138to +155 gC/riy over the 5 year period for which there
were flux data (Table 5). In drought years limited carbon
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Table 4b. Continued.

259

annual rainfall. 302 mm.  annual NEE: 150 g C/m2/yr

Std. Awuu ey
Estimate Error t-value P =
RAWC 099 015 672 0.000 *** £V
JAPAR: UE T T T T T
PAR: RAWC 0.40 0.08 5.35 0.000  *** & 20026 2002.8 2003.0 20032 20034
JAPAR: £
RAWC -1.89 0.42 —4.50 0.000 **=* N
RAWC: % < 4 annual rainfall: 618 mm.  annual NEE: -138 g C/m?/yr
Tpn -0.02 0.01 —-4.33 0.000 **=* é o
PAR: time since 2 W%M%A (i e
wetting: RAWC 0.00 0.00 —4.27 0.000 *** T l W\J WWH
faPAR: time since o
Wetting: RAWC 003 001 425 OOOO Fxk ¥ 4 B measured
PAR 2.00 0.52 3.88 0.000 *** ™ gap-filed using ANN
T T T T T
TaPAR: 20036 20038 2004.0 20042 2004.4
water deficit 0.93 0.25 3.69 0.000 ***
&F;\,AR' _6.33 175 _363 0.000 ** Fig. 5. Annual time course of NEE for two consecutive years (a dry
water deficit 012 003 —350 0001 ** year and a near average year) at the Skukuza flux tower. Red line
PAR: time since represents measured daily NEE, blue is modelled using an artificial
wetting: Tpn 0.00 0.00 3.39 0.001 *** neural network and inputs ofapar, Soil moisture, temperature,
PAR: RAWC —0.08 0.02 —3.29 0.001 *k time since Wetting, and water deficit.
fapaRr: PAR: time
since wetting 0.17 0.06 3.08 0.002  **
PAR: Tpn —0.05 0.02 -2.77 0.006 ** 300 +
faPAR: time since
wetting: Tpn —0.07 0.03 -2.73 0.007 **
PAR: time 200 4 j(
since wetting —0.09 0.03 -2.68 0.008 **
time since = .
wetting:RAWC -0.02 0.01 -2.48 0.013 * lg g :
time since G 100 |
wetting: RAWC: Tpn 0.00 0.00 2.41 0.016 * E |
fAPAR —-3156 1395 -2.26 0.024 * % [i] m $
£ 0- | |

uptake occurs even during the height of summer, but in years 190 7 [
with above average rainfall the site can be a sink of carbon for ¢
several months of the year (Fig. 5). Only two of the five years

had negative NEE (in other words, were net carbon sinks at 200 ~
the annual timescale). It is possible that our gap filling meth-

ods over-estimate the amount of respiration occurring at this

site: there was very little data available during the summerriy g Annual NEE estimated over a 25 year time-series at the
months (Fig. 2), so the model was probably not well trainedskukuza Flux site using meteorological inputs and the ANN model.
to identify days of maximum GPP in this system. To test this Bars represent estimated annual sum, lines show 95% confidence
we will need to acquire a more extensive summer dataset fobased on random error estimation. Solid points show the NEE cal-
this site. Estimates of random error suggest that years whereulated from the gap-filled flux data.

predicted annual NEE was withia25 gC/nf/y might actu-

ally have been close to carbon-neutral. If systematic error

is included, this error estimate increases further to up to apthree other years (1989, 1996, and 2000) may have been

proximately 40 gC/rfy. near-sinks. The data give a long-term mean annual NEE of
When the 25 year NEE sequence is predicted the pat75(x105)gC/nfly. Loss of a cohort of agingcacia nilot-

tern becomes more obvious (Fig. 6). The site was predictedca trees at the site, and increased stem damage with increas-

to be a net sink for carbon in only 6 of the 25 years, buting elephant populations over the last 20 years might both
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Fig. 7a. Relationship between annual NE&) Reco(b) and GPRc) Fig. 7b. Continued.

and four potential drivers of inter-annual variability in carbon up-

take: annual rainfall, available photosynthetically active radiation,

length of the growing season, and number of growth days. Annual E E
rainfall seems to be the least significant, compared with parameters Lo = 026
that include seasonal variation in leaf display (APAR and length of
growing season), and the seasonal distribution of rainfall. Solid cir- 8 o0
cles represent years 2000—2005 for which flux data were available
to constrain the model.

-700
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©
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-800
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o
o
1100
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contribute to making this site appear as a net source in this

analysis. Recent field data at the site record high rates of
tree turnover: 8%{£3%) per annum — with damage by ele-
phants and senescence of édlidacia niloticatrees being the
main cause (Archibald, unpublished data). These turnover § £
rates are high, but not exceptional for southern African sa- . N e
vannas (Shackleton, 1997), and it is perfectly feasible that
tree growth could match these losses. Therefore, it would i .
be precipitous to speculate further on the implications of the
long-term predictions until there is better information on tree ‘ ‘ ‘ ‘ ‘ ' ‘
productivity, and more peak-growing season flux data with o o R
which to calibrate the models.

The most useful information provided by the long-term iy 7¢ continued.
prediction are estimates of the inter-annual variation for this
site. Figure 7a indicates that there is a strong relationship
between predicted annual NEE and absorbed photosynthetihe best relationship is found with APAR. This result makes
cally active radiation (APAR, which is PARfapar). This  sense when one considers that both the ANN and the MLR
analysis suggests that once annually accumulated APAR exgnalyses showed strong interactive effects of soil moisture
ceeds about 675 MJ/mnthe system becomes a sink for car- with fapar — i.€. the effect of available soil moisture in driv-
bon (Fig. 7a). ing Pn andReco depends heavily on the amount of photosyn-
It might seem surprising that soil moisture, which was sothetically active green leaf material. Similarly, soil moisture
important at a daily time scale, does not show a strongeihas been shown to be an important driver of seasonal pat-
relationship with annual NEE. Even when photosynthesisterns of leaf display at the site (Archibald and Scholes, 2007).
and respiration are considered separately (Fig. 7b, c), by fafherefore fapar can be seen as an integrated measure of

annual rainfall (mm) annual sum APAR (PAR*fapar)

o

annual GPP (g C/myr)

700
1
o
700
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1
o
-900
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length of growing season (days) # growth days
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Table 5. Summary of NEE over the 5 year period for which there was flux data. Negative values represent an overall sink of carbon. Data
gaps were filled using an ANN and predictofgpar, Water deficit, relative soil moisture content, mean day time temperature, time since
wetting, and mean soil temperature, in that order of importance. Also reported are annual summaries of rainfall, available photosynthetically
active radiation, length of the growing season, and number of growth days (days when soil moisture content is gre&tgr #arby

volume).

Rainfallyear  Annual NEE 95% confidence Annual rainfall Annual PAR  Growing season  Number of

(July to June) (gC/ﬁ]) interval (mm) (MJ/n@) length (days) growth days
0001 42 (17; 67) 659 662 244 245
0102 155 (130; 180) 572 523 191 169
0203 150 (125; 175) 303 406 156 166
0304 —138 (+163;-113) 618 555 188 81

04 05 —83 (—108;-58) 760 665 197 186

hydrologlcal conditions at the site, which is better at pred'(:,t'TabIe 6. Annualised summary of the different contributions to the
ing annual-scale carbon exchange than any measure derived hon balance at the Skukuza flux site.
from short-term measurements of daily soil moisture. For

example in the 2003—-2004 rainfall year the total annual rain- Mean annual flux

fall was above average (618 mm) but it was heavily skewed : 1

towards the last part of the growing season, and the start of Herbivory 9.5gCm*y (g”k_”f""” error? 20%)
grass growth was delayed by several weeks. In this instance F''® 40.6£17.5gCm“y

Flux measurement
(incl. herbivory) ~ 75:105gCnt2y~1
Total 115.6:122.5gCm2y~1

integrated values of APAR would represent the growing con-
ditions for a season better than total rainfall, or even number
of growing season days.

3.4 Other pathways of carbon loss from the system
A multi-site, multi-year mean grass fuel load for the

A savanna carbon budget would be incomplete without aKNP is 3359 kghatl, with a range of 1152-6728 (Trol-
consideration of fire and herbivory. The fluxes of £©the  lope and Potgieter, 1985). The emission factor for,CO
atmosphere via these two pathways have not been directljneasured for the same fires as the above fuel loads
measured at the Skukuza site, but can be inferred and cor{Ward et al., 1996) is 169933gCQ kgDM~1. There-
strained from other data. The abundant large mammaliafiore, the long-term annualised emission of £@rough
herbivore &5kg body mass) community in this landscape fire is around 13658gCGQm2y~—1.  An additional
consists of 14 species, mostly Bovidae. The combined herbi6.4+3.9gCOnT2y—1 and 0.2:0.2gCH,m—2y~! are also
vore biomass is 3155 kg km (Scholes et al., 2004). Taking emitted from fires, so the total pyrogenic carbon loses are
into account the effect of body mass on metabolic require-around 40.8:17.5gCn12y~1 (Table 6). The flux site has
ments and digestability, this translates to a herbivore respiburned five times since 2080which suggests that the pyro-
ratory flux of 4.5gCm2y~1 and a flux from the decom- genic emissions during this period are probably about twice
position of dung of 5.0g Cm?y~1. The uncertainty range the long-term, landscape-scale averages calculated above.
associated with these estimates is unknown, but thought t@he pyrogenic fluxes are in principle part of ecosystem res-
be around 20%, related mostly to errors in game census. Thpiration, but in practice are not measured by the eddy co-
inter-annual variability is thought to be relatively low. The variance system because they occur briefly, and during that
herbivore respiration and dung decomposition fluxes are subperiod exceed the measurement range of the infra-red gas
sumed in the ecosystem respiration measured by the eddgnalyser. The inter-annual variability is high because a given
covariance system (Table 6). site does not burn at all in most years, and the fuel load

The mean fire return time in this landscape in the KNP varies greatly in the years when it does burn, in response
is 4.2 years (Van Wilgen et al., 2000). The most com-to the variability of rainfall in the preceding season. The
prehensive set of fuel measurements for this landscape wdétal carbon budget — including fire, herbivory, and plant
taken in August 1992 at 10 locations within 30 km of the growth and decomposition — for the skukuza site is therefore
Skukuza site (Shea et al., 1996). The combusted material wak15.0:122.5gCnr2y 2.
predominantly dry grass (144®75SDkgha?l), tree lit-
ter (1452636 kg ha'l) and a contribution from dead wood 1 August 2000, August 2001, April 2005, November 2006, May
(226+194 kg hal) giving a total of 3126:1795kghal. 2007
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4 Conclusions Table A1. Summary of comparisons between flux tower derived

o variables and corresponding variables derived from other sources.
Inter-annual variability in carbon exchange at the Skukuza

flux site is on the same scale as an oak savanna in California.

In a seven year study Ma et al. (2007) measured values from Pearson  95% confidence
—155 to —56 g Cm—2 y—l in the savanna and from88 to Variables compared correlation interval
141 gCm2y~1in an adjacent grassland. This compares to Mean flux tower soil temperature and

2.1 R derived soil temperature from SAWS data (Tre). 0.92 (0.92; 0.93)
—1381to 155 g Cm Yy from the six year Skukuza dataset. Mean flux tower daytime temperature and
The variability at Skukuza seems to be largely controlled by derived daytime temperature from SAWS data (Tpm). ~ 0.96 (0.95;0.96)
. . . . Scaled flux tower soil moisture and derived

variations in the length of time that green leaves are displayed scajed soil moisture from SAWS data) 078 (0.75; 0.79)
by the trees and grasses, and by changes in seasonal patterritily flux tower rainfall and SAWS

. o . . . . rainfall data. 0.61 (0.58; 0.64)
of water availability (Fig. 7) — both ultimately driven by vari- ' _ 24 Gimms Nowi. 0.84 (0.83; 0.85)
ations in rainfall between years. PAR calculated from the flux tower data

y

.. . s d th delled PAR dat; 0.62 0.58; 0.66
The flux-partitioning and gap-filling procedures devel- _2"@™Memocere - ¢ )

oped in this paper are a distinct improvement on standard

methodologies largely because they use more appropriate

temperature-response functions and explicitly include a soiltaple A2. Annual rainfall over time.
moisture control, including indices of the wetting history. Es-
timates of annual C&Xlux obtained through gap-filling using Annual Rainfall Sum from SAWS Environmental Data
an ANN may bg slight over-estimates (|.e.3 slightly biased t.o— 99/00 0001 0L/02 02/03 03/04 04/05 05/06
ward the sink side), because of the paucity of peak growing 363 659 572 302 618 760 249
season flux data. However, it is also possible that this par-
ticular savanna site has been a carbon source in recent years Annual Rainfall Sum from Flux Tower Data

due to hlgh tree turnover. Results of the ANN gap-fllllng 99/00 00/01 01/02 02/03 03/04 04/05 05/06
procedures and MLR models indicate a large degree of inter- 415 671 427 310 276 582 209
action between driver variables and lend support for the de-
velopment of a process-driven model for this system. Such a
model would need to include explicit measures of leaf mass,

soil moisture and temperature. The correlation between the flux tower rainfall and the
The generalised Poisson function used here to fit an optiSAWS rainfall is significant, but not as strong as that of the
mum temperature response curve is an effective method foprevious comparisons to SAWS derived variables. The peaks
extrapolating day-time respiration in systems where temperof the environmental data are usually slightly higher than
atures often exceed 30 — provided a scaling factor is used recorded from the flux tower, although there are few days
to control for the co-limiting factors of LAl and soil mois- when the flux tower recorded higher values. This could be
ture. At a daily to seasonal level, however, temperature wagjue to localised rainfall events. Peaks in the data do not al-
shown to be less important than other factors in influencingways Correspond and this could be due to the measurements
NEE. from the SAWS data being taken daily from a rain gauge,
whereas the flux tower took instantaneous measurements of
rainfall. Therefore daily rainfall events may not always cor-

Appendix A respond exactly. The pattern of rainfall over time appears to
_ _ match for the two data sets. The annual sum of rainfall for
Comparison of meteorological data the environmental data is always more than that for the flux

) ) tower data (Table Al). This is due to missing data from the
Correlation between the flux tower variables and correspondfjyx tower.
ing variables from other sources appears in Table Al. Strong There is a strong linear relationship between Gimms
linear relationships exist between the flux tower daily mea-NDv| and fapar (Table A2). Therefore a linear re-
surements for the mean soil temperature and the mean dayression equation was derived to describe this relation-

time temperature and the corresponding temperature variship, The linear regression obtainedr&value of 0.71
ables derived from the minimum and maximum daily tem- and an MAE of 0.05. The estimated equation was:

peratures of the South African Weather Services (SAWS), o, x=—0.079+0.736:Gimms.

data. There is also a strong linear relationship between the The standard error for the intercept is 0.004 and the stan-
measured mean soil moisture and the modelled soil moisturgard error for the slope is 0.009.

using the SAWS data, as well as a fairly strong linear rela-

tionship between PAR derived from the shortwave radiation

from the flux tower and the modelled PAR.
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Fig. B1. Showing the six temperature response functions fitted patheiize pecieler “pucaier pobcitil fuiotelin -pueOhsidl meseunifa

to the half-hourly night time fluxes (respiration). PI@t) shows

the parabolic functions fitted over the manually selected maximumgig. B2. Showing the distribution of the respiration data interpo-

points (top function), the automatically selected maximum points ated using six different methods (solid points: median values, box:

(middle function) and the manually selected top of the data mass.259 quantiles, bar: data range). The median-288% quantiles

(bottom function). Plo{B) shows the Generalised Poisson function are very similar for each method, but the method that calculates the

fitted over the same three selections of points. fitted values had slightly lower maxima than the other two meth-
ods. All data are well within the range of measurRgLo values

(ux-corrected half-hourly night-time fluxes).
Appendix B Interpolating day-time respiration

Fitting an optimal temperature function to the mass of night-yemperature value (which would represent respiration under
time flux measurements involved making several ass“mpbompletely optimal conditions of soil moisture and LAl).

tions about a) the shape of the temperature-respiration CUrV&e tried three different methods for extracting these values:

and b) the values to use to fit the curve. manually picking the maximum respiration values, calculat-

ing the maximum respiration value for each degree temper-
ature change, and calculating the 95th quantile for each de-
gree temperature change (Fig. B1). We also tried manually

Field data indicate that a generalised Poisson function is th icking values at the top of the thickest part of the cloud of
best descriptor of the effect of temperature on respiration, af'cKing : top P
respiration points. This approach would exclude any extreme

it describes both the exponential increase of respiration with &
autliers but could also be assumed to represent the same set
temperature and the sudden decrease once the temperatur.

optimum has been reached (Kirton et al., unpublished data)?FOther environmental conditions. Because the curve is ad-

However, for this analysis we also tried a simple parabolicjus'[e.d up anq down basgq on the respiration values on Fhe
function. day in question, the position of the curve on the y-axis is

unimportant. It is the shape of the curve that will affect the
interpolation.

Using the 95th quantile was not satisfactory as some tem-
This interpolation method relies on deriving a curve that rep-perature categories had orders of magnitude more respira-
resents the temperature response under a certain set of efon measurements than others. We therefore abandoned
vironmental conditions. Any deviation from this line by an that method and tested six different respiration interpolation
observed point is then assumed to be due to different envimethods (Table B1): manually selected maximum points (fit-
ronmental conditions. The curve can be pulled up and dowrfing a parabolic and generalised Poisson), manually selected
to match this point, and thereby adjust for these varying en{oints at edge of data cloud (parabolic and GDP), and calcu-
vironmental conditions, by the use of a scaling parameterlated maximum points (parabolic and GDP).

Missing respiration values (day time points) can then be in-

terpolated on this day (because the environmental condition83 Results

other than temperature are going to remain stable at a daily

time step) by using the temperature at each point and the acResults indicate that the interpolated values are very resilient
justed temp/resp equation. to the method used to fit the temperature response curve.

With this in mind, extracting the points to be used could The distribution of interpolated points was similar for all six
be done in a number of different ways. The easiest way tamethods (Fig. B2), and linear regression models show sim-
identify points where all factors other than temperature arelar fits to the observed respiration data (Table B1). A vi-
constant would be to identify the maximum points for each sual assessment of the interpolated points (Fig. B3) indicates

B1 Shape of the temperature-response curve

B2 Values used to fit the curve
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Table B1. The six different methods used to fit a temperature response curve to the measured night-time (respiration) fluxes. Two different
fitting functions were used, and three different methods for identifying points to fit the curve to. The distributions of the data interpolated
with each method were very similar to each other (Fig. B2), and fell well within the bounds of the observed respiration data (Fig. B3).

Parabolic Generalised Poisson
Observed Calculated  Observed fit Observed Calculated Observed fit
max max to datacloud max max to datacloud
Name parObsMax parCalcMax parObsMain poisObsMax poisCalcMax poisObsMain
r? 0.57 0.58 0.56 0.56 0.58 0.56
slope of linear model 0.61 0.61 0.6 0.56 0.58 0.56
Median predicted value
mg CQy/m?/s 0.070 0.070 0.069 0.071 0.070 0.069
Minimum predicted value
mg CO/m?/s 0.002 0.002 0.000 0.002 0.002 0.000
Maximum predicted value
mg COy/m?/s 0.98 0.68 0.81 0.81 0.71 0.81
parabolic function gencralised paisson function AcknowledgementsiVe would like to thank Walter Khubeka for

- eo o - oo o his tireless data-collection. This paper was substantially improved

with comments from Dario Papale and Markus Reichstein. The
research was funded by grants to Hanan from the US National
Aeronautics and Space Administration (NASA) Terrestrial Ecology

Program and the US National Science Foundation and CSIR Parlia-
mentary Grant funding to the Natural Resources and Environment
Operating Unit.

observed max
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respiration {mg CO,/m?s)
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