
Evaluation of Hardware Performance
for the SHA-3 Candidates Using SASEBO-GII

Kazuyuki Kobayashi1, Jun Ikegami1, Shin’ichiro Matsuo2,
Kazuo Sakiyama1 and Kazuo Ohta1

1 The University of Electro-Communications,
1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan
{k-kazu, jike, saki, ota}@ice.uec.ac.jp

2 National Institute of Information and Communications Technology,
4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan

smatsuo@nict.go.jp

Abstract. As a result of extensive analyses on cryptographic hash func-
tions, NIST started an open competition for selecting a new standard
hash function SHA-3. One important aspect of this competition is in
evaluating hardware implementations and in collecting much attention
of researchers in this area. For a fair comparison of the hardware perfor-
mance, we propose an evaluation platform, a hardware design strategy,
and evaluation criteria that must be consistent for all SHA-3 candidates.
First, we define specifications of interface for the SASEBO-GII platform
that are suitable for evaluating the performance in real-life hash appli-
cations, while one can also evaluate the performance of the SHA-3 core
function that has an ideal interface. Second, we discuss the design strat-
egy for high-throughput hardware implementations. Lastly, we explain
the evaluation criteria to compare the cost and speed performance of
eight SHA-3 candidates out of fourteen.

1 Introduction

1.1 Background

Since collisions for standard hash functions were reported in 2004, much progress
in researches on hash functions has been made until now. As a result of such
progress, NIST decided to conduct a competition of a new standard hash function
SHA-3 to select more secure and efficient hash function [1].

The selection procedure consists of a security analysis and an efficiency evalu-
ation like the AES project held from 1997 to 2000. Currently, fourteen candidates
out of sixty four submissions are selected in the second round, and the smaller
number of algorithms will be selected as the finalist of the competition in 2010.
After that, NIST will select a SHA-3 algorithm from the finalist according to the
evaluation results on security and efficiency with considering a target application
and a platform on which the hash function is executed.

In the first round of the competition, the evaluation was mainly taken place
on design criteria, algorithm security and implementation. This evaluation on

implementation was basically on software using a reference platform. In the
first SHA-3 candidate workshop held in 2009, the evaluation for many kinds of
hardware applications, such as server, PC, smart phone, smart card and RFID,
were extensively discussed. Though there are some consensus on a fair evalua-
tion for software implementations, discussion for hardware implementations is
still immature. There are much research on hardware evaluation of SHA-3 can-
didates[2],[3],[4],[5], however, validity and consistency of the evaluation criteria
and methods of such research are not well discussed yet. In order to conduct a
hardware evaluation, we need to fix an evaluation environment (i.e. platform),
implementation method (i.e. design strategy), and a performance comparison
method (i.e. evaluation criteria). The consensus on such points is required for a
fair hardware evaluation.

Although it is preferable to have a common and solid evaluation criterion, it
seems difficult to make it realized since there are many aspects on hash usage.
Hash functions are used in many cryptographic protocols such as SSL and SSH,
and are implemented into a wide range of application platforms. There may be
many combinations of such usages in real-life systems, and thus there may be
several different criteria which are matched with each aspect. In this situation,
it is a good solution that evaluators prepare evaluation criteria and evaluation
reports for major usages, and then NIST can prioritize these evaluation criteria
from usage of hash functions. As a result, NIST can select a SHA-3 algorithm
based on the evaluation in a real-life hash usage and a platform by taking all
of the reports into account. In this sense, the prime requirement should be “the
criteria are consistent and fair in some aspect.”

1.2 Our Contribution

In this paper, we propose a platform, a design strategy, and evaluation criteria for
a fair hardware evaluation on the SHA-3 candidates. They include an interface
specification, an architecture of SHA-3 hardware, and methods for performance
evaluation. The platform used in our experiments is able to support different
types of hash algorithms.

We use SASEBO-GII which is publicly available and is a promising standard
platform for hardware evaluations [6]. According to our proposal, we can evaluate
the hardware performance independent of interface specifications, and therefore
our proposal covers a various types of hardware architectures. The hardware
designs we implemented in Verilog can be reused for a future ASIC development
on the SASEBO platform.

We report the results of the FPGA hardware evaluation on eight hash func-
tions out of the fourteen second-round candidates.

2 Overview of Hardware Evaluation Platform for SHA-3
Candidates

In this section, we introduce our proposed evaluation platform using SASEBO-
GII. Figure 1 shows the overview of the platform. SASEBO-GII (Side-channel

EoM
idata
loadfetch

odataack
zbus_rstn

ControlFPGA CryptographicFPGA
zbus_clk

1616modifiedSASEBO-Checker
usb_txenusb_rxfnusb_rdnusb_wr
usb_d 8

SASEBO-GII

PC init

Fig. 1. Evaluation Environment Using SASEBO-GII.

Attack Standard Evaluation Board) [6] has a communication interface with a
PC and two FPGAs. They are a control FPGA and a cryptographic FPGA.
Message data to be hashed are transmitted to the control FPGA by a software
called SASEBO-Checker on a PC through USB. We used a modified SASEBO-
Checker based on “Quick Start Guide” developed by AIST [6]. The control
FPGA controls the data flow to send a message to the cryptographic FPGA,
where hash operations are performed. After the hash operations, the hash value
is sent back to SASEBO-Checker through the control FPGA. As illustrated in
Fig. 1, we define a specification of the interface between the control FPGA and
the cryptographic FPGA.

The control FPGA checks the latency of a single hash operation for an input
data that is performed in the cryptographic FPGA and reports the number of
clock cycles to SASEBO-Checker. More precisely, SASEBO-Checker reports two
kinds of performance metrics for evaluating the performance of a hash calcula-
tion. One is the number of clock cycles including the cycles for receiving input
data and the other is one excluding the cycles for the data input.

2.1 Interface between Control and Cryptographic FPGAs

In this section, we explain an interface and a communication protocol between
two FPGAs.

The performance of SHA-3 hardware implementations heavily depend on the
communication overhead, i.e. the time used for receiving and transferring data.
On the one hand, the communication overhead is likely to be a bottleneck of
a system in practice. Therefore, one would say that the interface specification
should be realistic, e.g. 32-bit data are sent in two cycles. On the other hand,
one tends to assume an ideal interface because one would like to maximize the
performance of a hash core. In this case, one ignores the communication overhead
and the hardware design would be impractical in general.

For a fair comparison, we employ a compromise plan. Namely, we use a prac-
tical interface that can support a 16-bit data communication in three cycles.
However, if needed, we ignore or reduce the communication overhead when cal-
culating the speed performance. In this way, we can evaluate the SHA-3 hardware
performance depending on how the hash core is interfaced. In the followings, we
explain our interface in detail.

Communication Protocol between Control and Cryptographic FPGAs
The interface between the control and cryptographic FPGAs is based on work
by Chen et al. proposed in [7]. In order to guarantee a stable communication
between two FPGAs, we invert the clock signal of the control FPGA and sup-
ply it to the cryptographic FPGA. The init signal shown in Fig. 1 is a signal
to initialize a hash function in the cryptographic FPGA. The load and fetch
signals are used for transmitting and receiving the message data and the hash
value between the control and cryptographic FPGAs, and the ack signal is a
response signal for the load and fetch signals. The input and output data for the
cryptographic FPGA are sent in a unit of 16 bits via idata and odata signals,
respectively.

With this protocol, it takes three cycles for transmitting and receiving one
16-bit data between the FPGAs. Therefore, we can calculate the precise number
of clock cycles for data communications by using the total length of input or
output data, e.g. it takes 3 · 256

16 or 48 cycles for 256-bit input data. When a
hash core can support a two-cycle protocol, we can simply reduce 16 from the
obtained communication overhead for the 256-bit input data to derive a potential
performance.

3 Design Strategy for Hardware Implementation of
SHA-3 Candidates

3.1 Specification of Data Input to Cryptographic FPGA

The detailed specification for data input sent to the cryptographic FPGA is
described in this section.

Message Padding A hash function executes the hashing process for each input
data with a constant block size. Then, the hash function uses the intermediate
result as the next input data to proceed the next hashing process. Therefore,
the size of the input data must be a multiple of the block size. If they are not,
the hash function fixes the input data to be the multiple of the block size by
padding. In this work, we assume that padding is performed before sending a
message from SASEBO-Checker.

EoM (End of Message) There are several SHA-3 candidates which need
an extra output calculation process in addition to a normal hashing process.

CoreFunction

input

output

Register

Fig. 2. Fully Autonomous

CoreFunction
input

output
Register

ExternalMemoryIntermediateValue

Fig. 3. External Memory

Core
Function

input

output

Fig. 4. Core Functionality

Therefore, the control FPGA sends the end of message to the cryptographic
FPGA by raising the EoM signal.

Bit Length of Message The bit length of the message is sent via idata. There-
fore, the data communication overhead happens for the SHA-3 candidates which
need to send information about the bit length, so that it could require more time
than the candidates which do not need the bit length of a message.

3.2 Architectures of Cryptographic FPGA

Hardware architectures to implement a hash function are described in this sec-
tion. There are mainly three types of architectures which, in our case, are im-
plemented on the cryptographic FPGA [8].

Fully Autonomous (Fig. 2) In this architecture, one transfers message data
to a hash function in multiple cycles in a unit of a fixed data size (e.g. 16 bits).
The hash module stores all of the intermediate values in registers during the
hashing process. Therefore, after all message data are input, the hash function
can start executing the process. It can be said that this method is regarded as
an implementation assuming to be used in a real system.

External Memory (Fig. 3) In this architecture, only the data necessary for
executing the hashing calculation are stored in registers. Other data that are not
related to the part of the hash calculation are stored in an external memory that
is less expensive than registers in general. Therefore, the hash function hardware
becomes a low-cost implementation. However, the architecture requires overhead
cycles for accessing an external memory, and hence it is not suitable for high-
speed implementations.

Core Functionality (Fig. 4) This architecture has only the core part of a
hash function. The hashing process is executed supposing that data are provided
from an external module in some way. Therefore, one can estimate a rough
performance of the hash function hardware. In other words, it can be said that
this architecture is used for estimating a hardware performance under an ideal
interface where the overhead of the data access is ignored in the hashing process.

The previous work for evaluating hardware performance has been executed
without using a standardized architecture, i.e. different architectures are used.
For example, the implementation method by Namin et al. [3] and Baldwin et
al. [4] is based on the core functionality type and they a evaluate rough estimate
of the performance of hash function hardware. On the other hand, the imple-
mentation method by Tillich et al. [2] and Jungk et al. [5] is based on the type of
the fully autonomous. They assumed that the input data for the hash function
hardware is sent in one cycle, so that the length of the input data is assumed
long (e.g. 256 or 512 bits). Consequently, their evaluation results cannot be used
straightforwardly for a performance evaluation of an accelerator of CPU where
only a limited size of data access is available in one.

In this paper, we evaluate the performance of SHA-3 candidates when they
are used in a real system. In addition, we prepare an evaluation environment
that one could evaluate hardware performance even if using a different interface.
In the case of evaluating hardware performance using SASEBO-GII, it is natural
to employ the architecture of Fig. 2 or 3 because the architecture of Fig. 4 needs
long bits length for input and output the data. In addition, as our proposal is to
evaluate the performance for high-speed hardware implementations, we decide
to employ the architecture of Fig. 2, because the architecture of Fig. 3 takes
extra cycles for memory accesses, and hence it is not suitable for high-speed
implementation.

The input and output data between the control and cryptographic FPGAs
are assumed to be 16-bit length. This is reasonable when we assume the ap-
plication such as an accelerator of CPU. One can measure the number of clock
cycles when assuming an ideal interface that does not cause communication over-
heads for an input message by using SASEBO-Checker. Furthermore, one can
evaluate hardware cost when using the architecture of the core functionality by
synthesizing only the core function part of a hash function hardware.

Figure 5 shows the detailed architecture of the cryptographic FPGA which
we use for evaluating hardware performance. The cryptographic FPGA consists

Hash FunctionCoreInput /OutputInterface OutputRegister

Cryptographic FPGA

idata
initEoM

zbus_clkzbus_rstnloadfetchackodata
EN / startLd_msgbusyhash16 16256 InputRegister

IntermediateValue Register

Fig. 5. Architecture of Cryptographic FPGA.

of an interface block which controls input and output, and a core function block
which executes a hashing process. There are several SHA-3 candidates which
need to keep an input message during the hashing process. In our environment,
it is able to prepare a message register in the core function block. Also, we may
be able to prepare an output register in the core function block which keeps
hashed values.

3.3 Hardware Performance

We mainly focus on improving the throughput of hardware implementation
in this paper. As every SHA-3 candidate has a different input block size, the
throughput can be expressed as

Throughput = Input Block Size · Max Clock Frequency

Number of Clock Cycles
. (1)

The Input Block Size expresses the size of an input data and Number of
Clock Cycles expresses the number of clock cycles which is necessary to hash
the input data. Max Clock Frequency can be defined as a reciprocal of a critical
path delay of a combinational logic. As can be seen from Eq. (1), it is necessary
to increase Max Clock Frequency and/or decrease Number of Clock Cycles
to improve Throughput. In general, improving Throughput tends to be more
costly in terms of hardware resource.

3.4 Techniques to Improve Throughput

Our proposal covers the following techniques for implementing an optimized hash
function.

Retiming Transformation The retiming transformation is a technique that
Lee et al. used for hash hardware implementations in [9]. This technique holds
down the critical path delay to improve the throughput by averaging a processing

input ARegister1 Register2 B Register3C D output
Fig. 6. An Example DFG.

time between two registers. We use a DFG (Data Flow Graph) shown in Fig. 6 as
an example case to explain the technique. The critical path of the example DFG
consists of three adders between the registers 2 and 3. Because the maximum
clock frequency depends on the critical path delay, it should be shorten in order
to improve the throughput.

input ARegister1 B Register2 Register3C D output
Fig. 7. Applying Retiming Transformation to Fig. 6.

Figure 7 shows an optimized DFG where the retiming transformation is ap-
plied to the DFG in Fig. 6. In this case, the critical path consists of two adders,
and therefore the maximum clock frequency improves. This technique is applied
to SHA-256 which is used as a reference design in our experiments.

Unfolding Transformation The unfolding transformation is a technique that
Lee et al. also used in [9]. This technique decreases the total number of clock
cycles. Therefore we can expect the improvement of the throughput. Figure 8
shows a DFG after applying the unfolding transformation to the DFG in Fig. 6.

input ARegister1 B Register2C D output
Fig. 8. Applying Unfolding Transformation to Fig. 6.

The DFG shown in Fig. 8 performs four operations addition with A, B, C
and D in one cycle. The throughput of this DFG might improve although the

maximum clock frequency becomes lower. Namely, suppose that the maximum
clock frequency becomes about 4

3 times lower and the number of clock cycles
becomes 2 times smaller, the throughput could improve by a factor of 3

4 · 2 or
1.5. However, the improvement depends on the type of the combinational logics.
Therefore, this technique has to be applied for architectures for which we can
expect a throughput improvement even if the critical path delay becomes longer.
In this work, we apply this technique only to Skein.

3.5 Hardware Design Strategy

We show how to deal with the optimization techniques discussed in Sect. 3.4 as
follows.

Initial Value There are several SHA-3 candidates which have a procedure to
generate an initial value. We assume that the initial value is calculated before
hash operations.

Criteria of Applying the Unfolding Transformation The criteria of apply-
ing the unfolding transformation to a hash function are described in this section.
We use the following notations to explain the criteria.

B : Input block size,
I : Total number of clock cycles,
D : Critical path delay,
Th : Throughput,

fmax : Maximum clock frequency,
M : Message without padding,
Mp : Message with padding,

Figures 9 and 10 show a representative example of the DFG where the un-
folding transformation could be applied. S, S0, and S1 denote the hardware
costs of a combinational logic and Td, Td0 , and Td1 denote the path delays of a
combinational logic. These combinational circuits output the result in I0 cycles.

Figures 11 and 12 show the DFGs after the unfolding transformation against
Fig. 9. The throughput of the case of Fig. 9 is

Th1 = B0 ·
1/Td

I0
. (2)

On the contrary, the throughput of the case of Fig. 11 is

Tha = B0 ·
1/Td

I0/a
= a · Th1. (3)

In this case, the hardware cost of the combinational logic becomes a times ex-
pensive, but the throughput improves a times higher.

Register

S

input

Fig. 9. Example DFG before Applying the
Unfolding Transformation (1).

Register

input

Round[0] == 1?
Fig. 10. Example of DFG before Applying
the Unfolding Transformation (2).

Register
aS

input

Fig. 11. After Applying the Unfolding
Transformation against Fig. 9 (a).

Register

aS

input

Fig. 12. After Applying the Unfolding
Transformation against Fig. 9 (b).

As for Fig. 12, the throughput is

Thb = B0 ·
1/(a · Td)

I0/a
= Th1. (4)

Therefore, the throughput is the same as Fig. 9, although the hardware cost of
the combinational logic becomes a times expensive.

Figure 10 is the case where two different operations are performed in every
alternative cycle. The critical path of the DFG is Td1

(Td1
> Td0

). The throughput
of this case is

Th1 = B0 ·
1/Td1

I0
. (5)

Register

input

Fig. 13. After Applying the Unfolding Transformation against Fig. 10 (c).

Figure 13 shows the DFG after the unfolding transformation against Fig. 10,
and the throughput is

Tha = B0 ·
1/(Td0 + Td1)

I0/2
=

2 · Td1

Td0 + Td1

· Th1 > Th1. (6)

As a result, the throughput improves, while the hardware cost of the combina-
tional logic is almost the same as Fig. 10.

To give a high priority to throughput improvements, we perform the unfold-
ing transformation to the SHA-3 candidates which can raise the throughput such
as Figs. 11 and 13.

4 Evaluation Criteria for Hardware SHA-3 candidates

4.1 Evaluation Items

We implement eight SHA-3 hash candidates on the cryptographic FPGA, Xilinx
Virtex-5 (xc5vlx30-3ff324) on SASEBO-GII. We check the hardware performance
in terms of speed and hardware cost. The speed performance is evaluated with
its latency or throughput that is calculated with the input block size, the maxi-
mum clock frequency, and the total number of clock cycles with or without the
communication overheads. The cost performance is evaluated with the number
of slices, registers, LUTs and the size of a single-port RAM used as ROM. A
hash function which has a high throughput with a low hardware cost is regarded
as efficient.

4.2 Evaluation Metrics

A hash function executes a hashing process for each data with a input block size,
and uses the result as the next input data to proceed the whole hashing process.
The clock cycles necessary for hashing |M |-bit data can expresses as

I =
|Mp|
B

(Iin + Icore) + Ifinal + Iout . (7)

Here,
|Mp|
B is the number of hash core operations when the hash core can

perform B-bit data in one operation. Iin, Icore, Ifinal and Iout denote the number
of clock cycles used to input data, to execute hashing process in the core function
block, to perform the final calculation process and to output the hash results,
respectively. Note that the coefficients of Ifinal and Iout are both ones, because
these processes are only executed when outputting the resultant data.

As a result, the throughput and the latency can be expressed as

Th = |Mp| ×
fmax

|Mp|
B (Iin + Icore) + Ifinal + Iout

, (8)

L =
|Mp|
Th

. (9)

When |Mp| is sufficiently large, for example in the case of hashing a long mes-
sage, Ifinal and Iout can be negligible from Eq. (8). In this case, the throughput
ThLongMessage is approximated as

ThLongMessage =
Bfmax

Iin + Icore
. (10)

On the other hand, when |Mp| is small, for example in the case of hashing
a short message for authentication, we cannot ignore Ifinal and Iout. Moreover,
as the latency is an important metrics for a short message rather than the
throughput, we use Eq. (9) to compare the speed performance of the SHA-3
candidates.

Table 1 shows the evaluation metrics. Here, the throughput of the core func-
tion block Thcore is

Thcore = |Mp| ×
fmax

|Mp|
B Icore + Ifinal

. (11)

4.3 Implementation Results for Eight SHA-3 Candidates

In this work, we implement SHA-256 and eight SHA-3 candidates aiming at a
high-speed hardware implementation.

Tables 2 and 3 summarize the results of the implementation for the SHA-3
candidates. Skein, CubeHash, Grøstl, Hamsi, Shabal and Luffa have the output
calculation processes, so that these candidates need the EoM signal as explained

Table 1. Evaluation Metrics.

Long Message Short Message
(Throughput) (Latency)

Interface + Core B·fmax
Iin+Icore

|Mp|
Th

Core Function Block B·fmax
Icore

|Mp|
Thcore

020040060080010001200

0 1000 2000 3000 4000 5000Number of occupied Slices
Throughpu
t[Mbps] SHA-256Skein-256-256CubeHash16/32-256BLAKE-32ECHO-256Groestl-256Hamsi-256Shabal-256Luffa-256

Fig. 14. Throughput of Hash Function Including Interface Overheads for Long Mes-
sage.

01000200030004000500060007000

0 1000 2000 3000 4000 5000Number of occupied Slices
Throughpu
t[Mbps] SHA-256Skein-256-256CubeHash16/32-256BLAKE-32ECHO-256Groestl-256Hamsi-256Shabal-256Luffa-256

Fig. 15. Throughput of Hash Core Function Block for Long Message.

in Sect. 3.1. Skein, BLAKE and ECHO use the bit length of a message, and
therefore these candidates require extra clock cycles when sending the message.

Figures 14 and 15 show the cost performance in the case for a long mes-
sage. From these results, we consider Luffa is the most efficient hash function

Table 2. Performance Results of the SHA-3 Candidates on Virtex-5 (xc5vlx30-3ff324).

Input Max. Total Number of Long Short
Block Clock Clock Cycles [cycles] Message *3 Message *3
Size Frequency Interface Core Throughput |M | = 1024
[bits] [MHz] + Core *1 Function *2 [Mbps] Latency [µs]

SHA-256 512 190 148 (199) 68 (68) 657 (1431) 2.61 (1.074)

Skein 256 115 75 (146) 21 (41) 393 (1482) 3.23 (0.904)

CubeHash 256 185 64 (275) 16 (176) 740 (2960) 2.87 (1.297)

BLAKE 512 115 121 (172) 22 (22) 487 (2676) 3.60 (0.574)

ECHO 1536 104 407 (458) 99 (99) 392 (1614) 4.40 (0.952)

Grøstl 512 101 106 (167) 10 (20) 488 (5171) 3.75 (0.396)

Hamsi 32 210 12 (63) 4 (7) 560 (1680) 1.92 (0.681)

Shabal 512 214 143 (345) 63 (214) 766 (1739) 2.95 (1.589)

Luffa 256 223 57 (117) 9 (18) 1002 (6343) 1.55 (0.242)

*1 : Iin+Icore (I). *2 : Icore (Icore+Ifinal). *3 : including communication overheads by
interface. Values in parenthesis are the case excluding the overheads, e.g. Throughput
of the core function block.

Table 3. Hardware Costs of the SHA-3 Candidates on Virtex-5 (xc5vlx30-3ff324).

Number of Number of Number of Block RAM
Occupied Slices Slice Registers Slice LUTs [bits]

SHA-256 561 1177 1969 64 × 32

Skein 854 929 2864 0

CubeHash 590 1316 2182 0

BLAKE 1660 1393 5154 0

ECHO 3556 4198 11668 0

Grøstl 4057 1570 13222 0

Hamsi 718 841 2499 0

Shabal 1251 2061 4219 0

Luffa 1048 1446 3754 0

00.51
1.522.5
33.54
4.55

SHA-256Skein-256
-256

CubeHash16
/32-256BLAKE-32 ECHOGroestl-256Hamsi-256Shabal-25

6Luffa-256
Latency
[μs]

128 bits256 bits384 bits512 bits1024 bits

Fig. 16. Latency of Hash Function Including Interface Overheads for Short Message.

00.2
0.40.60.81
1.21.41.61.8

SHA-256Skein-256
-256

CubeHash16
/32-256BLAKE-32 ECHOGroestl-256Hamsi-256Shabal-25

6Luffa-256
Latency
[μs]

128 bits256 bits384 bits512 bits1024 bits

Fig. 17. Latency of Core Function Block for Short Message (128, 256, 384, 512, 1024
bits).

for a long message. Figures 16 and 17 show the latency of the hash function
with interface overheads and the core function block in the case of |M | =

128, 256, 384, 512, 1024. We evaluate Luffa is the most efficient hash function
also for short message in our experiments.

In addition, as the input block size of ECHO is 1536 bits, the total pro-
cessing time is the same when hashing data whose size is less than 1536 bits.
Therefore, ECHO might have a disadvantage of hashing a short message such as
authentication.

From our result, the hash core function has a less effect for the throughput
differences because the input and output processes are likely to be a bottleneck.
Therefore, the performance of an interface could be an important part for a fair
hardware comparison.

5 Conclusions

In this paper, we firstly propose a consistent evaluation criteria which realizes a
fair hardware evaluation on cryptographic hash function. This criteria consist of
the basic design of an evaluation environment using SASEBO-GII, the interface
specification between two FPGAs, and architecture of hardware implementations
of hash function. We also propose evaluation items and the way to evaluation.

We implement eight out of fourteen SHA-3 candidates using the above envi-
ronment and show the results. Our future work includes evaluation of the rest
of the SHA-3 candidates, evaluation for low-power devices such as RFID tags
and security evaluation of HMAC using SHA-3 candidates against side-channel
attacks.

Acknowledgments

The authors would like to thank Akashi Satoh and Research Center for Informa-
tion Security, National Institute of Advanced Industrial Science and Technology
(AIST) for developing the SASEBO-GII.

References

1. National Institute of Standards and Technology (NIST), “Cryptographic Hash
Algorithm Competition,” http://csrc.nist.gov/groups/ST/hash/sha-3/index.
html.

2. S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J. -M. Schmidt, and A. Szekely,
“High-Speed Hardware Implementations of BLAKE, Blue Midnight Wish, Cube-
Hash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD
and Skein,” Cryptology ePrint Archive, Report 2009/510, 2009.

3. A. H. Namin and M. A. Hasan, “Hardware Implementation of the Compression
Function for Selected SHA-3 Candidates,” CACR 2009-28 (2009).

4. B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R. P. McEvoy, W. Pan, and
W. P. Marnane, “FPGA Implementations of SHA-3 Candidates:CubeHash, Grøstl,
Lane, Shabal and Spectral Hash,” Cryptology ePrint Archive, Report 2009/342,
2009.

5. B. Jungk, S. Reith, and J. Apfelbeck, “On Optimized FPGA Implementations of
the SHA-3 Candidate Grøstl,” Cryptology ePrint Archive, Report 2009/206, 2009.

6. “National Institute of Advanced Industrial Science and Technology (AIST), Re-
search Center for Information Security (RCIS)：“Side-channel Attack Standard
Evaluation Board (SASEBO)”,” http://www.rcis.aist.go.jp/special/SASEBO/

SASEBO-GII-ja.html.
7. Z. Chen, S. Morozov, and P. Schaumont, “A Hardware Interface for Hashing Al-

gorithms,” Cryptology ePrint Archive, Report 2008/529, 2008.
8. ECRYPT II, “SHA-3 Hardware Implementations,” http://ehash.iaik.tugraz.

at/wiki/SHA-3 Hardware Implementations.
9. Y. K. Lee, H. Chan, and I. Verbauwhede, “Iteration Bound Analysis and Through-

put Optimum Architecture of SHA-256 (384, 512) for Hardware Implementations,”
in In Information Security Appliciations, 8th International Workshop, WISA 2007,
vol. 4867 of LNCS, pp. 102-114, Springer, 2007.

