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Abstract

In this paper, we consider the Frobenius endomorphism on twisted Ed-

wards curve and give the characteristic polynomial of the map. Applying

the Frobenius endomorphism on twisted Edwards curve, we construct a

skew-Frobenius map defined on the quadratic twist of an twisted Edwards

curve. Our results show that the Frobenius endomorphism on twisted Ed-

wards curve and the skew-Frobenius endomorphism on quadratic twist of

an twisted Edwards curve can be exploited to devise fast point multiplica-

tion algorithm that do not use any point doubling. As an application, the

GLV method can be used for speeding up point multiplication on twisted

Edwards curve.

Keywords: Edwards curves; birationally equivalent; τ - expansion; skew-
Frobenius map

1 Introduction

Edwards [5] introduced a new form of elliptic curves

x2 + y2 = 1 + dx2y2
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with d /∈ {0, 1}. In [1], this form is generalized to twisted Edwards form EE,a,d

defined by
ax2 + y2 = 1 + dx2y2

where a, d ∈ k with ad(a− d) 6= 0.
Bernstein and Lange [2] showed that scalar multiplication on Edwards curve

is competitive with the Montgomery form for single-scalar multiplication and is
the new speed leader for multi-scalar multiplication.

In order to get more efficient cryptosystems, Iijima, Matsuo, Chao and
Tsujii[8] proposed a method using a Frobeinus map on the quadratic twist of
an elliptic curve. Kozaki, Matsuo, and Shimbara[11] call this map the skew-
Frobenius map and show constructions of the skew-Frobenius maps on hyperel-
liptic curves of genus 2 and 3.

Fix a field k with char(k) 6= 2, every twisted Edwards curve over k is bi-
rationally equivalent over k to an elliptic curve. By applying the birational
map between twisted Edwards curve and elliptic curve, we consider the Frobe-
nius map Πq on twisted Edwards curves defined over finite field Fq and give
the characteristic polynomial of the Frobenius map. The result shows that the
Frobenius endomorphism on Edwards curve can be exploited to devise fast point
multiplication algorithm.

Applying the Frobenius map on twisted Edwards curves, we generalize the
method in [8] and construct a skew-Frobenius maps on quadratic twist of an
twisted Edwards curves. Our result shows that the skew-Frobenius map can
be used to speed up point multiplication on twisted Edwards curve. Extended
the method in Galbraith et al. [6], the GLV method can be applied to point
multiplication on twisted Edwards curve.

We note that the methods of scalar computation on twisted Edwards curves
in this paper are much faster than the previous methods.

The paper is organized as follows: section 2 reviews Edwards curves and
Frobenius map on elliptic curve. The Frobenius map of twisted Edwards curve
are given in section 3. The skew-Frobenius maps are discussed in section 4. Sec-
tion 5 applies the Frobenius map and the skew-Frobenius to speed up the point
multiplication on twisted Edwards curve. The last section is the conclusion.

2 Preliminaries

This section briefly introduces the definitions and notations required in the
following sections.
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2.1 Edwards curves and twisted Edwards curves

Edwards [5] introduced a new form of elliptic curves

x2 + y2 = 1 + dx2y2

with d /∈ {0, 1}, (0, 1) as neutral element and gave a simple and symmetric
addition law for such curves:

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

Here the Edwards curve is denoted by Ed. In [1], this form is generalized to
twisted Edwards form EE,a,d defined by

ax2 + y2 = 1 + dx2y2

where a, d ∈ k with ad(a − d) 6= 0. The affine addition formula for twisted
Edwards in [2] is

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

Every twisted Edwards curve is birationally equivalent to an elliptic curve in
Montgomery form, and vice versa.

The twisted Edwards curve EE,a,d is a quadratic twist of the Edwards curve
EE,1,d/a. More generally, EE,a,d is a quadratic twist of EE,a,d for any a, d

satisfying d/a = d/a. Conversely, every quadratic twist of a twisted Edwards
curve is isomorphic to a twisted Edwards curve; i.e., the set of twisted Edwards
curves is invariant under quadratic twists.

2.2 Frobenius map on elliptic curves

Let Fq be a finite field with char(Fq) 6= 2. An elliptic curve E over Fq is defined
as

y2 = x3 + a2x
2 + a4x+ a6

with the point at infinity P∞, where a2, a4, a6 ∈ Fq. The q-th power Frobenius
map πq of E is defined as

πq : E 7−→ E

(x, y) 7−→ (xq, yq).

Let Nl denote the number of Fql -points on E. By the Hasse’s Theorem, N1 =
q + 1 − t where t ≤ 2

√
q, and the characteristic polynomial χq ∈ Z[x] of πq is

given by
χq(x) = x2 − tx+ q,
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which satisfies
(π2

q − tπq + q)P = P∞

for all P ∈ E(Fq), where Fq is the algebraic closure of Fq.

3 Frobenius map on twisted Edwards curves

Let Fq be a finite field with characteristic different from 2 and EE,a,d defined
over Fq. In this section, we consider the q-Frobenius map Πq of EE,a,d

Πq : EE,a,d 7−→ EE,a,d

(x, y) 7−→ (xq, yq).

Now we state the main result of this section.

Theorem 1 Let EE,a,d be a twisted Edwards curve defined over a finite field
Fq and ]EE,a,d = q + 1− t. Then the Frobenius map Πq of EE,a,d satisfies

(Π2
q − tΠq + q)P = P∞

for all P ∈ EE,a,d(Fq).

In order to prove Theorem 1, the following lemmas are needed.

Lemma 1 [1] Fix a field k with char(k) 6= 2. Every twisted Edwards curve over
k is birationally equivalent over k to an elliptic curve.

From Lemma 1, one can see that there exists a elliptic curve E over Fq such
that EE,a,d(Fq) ∼= E(Fq). Let σ be the isomorphism. By Theorem 3.2 in [2],
E(Fq) can be defined as

v2 = u3 +Au2 + u,

where A = 2(a+d)
a−d . The map

σ : (x, y) 7→ (u, v) =
(

1 + y

1− y
,

√
B(1 + y)
(1− y)x

)
is a birational equivalence from EE,a,d to E, with inverse

(u, v) 7→ (x, y) =
(√

Bu

v
,
u− 1
u+ 1

)
,

where B = 4
a−d .
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Lemma 2 Let EE,a,d be a twisted Edwards curve defined over Fq and E be the
birationally equivalent elliptic curve of EE,a,d over Fq. Let ]E(Fq) = q + 1 − t

and let σ is the birational map defined as above. Let πq be the q-power Frobenius
map on E. Define ψ = σ−1 ◦ πq ◦ σ. Then

1. ψ ∈ End(EE,a,d)(i.e. ψ is a homomorphism map on EE,a,d).

2. For all P ∈ EE,a,d(Fq), we have

ψ2(P )− [t]ψ(P ) + [q](P ) = OEE,a,d
.

Proof By the discussion in [1], we have that σ is isomorphism from EE,a,d to
E, and πq is an isogeny from E to itself defined over Fq. Hence ψ is an isogeny
of EE,a,d to itself defined over Fq.

For P ∈ EE,a,d(Fq) writing Q = σ(P ) ∈ E(Fq), we have

(π2
q − tπq + q)Q = OE .

So
σ−1(π2

q − tπq + q)σ(P ) = OEE,a,d

implies
ψ2(P )− [t]ψ(P ) + [q](P ) = OEE,a,d

.

This completes the proof.
Proof of Theorem 1 Let E be the birational equivalent elliptic curve of

EE,a,d, and ψ be the endomorphism of EE,a,d in Lemma 2. By the definition of
ψ, for all P = (x, y) ∈ EE,a,d(Fq),

ψ(x, y) = (σ−1 ◦ πq ◦ σ)(x, y) = (σ−1 ◦ πq)
(

1 + y

1− y
,

√
B(1 + y)
(1− y)x

)
= σ−1

(
(
√
B)q(1 + yq)
1− yq

,
1 + yq

(1− yq)xq

)
= ((

√
B)1−qxq, yq).

If B is not an square in Fq, then (
√
B)1−q = −1, therefore for all P ∈

EE,a,d(Fq), ψ(P ) = −Πq(P ). In this case ]E(Fq) = q + 1 + t. If B is an square
in Fq, then (

√
B)1−q = 1. Hence we have for all P ∈ EE,a,d(Fq), ψ(P ) = Πq(P )

and furthermore ]E(Fq) = ]EE,a,d(Fq) = q + 1− t. Hence by Lemma 2, we can
complete the proof of Theorem 1.

We will apply the Frobenius map to accelerate the scalar multiplication speed
on twisted Edwards curve.
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4 Skew-Frobenius map on quadratic twist of an

Edwards curves

In this section, we will construct a skew-Frobenius map on quadratic twist of
a twisted Edwards curve according to the Frobenius map on twisted Edwards
curves defined in section 3. This construction extends the result in [8].

In general, the twisted Edwards curve EE,a,d defined over Fq is a quadratic
twist of a twisted Edwards curve EE,a,d for any a, d satisfying d

a = d
a . Let

φ : EE,a,d 7−→ EE,a,d

(x, y) 7→ (
√
αx, y)

where α = a
a . If α is not a square in the field k = Fq, then the map φ is an

isomorphism from EE,a,d to EE,a,d over k(
√
α). A quadratic twist Edwards

curve of EE,a,d is denoted by Et
E,a,d.

Remark. In practice cases, we may need α ∈ Fqn , for some positive integer
n.

We will show how to construct the skew Frobenius map Πt
q on Et

E,a,d. Ac-
cording to the definition of the Frobenius map Πq defined on EE,a,d, a skew
Frobenius map of Et

E,a,d can be defined as follows:

Πt
q : Et

E,a,d
φ−1

7−→ EE,a,d
Πq

7−→ EE,a,d
φ
7−→ Et

E,a,d.

Therefore
Πt

qP = (
√
α

q−1
xq, yq)

for all P = (x, y) ∈ Et
E,a,d(Fq2).

Theorem 2 Let EE,a,d be a twisted Edwards curve defined over Fq and Et
E,a,d

be a quadratic twist Edwards curve of EE,a,d. Let ]EE,a,d(Fq) = q + 1 − t and
let the map φ is an isomorphism from EE,a,d to Et

E,a,d over k(
√
α). Let Πq be

the q-power Frobenius map on EE,a,d. Define Πt
q = φ ◦ πq ◦ φ−1. Then for all

P ∈ Et
E,a,d(Fq2) we have

(Πt
q)

2(P )− [t]Πt
q(P ) + [q](P ) = OEt

E,a,d
.

Proof The proof is similar to Theorem 1, we omit it here.
Like the the Frobenius map Πq, the skew-Frobenius map Πt

q defined on Et
E,a,d

can be used to accelerate the scalar multiplication speed on twisted Edwards
curve.
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5 Applications

To accelerate the scalar multiplication, Solinas[12, 13] exploit the Frobenius
endomorphism to devise fast point multiplication algorithm that do not use
any point doubling. The following expansion of nP based on the characteristic
polynomial of the Frobenius endomorphism of elliptic curve, has been used to
compute the scalar multiplication

nP =
∑
i≥0

ciτ
iP,

where the ci are elements of a small set, e.g., {−q/2, · · · , q/2}. For this type of
curves, scalar multiplication can be improved by using the nonadjacent form of
base-τ expansion of the scalar [10, 3]. When the characteristic finite field Fq is
large, the Gallant, Lambert and Vanstone[7] design a method for speeding up
point multiplication.

5.1 Application 1: τ-adic method

Let EE,a,d be a twisted Edwards curve defined over Fq and Et
E,a,d be the

quadratic twist of EE,a,d. By Theorem 2 there exists a complex number τ
such that the skew-Frobenius endomorphism on Et

E,a,d can be identified as τ .
τ can be interpreted as a complex number defined by the equation:

τ2 − tτ + q = 0,

where t = q + 1 − ]Et
E,a,d. A window width w τ nonadjacent form (w-τNAF)

for k ∈ Z[τ ] is the following representation of k:

k =
t−1∑
i=0

biτ
i,

where

1. for each i = 0, 1, . . . , t− 1, bi ∈ C;

2. any w consecutive coefficients bi, bi+1, · · · , bi+w−1 contains at most one
nonzero element.

For P ∈ Et
E,a,d(Fq2), the evaluation of nP can be done efficiently by

nP =
t−1∑
i=0

(Πt
q)

i(biP ). (1)
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The (Πt
q)

iP can be computed as

(Πt
q)

iP = (
√
α

qi−1
xqi

, yqi

).

Applying the Frobenius map Πq on EE,a,d, the above method can be used
on twisted Edwards curve.

For β ∈ Fqk , the computation of βq is very easy if the element is represented
with a normal base of Fqk . Although computation of Πt

q costs more multiplica-
tion than Πq, the scalar computation on Edwards curve using the formula (1)
can be much faster than the previous methods, if ]Et

E,a,d(Fq2) is of almost-prime
order.

5.2 Application 2: GLV method

In this subsection, we apply the GLV method to point multiplication on Edwards
curve by extending the method in Galbraith et al. [6].

Theorem 3 Let char(Fq) > 3 be a prime number and let EE,a,d be a twisted
Edwards curve over Fq with q+1−t points. Let Et

E,a,d over Fq2 be the quadratic
twist of EE,a,d(Fq2), then ]Et

E,a,d(Fq2) = (q − 1)2 + t2. Let r|]Et
E,a,d(Fq2) be

a prime number such that r > 2q. Let φ : EE,a,d 7−→ Et
E,a,d be the twisting

isomorphism defined over Fq4 . Let

Πt
q = φ ◦Πq ◦ φ−1.

For P ∈ Et
E,a,d(Fq2)[r], we have (Πt

q)
2(P ) + P = OEt

E,a,d
.

Proof By the well-known Weil theorem, we have EE,a,d(Fq2) = (q+1)2− t2

and Et
E,a,d(Fq2) = (q − 1)2 + t2. Since r > 2q, hence r - ]EE,a,d(Fq2) =

(q + 1 − t)(q + 1 + t). Therefore by the assumption of the theorem, one have
r|]Et

E,a,d(Fq4) = ]Et
E,a,d(Fq2)]EE,a,d(Fq2) while r - ]Et

E,a,d(Fq4). This implies
that for P ∈ Et

E,a,d(Fq2)[r], Πt
q(P ) belongs to Et

E,a,d(Fq2)[r]. It follows that for
P ∈ Et

E,a,d(Fq2)[r] there exists λ ∈ Z such that Πt
q(P ) = λP .

By the definition as above, Πt
q(x, y) = (α

q−1
2 xq, yq), where α ∈ Fq2 is not a

square in Fq2 . And Hence

(Πt
q)

2(x, y) = (α
q2−1

2 xq2
, yq2

).

Since α ∈ Fq2 and is not a square in Fq2 , so α
q2−1

2 = −1. By the assumption of
the theorem, P ∈ Et

E,a,d(Fq2), we have xq2
= x, yq2

= y. Therefore,

(Πt
q)

2(x, y) = (−x, y).
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This completes the proof.
As an example, we will concentrate on the twisted Edwards curve defined

over Fq to describe the method.
Example 2 Let p = 2255 − 19 be a prime. d = 121665

121666 is not a square in the
field Fp. Then quadratic twist Edwards curve of EE,1,d over F4

p is EE,
√

d,(
√

d)3 .

The twisting isomorphism over Fq4 can be defined as

φ : EE,1,d 7−→ EE,
√

d,(
√

d)3 , (x, y) 7→ (d−
1
4x, y)

The twist Frobenius map on EE,
√

d,(
√

d)3 is written as

Πt
p(x, y) = (d

1−p
4 xp, yp).

For P ∈ EE,
√

d,(
√

d)3(Fp2),

(Πt
p)

2(x, y) = (d
1−p2

4 xp2
, yp2

).

Since d is not a square in Fp and p ≡ 1(mod4), one has d
1−p2

4 = −1 in Fp2 .
Therefore, for P ∈ EE,

√
d,(
√

d)3(Fp2) we have (Πt
p)

2(P ) + P = OEE,
√

d,(
√

d)3
.

6 Conclusion

The main purpose of this paper is to discuss the endomorphism on the twisted
Edwards curves defined over finite field Fq. Firstly, properties of the Frobenius
map on twisted Edwards curve are investigated and the characteristic polyno-
mial of the map is given. Applying the the Frobenius endomorphism on twisted
Edwards curve, we construct the skew-Frobenius map defined on the quadratic
twist of twisted Edwards curve. Our results show that the Frobenius endo-
morphism on Edwards curve and the skew-Frobenius endomorphism on twisted
Edwards curve can be used for speeding up point multiplication on twisted
Edwards curve.
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