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Abstract. Inter-annual variability in primary production and
ecosystem respiration was explored using eddy-covariance
data at a semi-arid savanna site in the Kruger Park, South
Africa. New methods of extrapolating night-time respiration
to the entire day and filling gaps in eddy-covariance data in
semi-arid systems were developed. Net ecosystem exchange
(NEE) in these systems occurs as pulses associated with rain-
fall events, a pattern not well-represented in current standard
gap-filling procedures developed primarily for temperate flux
sites. They furthermore do not take into account the decrease
in respiration at high soil temperatures. An artificial neu-
ral network (ANN) model incorporating these features pre-
dicted measured fluxes accurately (MAE 0.42 gC/m2/day),
and was able to represent the seasonal patterns of photosyn-
thesis and respiration at the site. The amount of green leaf
area (indexed using satellite-derived estimates of fractional
interception of photosynthetically active radiationfAPAR),
and the timing and magnitude of rainfall events, were the two
most important predictors used in the ANN model. These
drivers were also identified by multiple linear regressions
(MLR), with strong interactive effects. The annual integral
of the filled NEE data was found to range from−138 to
+155 g C/m2/y over the 5 year eddy covariance measurement
period. When applied to a 25 year time series of meteorolog-
ical data, the ANN model predicts an annual mean NEE of
75(±105) g C/m2/y. The main correlates of this inter-annual
variability were found to be variation in the amount of ab-
sorbed photosynthetically active radiation (APAR), length of
the growing season, and number of days in the year when
moisture was available in the soil.
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1 Introduction

Carbon dioxide flux measurements using the eddy covariance
technique generate a raw dataset with a very high temporal
resolution (generally 10–20 Hz). The first step in the analysis
of these data is to screen them for spurious values, perform
various corrections, and then integrate the fluxes over peri-
ods of about 30 min. The half-hourly data provide impor-
tant insights into many short-term physiological processes,
but most ecological and management-relevant questions are
framed over even longer timeframes – from days to years. A
matter of particular interest to both ecologists and ecosystem
managers is the inter-annual variability of primary produc-
tion and carbon storage (Lauenroth et al., 2006). Semi-arid
savannas are characterised by high inter-annual variability, in
response to highly variable rainfall. This underlies many fea-
tures of their ecology, including the likelihood and intensity
of fires, the growth and migration of animal populations, and
the stability of the tree-grass mixture (Higgins et al., 2000;
Tyson, 1986; Reed et al., 1994; Ma et al., 2007; Serneels et
al., 2007), and makes savanna systems particularly hard to
manage.

Accumulating 30 min flux measurements to longer time
periods is not a simple matter of adding them up, for two
main reasons. The first is that even the best-run eddy covari-
ance datasets have gaps, due to instrument failure or weather
conditions that cause the eddy covariance flux assumptions
to be violated. The second is that the eddy covariance mea-
surement, net ecosystem exchange (NEE), is often not what
is needed by ecologists who are often more interested in its
components, gross primary production (GPP) and ecosystem
respiration (Reco):
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NEE=GPP+Reco (observing the convention that fluxes
from the atmosphere to the ground are given a negative sign).

A model is used to bridge the data gaps in what is intended
to be an unbiased fashion. The same or different models can
be used to deconvolve the NEE signal into its components. A
wide range of standard procedures have been developed for
this process, largely for application in temperate ecosystems
(Falge et al., 2001; Papale et al., 2006; Moffat et al., 2007).
These are not always appropriate for tropical wet-dry sys-
tems. They use phenomenological models, neural networks
or process-based models to achieve their objectives. The
readily-available ones do not work well for data from semi-
arid sites in Southern Africa. This is because they assume
the major controls on flux processes to be solar radiation and
temperature, whereas temperatures in the semi-arid tropics
are almost always warm enough to permit physiological ac-
tivity, and insolation is sufficient, at least during non-cloudy
days, for light saturation of part or all of the typically-sparse
canopy. In arid and semi-arid systems, the main control on
the rate and duration of many ecosystem processes is soil
moisture.

As a further complication, in low-rain, high-evaporation
ecosystems, where the soils dry out between successive
rainfall events (so-called pulse-driven systems), the various
terms in the carbon budget are highly dependent on the re-
cent history of the system (Huxman et al., 2004). For exam-
ple, following a rainfall event, respiration increases rapidly
whereas it takes several days for the ecosystem to reach
maximum photosynthesis (Huxman et al., 2004; Xu et al.,
2004). Similarly, the magnitude of the system response de-
pends not only on the size of the current rainfall event, but
on the amount and timing of preceding events: after a long
drought the response to a rain event is larger than to a similar-
sized event during the middle of the rainy season, but the time
taken to reach the peak response is longer (Veenendaal et al.,
2004). Therefore, it is not possible to use instantaneous mea-
sures such as the soil moisture content as a sole proxy for
the state of the system. Gap-filling requires consideration of
indices that have “memory”: for instance, accumulators of
water deficit.

Moreover, “phenomenological” models will only be ap-
propriate when they truly represent the underlying responses
(Falge et al., 2001). Most current respiration models de-
fine the relationship between respiration and temperature us-
ing an exponential- or logistic-shaped function; i.e. functions
that either continually increase, or level off at a maximum
value (Moffat et al., 2007). These models were developed in
systems where temperature ranges are generally below 30◦C
(Fang and Moncrieff, 2001; Lloyd and Taylor, 1994). Phys-
iologically, respiration is expected to decrease once temper-
ature exceeds the optimum for microbial activity (Yamano
and Takahashi, 1983), and photosynthesis shows a similar
reduction at high temperatures (Hamerlynck and Huxman,
2000). In tropical dry systems, the soil temperature in the
top centimetres often exceeds 40◦C. Thus more appropriate

functional forms need to be developed before current gap-
filling methodologies can be applied globally.

Improving functional relationships to include extreme
conditions would also be valuable in the context of climate
change. In coming decades, many ecosystems around the
world are likely to be exposed to higher temperatures and
reduced moisture availability. Information on ecosystem re-
sponses to high temperatures and intermittent droughts will
be valuable in predicting responses to these changes.

We present a statistical approach to estimating annual NEE
for a semi-arid savanna system in Southern Africa. We
tested the importance of six environmental drivers of daily
photosynthesis (GPP) and respiration (Reco) at the Skukuza
flux tower in the Kruger Park (25.02◦ S, 31.50◦ E). Predic-
tors commonly used in temperate systems were included, to-
gether with a range of environmental predictors chosen to
reflect the effect of pulsed rainfall events. Predictive mod-
els were then used to interpolate annual fluxes over a 25 year
time period, and to investigate the degree and possible causes
of inter-annual variation in CO2 exchange.

Our approach was motivated by the fact that there was a
limited amount and duration of flux data (spanning six years
with many gaps, which is too short for a reliable estimate
of variance), but that a full time series of daily meteorolog-
ical and phenological data was available for a 25 year pe-
riod. Working at a daily time-step allowed us to bridge the
gap between the half-hourly flux data and the crucial annual
timescale, and to use the long-term meteorological data to
estimate inter-annual variability. Process-based modelling
would be ideal for these systems where previous conditions
affect the response of the system to perturbation, but we
chose to limit ourselves to a statistical analysis, given our im-
perfect understanding of the processes driving NEE in these
systems. Results from this research will be used to develop
more process-based models.

This paper aims to:

– Document new procedures for eddy covariance gap-
filling that are appropriate for dry, hot ecosystems;

– Explore the factors associated with short-term (daily)
variation in NPP, GPP andReco;

– Calculate annual estimates of NEE and explore the main
factors driving inter-annual variation in savanna carbon
exchange at the Skukuza flux site in South Africa.

2 Methods

2.1 Study site

A flux tower situated in a semi-arid savanna near Skukuza,
in the Kruger National Park has been collecting data since
February 2000. The site is 370 m above sea level with
strongly seasonal rainfall occurring between November and
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April. Mean annual rainfall is 550±160 mm. The landscape
is gently undulating, consisting of broad-leavedCombretum
apiculatum-dominated savanna on the coarse sand crests and
fine-leavedAcacia nigrescenssavanna on sandy clay loam in
the valleys (Scholes et al., 2001). The soils are about 0.6 m
deep. The eddy covariance flux tower is situated at the eco-
tone between the two vegetation types.

The woody vegetation reaches 8–10 m in height and the
flux sensors are at 17 m, giving the tower a footprint of about
500 m. The vertically projected tree canopy cover in this
area is about 30% and woody basal area is 7 m2 ha−1. The
grass layer is dominated byPanicum maximum, Digitaria
eriantha, Eragrostis rigidor, andPogonarthria squarrosa.

The tower is instrumented with a sonic anemometer
(WindMaster, Gill Instruments Ltd., Lymington, UK) mea-
suring wind velocity in three dimensions and a closed-path
infrared gas analyzer (LI-6262, LI-COR Inc., Lincoln, NE,
USA) measuring water vapour and CO2 concentration. The
raw high frequency (10 Hz) data was processed following
(Lee et al., 2004) to produce half-hourly measures of above-
canopy turbulent fluxes of sensible heat, water vapour, and
carbon dioxide. Heat and mass fluxes were calculated based
on conventional equations and corrections (see e.g. Mon-
crieff et al., 1997; Aubinet et al., 2000) and all fluxes are
reported as positive upward from the land to the atmosphere.
Canopy storage flux was estimated from the half-hourly time
derivative of a 16 m column integral based on CO2 concen-
trations measured at 0.75, 2.0, 3.5, 5.25, and 16 m, and added
to the above-canopy turbulent flux for data analysis. Incom-
ing and outgoing long- and shortwave radiation was mea-
sured with a net radiometer, (NR Lite, Zipp & Zonen B.V.,
Delft, The Netherlands), with the incoming and outgoing
shortwave radiation measured with pyranometers (CM 21,
Zipp & Zonen B.V., Delft, The Netherlands) mounted at
22 m.

Average half-hourly volumetric soil (θ ) water content was
estimated with 15 cm long frequency domain reflectometry
sensors (CS616, Campbell Scientific Inc., Logan, UT, USA)
installed horizontally at soil depths of 3, 7, 16, 30, and 50 cm
in the clayeyAcacia– dominated soils downhill of the tower,
and 5, 13, 29, and 61 cm in the sandierCombretum– dom-
inated soils uphill. Rainfall per half hour was measured
with a tipping bucket rain gauge (TE525, Campbell Scien-
tific Inc., Logan, UT, USA) located on the tower top, along
with other standard meteorological variables such as air tem-
perature and humidity, wind speed and direction.

2.2 The effect of the ecotone

The differences in soil properties and species composition
above and below the seepline were expected to be apparent
in the flux data from the tower. To test this we separated the
half-hourly fluxes into predominantly broad-leafed and pre-
dominantly fine-leafed (based on the wind direction (Fig. 1).
The only observable difference between the two vegetation
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Fig. 1. Showing monthly CO2 (Fc) and H2O (LE) flux at the site
for the two main vegetation types (calculated from the wind direc-
tions). Fc fluxes are separated into daytime and night-time fluxes.
The wind rose shows the dominant wind direction, as well as the
area of the footprint which isAcaciasavanna (dark shaded area),
Combretumsavanna (open area) or intermediate (light shaded area).

types was a slightly higher night time carbon flux in the
broad-leafed savanna during the dry months – this was not
considered significant enough to justify separating the fluxes
into two datasets with the consequent reduction in sample
size. Kutsch et al. (2008) similarly notes that the data “show
no significant differences between the savanna types in terms
of fluxes”. Whether this was due to a lack of ability to differ-
entiate between fluxes from the two sites, or because at the
landscape level the differences are not significant, we chose
to complete the rest of the analysis using all flux data as one
unit. We used a model to create an integrated site-level soil
moisture record (For soil moisture modelling methods see
Archibald and Scholes, 2007). See Appendix A for a cali-
bration of measured vs modelled soil moisture.

2.3 Data processing and gap filling

Flux data were available from February 2000 to December
2005 (the site continues to operate, but with an open-path
IRGA). Of the half-hourly data, 41% was missing, which
is slightly more than the average among flux sites of 35%
(Falge et al., 2001). As rainfall occurs during summer
months of November to April the flux data were summarised
by rainfall years (July to June) which provided five full years
of flux data – with data coverage ranging from 30–74 % an-
nually. Most of the data gaps were for a single half hour in-
terval, but instrument failure due to lightning strikes resulted
in six gaps of over two months duration, usually occurring
during summer periods. These large, non-random gaps limit
the types of gap filling approaches that can be used.
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Figure 2 720 

Fig. 2. Seasonal distribution of valid NEE data points from a six-
year long (2000 to 2005) dataset at the Skukuza flux tower.

When au∗ filter of 0.1 m/s was applied to eliminate pe-
riods of low turbulence during which eddy covariance mea-
surements are unreliable (Goulden, 1996), the missing flux
data increased to 49%. Linear interpolation was used to
fill gaps <2 h in duration, which reduced the data gaps to
44%. These half-hourly data were then summed to calcu-
late daily NEE values for all days with unbroken 30-min
time series. The result was 698 days of NEE data. These
days were not randomly distributed through the year, with
the rainy months (particularly December and January) hav-
ing many fewer data points than the dry months of June
through September (Fig. 2). Dry, winter conditions are there-
fore over-represented in the sample. In addition, one of the
periods of most continuous and cleanest observations spans
an intense drought, 2002–2003 growing season, further bias-
ing results.

Simple gap-filling techniques using mean daily averages
are inadequate for filling gaps in the Skukuza data because
the stochastic and variable NEE response over the course of
a wetting event would not be well represented by a summary
value and because gaps in the data often span several weeks.
Non-linear regression methods work well when there is just
one main driver of carbon uptake or release (in temperate sys-
tems, temperature is normally used to drive respiration, and
APAR to drive photosynthesis (Moffat et al., 2007). How-
ever, the presence of multiple drivers at the Skukuza site
means that single-parameter non-linear methods are unlikely
to be sufficient.

Similarly, Marginal Distribution Sampling (MDS: Reich-
stein et al., 2005) uses a look-up table approach which fills
gaps by taking the average value for data collected under
similar meteorological conditions within a certain window
of the missing data. In this way it accounts for tempo-
ral auto-correlation as well as co-variation with meteoro-
logical drivers. However, when there are long gaps this

method breaks down, and the choice of “similar” meteoro-
logical conditions requires that the appropriate hydrological
indices are considered in the model – current implementa-
tions use only radiation, temperature, and vapour pressure
deficit (http://gaia.agraria.unitus.it/database/eddyproc/).

We used artificial neural networks (ANN) as our gap-
filling approach, as this method accommodates non-linear
relationships between variables but requires fewa priori as-
sumptions on the relative importance of different variables or
their functional relationships. The usefulness of ANNs de-
pends entirely on the appropriate selection of input variables
– and we hoped to improve on standard methods available by
choosing variables which would reflect the pulsed response
to soil moisture in arid systems. We also ran standard multi-
ple linear regression models on the data to explore interactive
effects between the variables. This approach allowed us to
investigate the important drivers of NEE, as well as develop
models which could be used for prediction using long-term
meteorological data.

2.4 NEE, photosynthesis, respiration

Half-hourly night-time fluxes were used to estimate the day-
time respiration. A stricteru∗ threshold of 0.25 ms−1(Kutsch
et al., 2008) was used for this analysis, as it was more impor-
tant to have reliable data than large sample sizes. Respiration
is controlled by temperature, which generally varies quite
predictably over the course of a day, as well as variables such
as soil water content and the amount of actively photosynthe-
sising leaf material, which are relatively constant over a sin-
gle day, but vary over longer time scales. We therefore took a
two-scale approach to determining day-time ecosystem res-
piration: we derived a temperature response curve by fitting
it to “optimum” respiration conditions – i.e. the maximum
values measured at a range of temperatures (all valid half-
hourly night-time fluxes were used for this). This curve was
used to estimate the maximum potential respiration rate for
each daylight interval, using the daytime temperature trend
as input (see Appendix B for more details on this method).
The actual respiration during any particular day was then es-
timated as the temperature-driven “potential” scaled by the
ratio of observed night-time respiration to the potential night-
time respiration for that day. By multiplying the temperature
response function ofReco by the scaling parameter, the esti-
mated respiration values are shrunk towards the mean respi-
ration value for that day, thereby resulting in a day-specific
temperature response function forReco. This scaling factor
was assumed to account for the effects of soil moisture and
physiological activity. Unlike the flux-partitioning method of
Reichstein et al. (2005) this method does not require a sep-
arate temperature response function to be derived for each
day.

Conventional exponential (e.g. Arrhenius, Lloyd-Taylor)
temperature functions were not considered appropriate
representations of the response functions, as day-time
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temperatures at the site often exceed that which is optimum
for microbial activity (Yamano and Takahashi, 1983). An
analysis of independently-collected respiration data from the
site, collected using soil chambers, indicated that a gener-
alised Poisson temperature relationship produced the best fit
to measurements of soil respiration (Kirton et al., unpub-
lished data).

We therefore used the following equation to describe the
optimal temperature response:

Respiration= M

(
b − Soil temperature

b − a

)c

×

exp

{( c

d

) [
1 −

(
b − Soil temperature

b − a

)d
]}

Parameters were estimated using a non-linear least squares
by means of the Levenberg-Marquardt algorithm:

M̂ = 1.01(0.08) â = 27.68(1.59) b̂ = 11.42(10.20)

ĉ = 0.67(1.17) d̂ = 4.15(1.78)

where values in brackets represent the standard error of the
estimate. Only days when there were more than three valid
night time flux values with which to estimate the scaling pa-
rameter were used to interpolate day-time fluxes. See Ap-
pendix B for details on this method and a comparison with
other methods.

Negative night time fluxes were excluded from the model
fitting, as there was no theoretical justification for negative
respiration. Interpolated respiration values that dropped be-
low zero (which can occur at very high or low temperatures,
using the parabolic curve) were given a value of zero. This
method produces predicted respiration values with similar
distributions to those recorded for all conditions of soil mois-
ture andfAPAR (Fig. 3).

Daily respiration (Reco) values were obtained by calculat-
ing a half-hourly value (multiplying the per second value by
60×30) and summing this over the 48 half-hours. All other
daily values were calculated in the same way. Daily Gross
Primary Production (GPP) was calculated by subtracting the
interpolated day-time respiration values from the recorded
daytime NEE values, and summing over the daylight hours.
This resulted in a dataset with 372 valid daily records for
Reco and 529 for GPP.

2.5 Drivers of NEE

In temperate systems incoming solar radiation (PAR) and
temperature are the main drivers used to predict photosyn-
thesis and respiration. In some models these are modified
by measures of LAI and soil moisture (Moffat et al., 2007).
We chose to test six input variables as predictors of GPP and
Reco (see Table 1).

Only data that could be derived from standard daily South
African Weather Services (SAWS) climate records or long-
term low-resolution satellite vegetation indices were used as
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Fig. 3. Distribution of observed (black) and interpolated (red) half-
hourly respiration values over temperature. Data are presented for
all conditions, for periods of low soil moisture, for periods with little
leaf material (lowfAPAR), and for conditions of low soil moisture
andfAPAR. Interpolated values lie well within the distribution of
observed values for all conditions. It is also clear that respiration
drops off at high temperatures, and that temperature-response func-
tions need to include this reduction at high temperatures if they are
to be appropriate for this site.

input predictors, in order that the models could be used in
conjunction with the long-term records to estimate NEE over
periods much longer than the eddy covariance data would
permit. The daily time-course of temperature variables was
estimated from daily maximum and minimum air tempera-
ture. Soil water content was modelled using a simple bucket
model and Penman-Monteith evapo-transpiration functions
(Archibald and Scholes, 2007). The half-hourly meteorolog-
ical data available at the flux tower was used to validate these
models (see Appendix A).

Three different measures were used to indicate the hydro-
logical state and history of the ecosystem: Relative Available
Water Content (RAWC); water deficit (a function which ac-
cumulates the deficit for all days of water stressθ<θcrit un-
til rewetting occurs); and time since wetting (the time since
the last big wetting event – i.e. time sinceθ increased above
θcrit). Equations for these indices can be found in Table 1.
Mean air temperature – which correlates well with soil tem-
perature (Appendix A) – was used as the predictor ofReco,
whereas mean daytime temperature was used at the predictor
for GPP. The European Joint Research Centre 10-dayfAPAR
product (Pinty et al., 2002) was linearly interpolated to create
a daily fAPAR parameter. A relationship between AVHRR-
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Table 1. Defining the six input variables used in the models to predict GPP andReco. All input variables were derived from data available
at a daily level from the SA Weather Services, so they could be used to produce long-term predictions. Relative available water content
(RAWC) is calculated as in the formula below whereθ = volumetric soil moisture content, WP = wilting point and FC = field capacity.
Accumulated water deficit (wdef) is the accumulated difference betweenθcrit andθ while θ is less thanθcrit (plants under water stress) and
is 0 wheneverθ is greater than or equal toθcrit (plants not under water stress). Time since wetting is the number of days that water deficit
has been 0 (plants have not been water stressed).

GPP Reco
Parameter Derivation predictor predictor

Photosynthetically Active Radiation PAR Modelled (energy balance) X X
Mean temperature during the day Tpn Tmin + 0.75*(Tmax-Tmin) X
Soil temperature Tre (Tmax+Tmin)/2 X
Fraction of absorbed PAR fAPAR Modelled from satellite-derived reflectances

(JRC:http://fapar.jrc.ec.europa.eu/Home.php) X X
Relative Available Water Content
(RAWC) θ rel (θ -WP)/(FC-WP)∗100 X X
Accumulated water deficit water deficit (wdef) If(θ<θcrit) 6 (θi − θcrit) If(θ>θcrit) 0 X X
Period of wet soils time since wetting (while wdef=0)6 days since wdef=0 X X

derived NDVI (the “GIMMS data”, Tucker et al., 2005) and
fAPAR was used to define the dailyfAPAR input for the pe-
riod before 1998 which was when the Joint Research Centre
(JRC) dataset started (see Appendix A).

2.6 Modelling approach

Two different artificial neural network (ANN) methods were
tested: Generalised Regression Neural Network (GRNN)
and Multi-Layer Feed Forward Neural Network (MLF). The
GRNN is based on a kernel smoothing approach and has
the advantage of using non-parametric regression procedures
(which makes no assumptions about the underlying data)
and can be trained quickly as only the smoothing parame-
ter needs to be estimated and optimised. As has been found
in other studies (Cigizoglu, 2005; Currit, 2002; Kisi, 2006)
this method is efficient for modelling non-linear systems and
worked as well as the more traditional MLF, which required
excessive fine-tuning to optimise the system architecture.
Three separate models were developed for predictingReco,
GPP, as well as daily NEE. Models were developed using
80% of the data for training and 20% for testing (proportions
of 70–30% were also tried, without substantially changing
the results).

Multiple linear regression (MLR) equations with up to
three-way interactions were examined for both photosynthe-
sis and respiration. A combination of backward selection
and stepwise selection was used to obtain significant pre-
dictors in the model. The ability of the MLR to explore
the importance of different variables separately and in com-
bination added value to the results of the ANN. However,
there are strong theoretical reasons against using ordinary
least squares (OLS) regression for data-filling (Richardson
and Hollinger, 2005), which is why we restricted their use to

exploring the relationships between variables. Many of the
meteorological variables, at least over a certain range, are
expected to have a near-linear relationship with respiration
and photosynthesis. Temperature is an exception: therefore
quadratic terms of temperature were also included during the
model selection process.

2.7 Error estimation

The random error component of the total error in the daily
carbon fluxes was considered in an attempt to obtain a confi-
dence interval for the annual estimates of NEE. The system-
atic component of the error was not assessed for this paper,
but this analysis will be carried out at a later stage. To es-
timate the random error, the method described by Richard-
son et al. (2008) was used, where the model error was used
as a surrogate for the random error. The error of the daily
ANN model prediction (difference between the observed and
modelled daily fluxes) was calculated for all cases where
the observed daily fluxes were available. The distribution
of these errors fitted a Laplace distribution better than a nor-
mal distribution (Chi-squared tests for goodness of fit were
χ2=37.37 compared withχ2=111.01 for the normal distribu-
tion). Richardson et al. (2008) also found the errors in half-
hourly flux data to be distributed according to the Laplace
distribution.

We assumed the daily errors were independent and iden-
tically distributed. This allowed us to use the Central Limit
Theorem to assume normality for the annual sum of the er-
rors in the fluxes. The expected value of the errors was as-
sumed to be zero and the variance of the errors was esti-
mated by the sample variance. The approximate standard
error for the annual estimates was then calculated to be
12.9 g Cm−2 year−1, leading to coefficients of variation from
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Figure 4 728 

Fig. 4. Daily time-course of NEE averaged over 5 years of measurements and for six combinations of environmental conditions at the
Skukuza flux site. Maximum CO2 sequestration occurs when soil moisture is low but green leaves are still present. Wet conditions were
defined as periods when the soil moisture was greater than 9% volumetric water content, dry conditions, less than 6%. Periods with green
leaves were defined as periods when thefAPAR value was greater than 0.2. The average number of days each year for each combination of
physiological and soil moisture conditions are shown, together with the average daily sum of NEE (g C/m2/day) for these conditions.

8–30%, and therefore the error in the annual NEE estimates
is 25.3 g Cm−2 year−1 with 95% confidence. This agrees
with the estimate of random error obtained by Richardson
and Hollinger (2005), where they used the Monte Carlo sim-
ulation to estimate the error in the model parameters and
model estimates.

Goulden et al. (1996) and Oren et al. (2006) both reported
instrument error of approximately 5% for closed path eddy
covariance systems. If the same instrument error can be as-
sumed for the Skukuza data, this increases the error value by
between 4.1 and 15.5 g Cm−2 year−1.

3 Results and discussion

3.1 Carbon balance

The diurnal time-course of NEE is highly responsive to soil
moisture and the presence of green leaves (Fig. 4). Interest-
ingly, maximum CO2 uptake occurs during periods of low
soil moisture when green leaves are still present, because un-
der these circumstances the contribution of soil respiration is
low, but a substantial amount of photosynthesis is still occur-
ring using water stored in the plant, or accessed from deeper
soil layers that do not contribute much to ecosystem respira-
tion.

Table 2. Comparison of model performance. Artificial neural net-
works (ANN) generally performed better than multiple linear re-
gressions (MLR), but MLR’s still managed to explain a large pro-
portion of the variance in photosynthesis. The MLR estimates for
NEE were obtained by summing the MLR estimates forReco and
GPP, and the model fit statistics were then calculated from these
values.

ANN MLR

Reco GPP NEE Reco GPP NEE

MAE
(g C/m2/day) 0.56 0.37 0.42 0.85 0.62 2.64
r2 – – – 0.41 0.68 0.04
n 372 529 698 372 529 698

3.2 Gap-filling: modellingReco and GPP

Despite the relative paucity of daily data both the ANN and
multiple regression methods produced models which reason-
ably represented the input data (Table 2). Mean absolute er-
ror (MAE) ranged from 0.37 to 0.56 g C/m2/day, which com-
pares favourably to the 1–1.5 g C/m2/day range of values re-
ported by Moffat et al. (2007) for a range of gap-filling meth-
ods and vegetation types. Respiration was generally harder to
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Table 3. Relative importance (percentage) of the different variables used to predict ecosystem respiration, gross primary productivity, and
net ecosystem exchange using an ANN. Variables are defined in Table 1.

Reco GPP NEE

fAPAR 36% fAPAR 46% fAPAR 27%
RAWC 19% time since wetting 19% RAWC 26%
PAR 18% PAR 14% time since wetting 14%

time since wetting 14% RAWC 12% water deficit 14%
water deficit 13% water deficit 5% Tpn 10%

Tre 0% Tpn 4% Tre 6%
PAR 3%

Table 4a. Results of a multiple linear regression to predict ecosys-
tem respiration(a), and GPP(b). Parameters are displayed in or-
der of decreasing significance and non significant parameters are
excluded from the tables. The best respiration model included
fAPAR, time since wetting, soil temperature, and relative avail-
able water content, and two-way interactions between these vari-
ables. This corroborates the findings of the ANN model, but does
not produce a good prediction (r2=0.41, MAE=0.85 g C/m2/day).
The best GPP model includedfAPAR, time since wetting, rela-
tive available water content, mean daytime temperature, and three-
way interaction between several variables. This also corrobo-
rates ANN results, and produces a reasonable prediction (r2=0.68,
MAE=0.62 g C/m2/day).

Std.
Estimate Error t-value P

fAPAR: time
since wetting 1.21 0.33 3.70 0.000 ***
fAPAR 45.91 14.71 3.12 0.002 **
RAWC:
Tre 0.02 0.01 2.92 0.004 **
time since
wetting −0.27 0.10 −2.80 0.005 **
fAPAR:PAR: time
since wetting −0.13 0.05 −2.56 0.011 *
fAPAR: time since
wetting: RAWC −0.03 0.01 −2.54 0.012 *
fAPAR:
Tre −1.48 0.62 −2.38 0.018 *
time since
wetting: RAWC 0.01 0.00 2.33 0.020 *
fAPAR:
RAWC −0.36 0.18 −1.97 0.049 *

predict than photosynthesis, and the linear models performed
badly in predictingReco (r2 of 0.41, MAE of 0.85 g/m2/day).

The ANN identified available green leaf material (in-
dexed byfAPAR) to be the most important predictor of both
Reco and GPP, butfAPAR was relatively more important for
predicting GPP than for predictingReco, as would be ex-
pected (Table 3). We interpret the role offAPAR in driv-
ing Recoas reflecting the availability of readily-respired sub-

strate. For GPP the time since wetting event was the next
most important predictor, which corroborates findings of
Wohlfahrt (2008) and Xu et al. (2004) that there is a delay in
the pulse of photosynthetic activity after a rainfall event. In
terms of water relations, soil moisture content was the best
predictor forReco, but water deficit and time since wetting
were also identified as important. Interestingly, temperature
did not prove to be important in predicting either respiration
or photosynthesis. This could reflect the daily time-step at
which we did the analysis – in this sub-tropical system tem-
perature variation between days and over the growth season
is much less important than variation in leaf dynamics and
soil moisture in driving NEE.

For respiration models using MLR,fAPAR and time since
wetting were the most significant single predictors (Table 4).
Interactions between various soil moisture parameters and
fAPAR also significantly improved the fit of the respiration
model. As can be seen in Fig. 4, the effect of a parame-
ter like soil moisture greatly depends on the amount of pho-
tosynthesising green leaf material, so it is unsurprising that
these interaction terms are important.

In the photosynthesis model soil moisture was very signif-
icant, and three-way interactions betweenfAPAR, soil mois-
ture, PAR, and time since wetting were important in im-
proving model fit. The importance of the interactive terms
perhaps goes some way to representing the delayed pho-
tosynthetic response to wetting events identified by Xu et
al. (2004). It usually takes 5–7 days in this system before
photosynthesis reaches its maximum after a wetting event,
and this response depends on how much leaf material is
present. Temperature was included in both the GPP andReco
models as it produced significant interactions with other vari-
ables, but as a main effect it was not significant. The ANN
net ecosystem exchange model had the lowest error (Table 2),
so this model was used to gap-fill the six year dataset .

3.3 Inter-annual variability

Annually-integrated net ecosystem exchange varied from
−138 to +155 gC/m2/y over the 5 year period for which there
were flux data (Table 5). In drought years limited carbon
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Table 4b. Continued.

Std.
Estimate Error t-value P

RAWC 0.99 0.15 6.72 0.000 ***
fAPAR:
PAR: RAWC 0.40 0.08 5.35 0.000 ***
fAPAR:
RAWC −1.89 0.42 −4.50 0.000 ***
RAWC:
Tpn −0.02 0.01 −4.33 0.000 ***
PAR: time since
wetting: RAWC 0.00 0.00 −4.27 0.000 ***
fAPAR: time since
wetting: RAWC 0.03 0.01 4.25 0.000 ***
PAR 2.00 0.52 3.88 0.000 ***
fAPAR:
water deficit 0.93 0.25 3.69 0.000 ***
fAPAR:
PAR −6.33 1.75 −3.63 0.000 ***
water deficit −0.12 0.03 −3.50 0.001 ***
PAR: time since
wetting:Tpn 0.00 0.00 3.39 0.001 ***
PAR: RAWC −0.08 0.02 −3.29 0.001 **
fAPAR: PAR: time
since wetting 0.17 0.06 3.08 0.002 **
PAR:Tpn −0.05 0.02 −2.77 0.006 **
fAPAR: time since
wetting:Tpn −0.07 0.03 −2.73 0.007 **
PAR: time
since wetting −0.09 0.03 −2.68 0.008 **
time since
wetting:RAWC −0.02 0.01 −2.48 0.013 *
time since
wetting: RAWC:Tpn 0.00 0.00 2.41 0.016 *
fAPAR −31.56 13.95 −2.26 0.024 *

uptake occurs even during the height of summer, but in years
with above average rainfall the site can be a sink of carbon for
several months of the year (Fig. 5). Only two of the five years
had negative NEE (in other words, were net carbon sinks at
the annual timescale). It is possible that our gap filling meth-
ods over-estimate the amount of respiration occurring at this
site: there was very little data available during the summer
months (Fig. 2), so the model was probably not well trained
to identify days of maximum GPP in this system. To test this
we will need to acquire a more extensive summer dataset for
this site. Estimates of random error suggest that years where
predicted annual NEE was within±25 gC/m2/y might actu-
ally have been close to carbon-neutral. If systematic error
is included, this error estimate increases further to up to ap-
proximately 40 gC/m2/y.

When the 25 year NEE sequence is predicted the pat-
tern becomes more obvious (Fig. 6). The site was predicted
to be a net sink for carbon in only 6 of the 25 years, but
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Figure 5 732 

 733 

Fig. 5. Annual time course of NEE for two consecutive years (a dry
year and a near average year) at the Skukuza flux tower. Red line
represents measured daily NEE, blue is modelled using an artificial
neural network and inputs offAPAR, soil moisture, temperature,
time since wetting, and water deficit.
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Fig. 6. Annual NEE estimated over a 25 year time-series at the
Skukuza Flux site using meteorological inputs and the ANN model.
Bars represent estimated annual sum, lines show 95% confidence
based on random error estimation. Solid points show the NEE cal-
culated from the gap-filled flux data.

three other years (1989, 1996, and 2000) may have been
near-sinks. The data give a long-term mean annual NEE of
75(±105) g C/m2/y. Loss of a cohort of agingAcacia nilot-
ica trees at the site, and increased stem damage with increas-
ing elephant populations over the last 20 years might both
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a)741 

 742 

 743 Fig. 7a.Relationship between annual NEE(a)Reco(b) and GPP(c)
and four potential drivers of inter-annual variability in carbon up-
take: annual rainfall, available photosynthetically active radiation,
length of the growing season, and number of growth days. Annual
rainfall seems to be the least significant, compared with parameters
that include seasonal variation in leaf display (APAR and length of
growing season), and the seasonal distribution of rainfall. Solid cir-
cles represent years 2000–2005 for which flux data were available
to constrain the model.

contribute to making this site appear as a net source in this
analysis. Recent field data at the site record high rates of
tree turnover: 8%(±3%) per annum – with damage by ele-
phants and senescence of oldAcacia niloticatrees being the
main cause (Archibald, unpublished data). These turnover
rates are high, but not exceptional for southern African sa-
vannas (Shackleton, 1997), and it is perfectly feasible that
tree growth could match these losses. Therefore, it would
be precipitous to speculate further on the implications of the
long-term predictions until there is better information on tree
productivity, and more peak-growing season flux data with
which to calibrate the models.

The most useful information provided by the long-term
prediction are estimates of the inter-annual variation for this
site. Figure 7a indicates that there is a strong relationship
between predicted annual NEE and absorbed photosyntheti-
cally active radiation (APAR, which is PAR∗ fAPAR). This
analysis suggests that once annually accumulated APAR ex-
ceeds about 675 MJ/m2, the system becomes a sink for car-
bon (Fig. 7a).

It might seem surprising that soil moisture, which was so
important at a daily time scale, does not show a stronger
relationship with annual NEE. Even when photosynthesis
and respiration are considered separately (Fig. 7b, c), by far
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 746 Fig. 7b. Continued.
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Figure 7 750 

 751 

Fig. 7c. Continued.

the best relationship is found with APAR. This result makes
sense when one considers that both the ANN and the MLR
analyses showed strong interactive effects of soil moisture
with fAPAR – i.e. the effect of available soil moisture in driv-
ing Pn andRecodepends heavily on the amount of photosyn-
thetically active green leaf material. Similarly, soil moisture
has been shown to be an important driver of seasonal pat-
terns of leaf display at the site (Archibald and Scholes, 2007).
ThereforefAPAR can be seen as an integrated measure of
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Table 5. Summary of NEE over the 5 year period for which there was flux data. Negative values represent an overall sink of carbon. Data
gaps were filled using an ANN and predictorsfAPAR, water deficit, relative soil moisture content, mean day time temperature, time since
wetting, and mean soil temperature, in that order of importance. Also reported are annual summaries of rainfall, available photosynthetically
active radiation, length of the growing season, and number of growth days (days when soil moisture content is greater thanθcrit, 7% by
volume).

Rainfall year Annual NEE 95% confidence Annual rainfall Annual PAR Growing season Number of
(July to June) (gC/m2) interval (mm) (MJ/m2) length (days) growth days

00 01 42 (17; 67) 659 662 244 245
01 02 155 (130; 180) 572 523 191 169
02 03 150 (125; 175) 303 406 156 166
03 04 −138 (−163;−113) 618 555 188 81
04 05 −83 (−108;−58) 760 665 197 186

hydrological conditions at the site, which is better at predict-
ing annual-scale carbon exchange than any measure derived
from short-term measurements of daily soil moisture. For
example in the 2003–2004 rainfall year the total annual rain-
fall was above average (618 mm) but it was heavily skewed
towards the last part of the growing season, and the start of
grass growth was delayed by several weeks. In this instance
integrated values of APAR would represent the growing con-
ditions for a season better than total rainfall, or even number
of growing season days.

3.4 Other pathways of carbon loss from the system

A savanna carbon budget would be incomplete without a
consideration of fire and herbivory. The fluxes of CO2 to the
atmosphere via these two pathways have not been directly
measured at the Skukuza site, but can be inferred and con-
strained from other data. The abundant large mammalian
herbivore (>5 kg body mass) community in this landscape
consists of 14 species, mostly Bovidae. The combined herbi-
vore biomass is 3155 kg km−2 (Scholes et al., 2004). Taking
into account the effect of body mass on metabolic require-
ments and digestability, this translates to a herbivore respi-
ratory flux of 4.5 g Cm−2 y−1 and a flux from the decom-
position of dung of 5.0 g Cm−2 y−1. The uncertainty range
associated with these estimates is unknown, but thought to
be around 20%, related mostly to errors in game census. The
inter-annual variability is thought to be relatively low. The
herbivore respiration and dung decomposition fluxes are sub-
sumed in the ecosystem respiration measured by the eddy
covariance system (Table 6).

The mean fire return time in this landscape in the KNP
is 4.2 years (Van Wilgen et al., 2000). The most com-
prehensive set of fuel measurements for this landscape was
taken in August 1992 at 10 locations within 30 km of the
Skukuza site (Shea et al., 1996). The combusted material was
predominantly dry grass (1442±975 SD kg ha−1), tree lit-
ter (1452±636 kg ha−1) and a contribution from dead wood
(226±194 kg ha−1) giving a total of 3120±1795 kg ha−1.

Table 6. Annualised summary of the different contributions to the
carbon balance at the Skukuza flux site.

Mean annual flux

Herbivory 9.5 g Cm−2 y−1 (unknown error? 20%)
Fire 40.0±17.5 g Cm−2 y−1

Flux measurement
(incl. herbivory) 75±105 g Cm−2 y−1

Total 115.0±122.5 g Cm−2 y−1

A multi-site, multi-year mean grass fuel load for the
KNP is 3359 kg ha−1, with a range of 1152–6728 (Trol-
lope and Potgieter, 1985). The emission factor for CO2,
measured for the same fires as the above fuel loads
(Ward et al., 1996) is 1699±33 gCO2 kg DM−1. There-
fore, the long-term annualised emission of CO2 through
fire is around 136±58 gCO2 m−2 y−1. An additional
6.4±3.9 gCO m−2 y−1 and 0.2±0.2 g CH4 m−2 y−1 are also
emitted from fires, so the total pyrogenic carbon loses are
around 40.0±17.5 g Cm−2 y−1 (Table 6). The flux site has
burned five times since 20001, which suggests that the pyro-
genic emissions during this period are probably about twice
the long-term, landscape-scale averages calculated above.
The pyrogenic fluxes are in principle part of ecosystem res-
piration, but in practice are not measured by the eddy co-
variance system because they occur briefly, and during that
period exceed the measurement range of the infra-red gas
analyser. The inter-annual variability is high because a given
site does not burn at all in most years, and the fuel load
varies greatly in the years when it does burn, in response
to the variability of rainfall in the preceding season. The
total carbon budget – including fire, herbivory, and plant
growth and decomposition – for the skukuza site is therefore
115.0±122.5 g Cm−2 y−1.

1 August 2000, August 2001, April 2005, November 2006, May
2007
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4 Conclusions

Inter-annual variability in carbon exchange at the Skukuza
flux site is on the same scale as an oak savanna in California.
In a seven year study Ma et al. (2007) measured values from
−155 to−56 g Cm−2 y−1 in the savanna and from−88 to
141 g Cm−2 y−1 in an adjacent grassland. This compares to
−138 to 155 g Cm−2 y−1 from the six year Skukuza dataset.
The variability at Skukuza seems to be largely controlled by
variations in the length of time that green leaves are displayed
by the trees and grasses, and by changes in seasonal patterns
of water availability (Fig. 7) – both ultimately driven by vari-
ations in rainfall between years.

The flux-partitioning and gap-filling procedures devel-
oped in this paper are a distinct improvement on standard
methodologies largely because they use more appropriate
temperature-response functions and explicitly include a soil
moisture control, including indices of the wetting history. Es-
timates of annual CO2 flux obtained through gap-filling using
an ANN may be slight over-estimates (i.e., slightly biased to-
ward the sink side), because of the paucity of peak growing
season flux data. However, it is also possible that this par-
ticular savanna site has been a carbon source in recent years
due to high tree turnover. Results of the ANN gap-filling
procedures and MLR models indicate a large degree of inter-
action between driver variables and lend support for the de-
velopment of a process-driven model for this system. Such a
model would need to include explicit measures of leaf mass,
soil moisture and temperature.

The generalised Poisson function used here to fit an opti-
mum temperature response curve is an effective method for
extrapolating day-time respiration in systems where temper-
atures often exceed 30◦C – provided a scaling factor is used
to control for the co-limiting factors of LAI and soil mois-
ture. At a daily to seasonal level, however, temperature was
shown to be less important than other factors in influencing
NEE.

Appendix A

Comparison of meteorological data

Correlation between the flux tower variables and correspond-
ing variables from other sources appears in Table A1. Strong
linear relationships exist between the flux tower daily mea-
surements for the mean soil temperature and the mean day-
time temperature and the corresponding temperature vari-
ables derived from the minimum and maximum daily tem-
peratures of the South African Weather Services (SAWS)
data. There is also a strong linear relationship between the
measured mean soil moisture and the modelled soil moisture
using the SAWS data, as well as a fairly strong linear rela-
tionship between PAR derived from the shortwave radiation
from the flux tower and the modelled PAR.

Table A1. Summary of comparisons between flux tower derived
variables and corresponding variables derived from other sources.

Pearson 95% confidence
Variables compared correlation interval

Mean flux tower soil temperature and
derived soil temperature from SAWS data (Tre). 0.92 (0.92; 0.93)
Mean flux tower daytime temperature and
derived daytime temperature from SAWS data (Tpm). 0.96 (0.95; 0.96)
Scaled flux tower soil moisture and derived
scaled soil moisture from SAWS data (θrel) 0.78 (0.75; 0.79)
Daily flux tower rainfall and SAWS
rainfall data. 0.61 (0.58; 0.64)
fAPAR and GIMMS NDVI. 0.84 (0.83; 0.85)
PAR calculated from the flux tower data
and the modelled PAR data 0.62 (0.58; 0.66)

Table A2. Annual rainfall over time.

Annual Rainfall Sum from SAWS Environmental Data

99/00 00/01 01/02 02/03 03/04 04/05 05/06
363 659 572 302 618 760 249

Annual Rainfall Sum from Flux Tower Data

99/00 00/01 01/02 02/03 03/04 04/05 05/06
415 671 427 310 276 582 209

The correlation between the flux tower rainfall and the
SAWS rainfall is significant, but not as strong as that of the
previous comparisons to SAWS derived variables. The peaks
of the environmental data are usually slightly higher than
recorded from the flux tower, although there are few days
when the flux tower recorded higher values. This could be
due to localised rainfall events. Peaks in the data do not al-
ways correspond and this could be due to the measurements
from the SAWS data being taken daily from a rain gauge,
whereas the flux tower took instantaneous measurements of
rainfall. Therefore daily rainfall events may not always cor-
respond exactly. The pattern of rainfall over time appears to
match for the two data sets. The annual sum of rainfall for
the environmental data is always more than that for the flux
tower data (Table A1). This is due to missing data from the
flux tower.

There is a strong linear relationship between Gimms
NDVI and fAPAR (Table A2). Therefore a linear re-
gression equation was derived to describe this relation-
ship. The linear regression obtained ar2-value of 0.71
and an MAE of 0.05. The estimated equation was:
fAPAR=−0.079+0.736×Gimms.

The standard error for the intercept is 0.004 and the stan-
dard error for the slope is 0.009.
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Fig. B1. Showing the six temperature response functions fitted
to the half-hourly night time fluxes (respiration). Plot(A) shows
the parabolic functions fitted over the manually selected maximum
points (top function), the automatically selected maximum points
(middle function) and the manually selected top of the data mass
(bottom function). Plot(B) shows the Generalised Poisson function
fitted over the same three selections of points.

Appendix B Interpolating day-time respiration

Fitting an optimal temperature function to the mass of night-
time flux measurements involved making several assump-
tions about a) the shape of the temperature-respiration curve,
and b) the values to use to fit the curve.

B1 Shape of the temperature-response curve

Field data indicate that a generalised Poisson function is the
best descriptor of the effect of temperature on respiration, as
it describes both the exponential increase of respiration with
temperature and the sudden decrease once the temperature
optimum has been reached (Kirton et al., unpublished data).
However, for this analysis we also tried a simple parabolic
function.

B2 Values used to fit the curve

This interpolation method relies on deriving a curve that rep-
resents the temperature response under a certain set of en-
vironmental conditions. Any deviation from this line by an
observed point is then assumed to be due to different envi-
ronmental conditions. The curve can be pulled up and down
to match this point, and thereby adjust for these varying en-
vironmental conditions, by the use of a scaling parameter.
Missing respiration values (day time points) can then be in-
terpolated on this day (because the environmental conditions
other than temperature are going to remain stable at a daily
time step) by using the temperature at each point and the ad-
justed temp/resp equation.

With this in mind, extracting the points to be used could
be done in a number of different ways. The easiest way to
identify points where all factors other than temperature are
constant would be to identify the maximum points for each

 52

 903 

 904 

Figure B2: Showing the distribution of the respiration data interpolated using six different 905 
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Fig. B2. Showing the distribution of the respiration data interpo-
lated using six different methods (solid points: median values, box:
±25% quantiles, bar: data range). The median and±25% quantiles
are very similar for each method, but the method that calculates the
fitted values had slightly lower maxima than the other two meth-
ods. All data are well within the range of measuredReco values
(u∗-corrected half-hourly night-time fluxes).

temperature value (which would represent respiration under
completely optimal conditions of soil moisture and LAI).
We tried three different methods for extracting these values:
manually picking the maximum respiration values, calculat-
ing the maximum respiration value for each degree temper-
ature change, and calculating the 95th quantile for each de-
gree temperature change (Fig. B1). We also tried manually
picking values at the top of the thickest part of the cloud of
respiration points. This approach would exclude any extreme
outliers but could also be assumed to represent the same set
of other environmental conditions. Because the curve is ad-
justed up and down based on the respiration values on the
day in question, the position of the curve on the y-axis is
unimportant. It is the shape of the curve that will affect the
interpolation.

Using the 95th quantile was not satisfactory as some tem-
perature categories had orders of magnitude more respira-
tion measurements than others. We therefore abandoned
that method and tested six different respiration interpolation
methods (Table B1): manually selected maximum points (fit-
ting a parabolic and generalised Poisson), manually selected
points at edge of data cloud (parabolic and GDP), and calcu-
lated maximum points (parabolic and GDP).

B3 Results

Results indicate that the interpolated values are very resilient
to the method used to fit the temperature response curve.
The distribution of interpolated points was similar for all six
methods (Fig. B2), and linear regression models show sim-
ilar fits to the observed respiration data (Table B1). A vi-
sual assessment of the interpolated points (Fig. B3) indicates
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Table B1. The six different methods used to fit a temperature response curve to the measured night-time (respiration) fluxes. Two different
fitting functions were used, and three different methods for identifying points to fit the curve to. The distributions of the data interpolated
with each method were very similar to each other (Fig. B2), and fell well within the bounds of the observed respiration data (Fig. B3).

Parabolic Generalised Poisson

Observed Calculated Observed fit Observed Calculated Observed fit
max max to datacloud max max to datacloud

Name parObsMax parCalcMax parObsMain poisObsMax poisCalcMax poisObsMain

r2 0.57 0.58 0.56 0.56 0.58 0.56
slope of linear model 0.61 0.61 0.6 0.56 0.58 0.56
Median predicted value
mg CO2/m2/s 0.070 0.070 0.069 0.071 0.070 0.069
Minimum predicted value
mg CO2/m2/s 0.002 0.002 0.000 0.002 0.002 0.000
Maximum predicted value
mg CO2/m2/s 0.98 0.68 0.81 0.81 0.71 0.81
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Figure B3: The distribution of measured half-hourly night-time fluxes (black circles) and 921 

interpolated half-hourly respiration (red crosses) along a temperature axis. Interpolated fluxes 922 

represent all half-hour values which had soil temperature data and at least three night-time 923 

fluxes to estimate the scaling parameter.  924 

Fig. B3. The distribution of measured half-hourly night-time fluxes
(black circles) and interpolated half-hourly respiration (red crosses)
along a temperature axis. Interpolated fluxes represent all half-hour
values which had soil temperature data and at least three night-time
fluxes to estimate the scaling parameter.

that the generalised Poisson interpolations fell more clearly
within the main data cloud. We therefore chose to use the
calculated maximum value method fitted to the generalised
Poisson distribution.
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