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Many works have been carried out to determine expressions for critical loads of crack propagation in flat plates under 
eleme  cases of shear, compression, bending and combination of theme. In this new solution, the analytical work 
must take into consideration the effect of fluctuating the buckling load for panels under various types of bending and shear 
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resea  
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for co  
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ntary load

ng. The effect of combined buckling shear and bending stresses on the crack propagation has been considered in this 
rch. The analytical solution is based on a combination of maximum strain under mixed mode, Paris and Sih equation
Forman et al. equation. Different boundary conditions must be included in the flat plates, and new stress intensity factors 
mbined modes I and II have been developed for the crack growth. Also the results show the effect of crack length on
ess distribution and the direction of crack propagation. 
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1. Introduction 

 from thin sheets of material, there 
ode of instability known as local 

buckling
loads
these
and b
existe

Pr
based  
Ritz m
for 
comb
desig
Gere 
limite
only 
simpl
consi

Fe 5] outlines a programmed work that has 
been und
theore
predi
plate 

A  to a study of 
the mec
comp
of fat
stress

                                                          

* 

In structures formed
is an additional possible m

. When a thin rectangular sheet is subjected to 
 which can potentially cause failure by buckling, 
 loads comprise combinations of compression, shear 
ending forces. Generic to all of these cases is the 
nce of stress gradients across the shells. 
evious researchers have carried out work mainly 
 on the use of energy methods such as the Raleigh –

ethod  [1], to determine theoretical buckling loads 
panels under pure shear, compression, and 
inations of these. These cases are summarized in 
n guides such as those by young [2], Timoshenko and 
[3] and Bruhn [4]. However, this work is fairly 
d in that it assumes a constant stress distribution and 
very simple boundary conditions such as four edges 
y supported, or four edges clamped have been 
dered. 
atherstone [

er taken to compare collapse loads predicted by 
tical, experimental, and finite element. Analysis 

cted collapse loads for the case of a flat rectangular 
under combined shear and bending. 
 great deal of research has been devoted

hanism of fatigue, and yet there is still not a 
lete understanding of the phenomenon and the effect 
igue loading on the crack propagation under complex 
 of boundary conditions. Knowledge of the initiation 
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site and subsequent growth
assists in determining th

s consequences. In addition, knowledge of the stress
tensity factors at the various stages of growth is used to
certain the service life of such components. (Nurse and 

atter son) [6]. D.R.Tadjiev et al. [7] studied the fatigue
ack growth prediction under random loading in
ecimens of high strength aluminum alloy using modified
ot mean square (RMS) model for each specimen to 

etermine the max. And min stresses under constant
plitude loading, R.Doglione and M. Bartolone [8] 

udied the fatigue crack propagation in a 2195-T8 alloy 
late. They showed that fatigue resistance of this alloy is 
mparable to that of the classical competitor alloys and

igh lights stress ratio effects on the behavior at the
reshold which causes the stress intensity range (∆kth) 

ecrease as R increases . Yongming Liu et al. [9] 
eveloped a new mixed mode threshold stress intensity 
ctor using a critical plane based multiaxial fatigue theory 
d the Kitagawa diagram. The proposed method is a

ominal approach since the fatigue damage is evaluated 
sing remote stresses acting on the cracked component 
ther than stresses near the crack tip.    

An alternative method for determini
ckling load and its effect on the crack propagation in

in shells under complex load cases by using combined
ethods of max strain and max stress was done in this
search. This has the advantage of allowing more difficult 

oundary conditions to be modeled, and loads to be
plied as they exist in situ, thereby recreating varying 

resses fields within the panel. This paper calculates the 
uckling loads for plates of four aspect ratios with 
ifferent crack of lengths. 
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2. Theory 

2.1. Fracture Mechanics for Fatigue 
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Fracture mec
after the crack in
predicted. As stated earlier fatigue failur
considered to be a three – stage process:  

 Stage I The Initiation of a Crack 

ere is some doubt as to where this occurs, and the 
sses of nucleation and stage 1 growth 

understood. 
Using electron microscopically techniques for 

ving extrusions and intrusions from well defined slip 
 [10]  and have been proposed a theory of cross  slip 
p on alternate slip planes and initially the cracks will 
rmed [11]. These cracks are likely to be aligned with 
irection of maximum shear within the component i.e. 
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cr μ
πτ Ε

=

tْo the maximum principle stress. Hence nominally, 
osition of maximum tangential stress has been used; 
assumes that surface flaws are homogeneously 
buted and will from the site of a crack initiation. This 
od has been used taking into consideration the effect 
ction on the crack propagation [21]. 

. Stage II Crack Propagation  

fter initiation, crack propagation occur
growth according to [10]. Description
growth which attempts to include stage 1 and 2 growth in 

determination of crack path would necessitate 
ledge of the transition between stage 1 and 2 growth. 
 1 growth occurs immediately which often grow with 
ng shear component. Most cracks move to stage 2 

ths with increasing crack length, which is 
cterized by macroscopic effects with crack is 
cterized by macroscopic effects with crack growth 
nated by mode I  displacements. 

. Stage III Crack Acceleration 

 tWhen the crack has grown so that
intensity factor KIc is approached, the cr

idly with non linear relation until KIc is exceeded, 
 final catastrophic failure occurs. This is related to the 
tude of the stress intensity factor ∆k during the cycle 
 increases in this stage. 

ack Growth Laws 

For many materials stage II, 
ogan law which is:- 
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Where c and m material coefficients (m lies between 2 
and 7) 
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The propagation of the crack in stage 2 has been 
predicted in this study assuming brittle failure. It has been  
shown that stress and strain methods are more reliable than 
those based on strain energy criteria. This is especially true 
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 problem of a rectangular plate with simply 
supported edges, it has been used the principle of 
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is simp
nent if the stress amplitude is constant. 

ver, when stress amplitude varies, then the g
ay depart markedly from the simple relation, and 

Forman equation could be used, which also describe 
 III. 

 there is a mixed mode crack [12]. 
Added to this, the stress and strain based methods , 

und in ASTM standard E647 – 939 [20] have more
adily understood physical basis, which essentially states
at failure will occur in the direction pe

st stress or strain. 
In this study, the method used for determining the 

irection of crack growth by using maximum principle
rain which comes from mixing two modes, I and II, by
plying fluctuating buckling stress. The method adopted 
as based also on the maximum circumferential stress and 
s direction with the crack propagation. The values of the 
tio KII to KI was predicted and was improved by
tisfying these values, mathematical approach in [13]. 

rom these ratios of KII / KI, we can find   ΔK, and then
sing them to find the crack growth rate in the expression 
f formans under mixed bending and torsion stresses. 

 Theoretical Analysis 

propagate by two modes I
lates with mixed boundary conditions under

mbination of bending and shear as shown in fig 1(a-b)
uld be Equivalent to state two conditions: 

.1. Shear 

The problem of shear buckling for lo
plates has be

 Donnells equations to investigate the buckling of long 
lates under shear with both simply supported and
amped edges for the whole curvature range. This work
as shown that the critical stress of a panel in shear 
uckling can be written as: 

length
=young’s modulus 

de of plate  =length of shorter si
s=shear buckling stress paramet

  thickness of plate  
=Poisson’s ratio.    

tKs varies a accord
ect ratio. It has been looked at the case of a rectangular 

late with one edge clamped using a Fourier series to
present the deflection of the plate in the energy equations 
5]. Values of Ks are shown in table (1). 

.2. Bending 

To solve the

nservation of energy and a deflection in the form of a 
ouble trigonometric function [3]. For pure bending, the
itical load can be calculated by the formula: 
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Where 
 Kb= bending buckling stress parameter. 
Kb varies according to the boundary condition and aspect 
ratio values of Kb are shown in table (2) 

5. Equations for the Relation of Fatigue Buckling and 

The relation between fatigue buckling and crack 
propagat
1) Fo                              
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Figure 1(a),(b). Applied stress distribution on the edges 
plate. 

Table 

 
Table 2 .values of Kb for rectangular plate with simply

of the 

1. values of Ks for rectangular plate with one edge clamped 

 supported 

Crack Propagation: 

ion can be divided to three groups:  
r the displacement of the crack                     

modeI+U  = u +uI II 

xxIx ∈+=∈∴∈  

 
 

                                   (2) 

(4)                

2

3

222

)
2

3

2
Sin1(

22

)
3

Sin-1(
K I

x = θθθσ SinCosI
x = θθθσ SinCos

222r2

 : I modefor 

(3)                                              )(- y















=

+=

=∈

θθθ
π

τ

θθθ
π

σ
π

σνσ χχ

CosCosSin
r

KI

SinCos
r

K

E

xy

I
y

                              )(- y















=

+=

=∈

θθθ
π

τ

θθθ
π

σ
π

σνσ χχ

CosCosSin
r

KI

SinCos
r

K

E

xy

I
y

)
2

3

2
sin1(

2r2
(-)

2

3

2
Sin-1(

22

:)3()4(.

θθθ
π

υθθθ
πχ SinCos

r

K
SinCos

r

K

ineqsubstitute

II
I +=∈Ε

For mode II : 

(5)
 

                 

                  (6)  

Substitute eq(6) in eq(4) :-  

  

 
 
 
 

)
2

3
cos

2
(cos

2
sin

2
)

2

3
cos

2
cos2(

2
sin

2πr
xII +=∈ θθ

π
νθθθ

r

KK
E IIII −

−  (7) 

From eq 2 we could obtain:  
 
 
 
 
 
For Combined mode I and II of the 
 
 
 
 

propagation of the crack it can be seen that mode II 
change the crack displacement in the x direction only, that 
is me
V
S

θ

)8())).
2

3

2
(

2r2

KII
(-)

2

3

2
2(

2r2

K-
(

1

)))
2

3

2
1(

2r2

KI
(-)

2

3
SinSin-1((

1

....

II θθθ
π

νθθ
π

an:  
=VI where V is the displacement in the y direction  
o that we could find in polar coordinate:  

)11(2sin2cos)(
2

)(
2

γθθ xyyxyx +∈−∈+∈+∈=
2

(((........................................,.........,,,,........,..........θ∈

By substituting eq 8, 9 and 10 in equation 11  

111

−++−+

+=∈

)
2

3
cos

2
cos2(

2
sin

2
(

2

1
))]

2

3
sin

2
Sin1

2

3
Sin

2
Sin

1[
2

(
r2

K
(-]

2

3
Sin

2
Sin-1[

22
(

2

1 I

θθθ
π

θθθθ

θ
π

νθθθ
πθ

r

K

E

CosCos
r

K

E

II

I

 
 

a/b 2.5 2 1.5 1.25 1.11 1.0 

Ks 7.96 6.72 7.59 8.57 9.66 10.98 

a/b 0.6 0.75 0.8 0.9 1 1.5 2. 2.5 

Kb    6 41 2.39 32.41 2.42 2.44 2.5  2.56 2.  2. 8

 

x

u

x

u

x

u I

∂
∂

+
∂
∂=

∂
∂∴ 

222

θ
πrEX

θ θ θ θ θ
π

ν

CosCosSinCosCosSin

SinSinCosCos
KI

+Θ+

+=∈ 

E

...

....

.................................................................................................................

)10()]
2

3
Sin

2
Sin1(

222

3

22
Sin

2
(

)1(2)1(2

)9()))
2

3

2

K31

θθθ
π

θ
π

τγ

1(
2r2

(-)
2

Sin
2

Sin-1(
22

( II

θθνν

θ θ θ
π

νθ
π

+

=∈

Ki

CosCos
rE

I
Y

θ θ

−++=

+

Cos
r

K
CosCos

rEE

SinSin
K

II
xy=xy



 © 2009  Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 3, Number 3  (ISSN 1995-6665) 209 







 −+

2

3

2
1

222

3

222

θθθ
π

θθθ
π

SinSinCos
r

k
CosCosSin

r

k III

 

 
 
 

]2
2

1
-)Sin2- (

2

1
-[

2

1 θγθεεγθ Cosxyyx=

.

22

2,1 2

x)-(
-

2
yx

yy τσσσσ
σ +

+
=

+Χ

 
Also we could find γθ as: 

 

 
 
 

 
To find the maximum value of εθ  , equation (12) is 

differentiated with respect toθ     using math-Lab 2002 
am for differentiating, and the derivative is equated 
ro. The roots of this equation give values of 

progr
to ze θ  at 

 max or min of the strain, which are the principal 
s in the polar coordinates. The first root is found to 
e maximum. The same roots substituted in equation 

ust be given a zero value of shear strain 

which
strain
be th
(13) m γθ  . 

Th

and 

ese gives two set of equation which relates the ratio  

θ  for combined effect of mode II and I for 
 propagation. crack

2- It 
loadi
inclin
fig 2-
[16] s

could be related between mixed mode I – II 
ng involves axial loading in the y direction of a crack 
ed as result of rotation a bout the z axis as shown in 
a. Even in this instance, analytical method done by 
hows that: -                                                       

aSinnCosKII

aCosnSinKI

πβσβσ
πβσβσ

)(

)(
22

22

+=

+=
 (1

 

                            (b) 
F

W
lculating the principle stresses from the 

condition shown in fig (2-a) and using Mohr's circle 
construction  

 

      (15) 

 
W

4) 

                                 (a)    

  
igure 2. (a),(b). 

 
hich could be done for very sharp and small crack?  
Now by ca

here 0=yσ and xσ = bending buckling stress 
And xyτ = shear buckling 

y using the values of  21 ,
stress 

B σσ ,  the ratio of the stress
tensity factories of mode I an

 
in II can be calculated from 
eq (14) as shown in fig (2-b):- 

d 

}a)(

)(

21

2
2

2
1

πββσββσ
πβσβσ
SinCosSinCosKII

aCosSinKI

±=

±=
 (16) 

)12()]
2

3

2
1(

222

3

222
[2

1
2)))

2

3

2
(

22
(

2
(

2

1
])

2

3

2
2[

22

2
(

2

1
)))

2

3

2
(

22
(

2

1
)

22

2

22

2
(

2

1

........(........................................................................................................................................................................................................................................................................................

θθθ

π

θ

π
θ

υ
θ

θθθ

π
υ

π

θθθ

π

υ
π

θθθ

π
υ

θ

π

υθ

π
εθ

SinSinCos
r

IIk
Cos

CosSin
r

Sin
E

CosCosCosSin
r

IIk

r

IIk

E
SinSinCos

r

Ik

r

Ik

E
CosCosSin

r

IIk

E
Cos

r

Ik
Cos

r

Ik

E

−+

+
+

−+
−

+−

+−=∴

)
2

3

2
2(

2

)
2

3

2
2(

2

)
2

3

2
2(

22
(

θθ

θθθ

θθθ

θθθ

π

Ik

CosCosSin

SinSinCos

CosCosSin
r

IIk

−

−

+−

)13()]
2

3

2
Sin-1(

222

3

222
[2

1
-2

)))
2

3

2
(

2r2

k
(-)

2

3

2
2(

2r2

k
-(

2

1
)

]
2

3

2
2[

2r2
-)

2

3

2
-2Sin(

22
(

2

1
[

2

1
-

.....................................,.........,,,,,,.........,.....................

IIII

nSinCos
r

k
CosCosSin

r

k
CosSin

CosCosSinCosCosSin

SinSinCos
k

SinCos
r

K

III

II

θθθ
π

θθθ
π

θυθ

θθθ
π

υθθθ
π

θ θ θ θ θ θ
π

υ
π

+
Ε
+

Ε
+

Ε
=

I

II

k

k



 © 2009  Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 3, Number 3  (ISSN 1995-6665) 210

b)-17.......()mi aK π( 2
min2

2
min1n CosSiny βσβσ +=

K-R)K-1( ΔcdN

da Δ=
nkc

1=
k

K
+

K

K
2

IIC

II )(
IC

I

 
From group (1) and group (2) of the solution, relation 
between KII/KI  can be obtained for crack propagation and 
the condition of external loading in which the stress 
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 as shown by [17] . 
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7. Results 
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Figure 3. a comparison of theoretical buckling loads for varying 
boundary conditions. 

Figure 4.crack length versus u displacement for combined mode I 
and II from the crack tip. 

In fig (3) the theoretical buckling load, for the case of 
pure shear only and pure bending only, mixed shear and 
bending stress with different aspect ratios. 

It can be shown that shear stress have pronounced 
effect on the mixed shear and bending, but this effect will 
be decreased with increasing aspect ratio, so that it become 
nearer to the bending condition only. The value of bending 
st  
in equations (14 , 15 ,and 16 )
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rs was performed by solving eq (12) and eq (16) and 
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than KII which multiplied by ( sinθ cosθ ) for very small 
values of  θ .   

From the strain method used in this study, the behavior 
of the displacement (u) in front of the crack tip with 
differ
behav
incre
incre
also 
aspec
rate o
incre

ent crack length could be shown in fig(4). The 
ior of the displacement will be decreased with 

asing aspect ratio, and the rate of decreasing also 
ased with increasing the crack length. It can be shown 
that with increasing the crack length for the same 
t ratio, the displacement will be increased, but the 
f increasing in the displacement are decreased with 

asing aspect ratio. 

figure 5. Normailized Stress intensity factors as a function of 
crack length for aspect ratio 1. 

figure
length for aspect ratio 1.

In figures (5),(6
this process were th

K1/K0 and KII/K0 ,

 6.normalized stress intensity factors as a function of crack 
5. 

),(7) , and (8), the data obtained from 
e normalized stress intensity factors 

 where K0  = aπσ 0 and 0σ is the 

different crack length, the 
values of KI/K0 and KII/K0 will be increased with 

, but these values decreased with 
. It is worthntoing that the values of 

 aspect ratio of 2.5 which means  

figure 9.fatigue cr
(2a=2mm) showing the ef

that the mode I 
fracture with incr

figure 7.normalized stress intensity factors as a function of crack 
length for aspect ratio 2. 

figure 8.normalized stress intensity factors as a function of crack 
length for aspect ratio 2. 

ack propagation in aliminum plate with 
fect of  Δk vs.da/dn. 

fracture is more effective than mode II 
easing aspect ratio of the thin plate. The  

aπσ 0

applied or normal stress. For 

increasing crack length
increasing aspect ratio
KII have small values for
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figure 10.fatigue crack propagation in aliminum plate with 
(2a=4mm) showing the effect of  Δk vs.da/dn. 

figure 11.fatigue crack propagation in aliminum plate with 

results show that the variation in the values of KI and KII 
depends not only on the values of the normal and shear 

stresses, but also on other factors like aspect ratio, and the 

 
figure 13.fatigue crack propagation in aliminum plate with 

(2a=10mm) showing the effect of Δk vs.da/dn. 

(2a=8mm) showing the effect of  Δk vs.da/dn. 

figure 12.fatigue crack propagation in aliminu
(2a=8mm) showing the effect of  Δk  vs.da/dn.
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(c) 
 

 
(d) 

Figure 14. (a) fatigue crack in aluminum plate with aspect ratio = 
1 showing the effect of Δk vs.da/dn, (b) fatigue crack in aluminum 
plate with aspect ratio = 1.5 showing the effect of Δk vs.da/dn,  
(c) fatigue crack in aluminum plate with aspect ratio = 2 showing 
the effect of Δk vs.da/dn, (d) fatigue crack in aluminum plate with 
aspect ratio = 2.5 showing the effect of Δk vs.da/dn. 

ratio of crack length to the aspect ratio which is shown in
these figures.  

Calculating the fatigue crack propagation, by using 
Forman equation in four cases of aspect ratios (1, 1.5, 2, 
2.5) which results in four points connected by spline 
fitting gives good observation about the relation between                                                                                                                                     
∆k rsus da/dN for cycling buckling loads for                                                                        
thin plates, figures ( 9 , 10 and 11) .       

It can be seen the effect of increasing the crack length 
cause creasing in the value of  ∆k and increasing in the 
Form  cycling load    

It n be seen that increasing the aspect ratio causes an 
incre

 

,     
ve   

s in
an

ca
ase in the

dN

da but the rate of increasing will be 

decre ed when we transfer from aspect ratio 2 to 2.5, and 
this is because the effect of stress ratio will be more 
effec  than the change in   ∆k       on the value of da/dN. 
Also from figures (12) and (13) increase the crack length 

and increasing the aspect ratio to values 2 and 2.5 cause 
very high values of da/dN which are corresponding to the 
effect of increasing of mode I (KI) and decreasing in the 
mode II (KII) in these boundary condition. 

the 
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[7 D.R.Tadjive , S.T.Ki ,”fatigue crack growth prediction in 
7475-T7351 Aluminum Alloy under Random loading using 
modified root mean square model “, Yeungnam university , 
South Korea , 2003,712-749 . 

[8 R. Doglione , M. Bartolone, “Fatigue crack propagation in 
2195-T8 Aluminum alloy plate”. 9th International conference 
on Aluminium  Alloys (ICAA9) , Institute of materials 
Engineering Australasia , 2004, 616-621 . 

[9 Y. Liu,  S. Mahadevan ,” Threshold stress intensity factor 
and crack growth rate prediction under mixed – mode 
loading”. Engineering Fracture Mechanics , Vol. 74 , 2006, 
332-345 .   

[10] P.J. Forsyth, “A two stage process of fatigue crack growth”. 
In proceedings of the crack propagation symposin, canfield, 
Bedfordshire, 1961, 76-94. 

[11] A.H. Cottrell, “Theoretical aspects of radiation damage and 
brittle fracture in steel pressure vessels”. Iron Steel Institute, 
Special Report No.69 , 1961, 281-296. 

as

tive

It could bee shown from figures (14-a, b, c, d) that 
variation of aspect ratio for crack lengths (2a=2,4,6
mm) causes nonlinearity in the b
(da/dn [(1-R) kc-∆k] mm/cyc.MPa √m, and the rate o
increasing will not be changed uniformly because
effect of combined mode I and II and the complexity of 
fluctuating of buckling loads and its effect on the fati
crack growth for high aspect ratio. 

nclusions 8. Co

It has been shown that the method developed for 
redistricting crack paths using comb
principle strain and maximum principle stress give g
results when compared with experimental results th
been obtained previously by some researchers for th
plate with small crack initiation [19]. Then this method ha
been used for predicting the crack growth for many aspe
ratio and its effect on the valu
The results show that increasing aspect ratio and crac
length causes very high values of da/dN and assist that th

 propagate under mode I rather thacrack n mode II. Also in
this research it takes into consideration the variation of ∆
with different aspect ratios for the same applied fluctuating
stresses.  
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