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Abstract

Many works have been carried out to determine expressions for critical loads of crack propagation in flat plates under
elementary load cases of shear, compression, bending and combination of theme. In this new solution, the analytical work
must take into consideration the effect of fluctuating the buckling load for panels under various types of bending and shear
loading. The effect of combined buckling shear and bending stresses on the crack propagation has been considered in this
research. The analytical solution is based on a combination of maximum strain under mixed mode, Paris and Sih equation
with Forman et al. equation. Different boundary conditions must be included in the flat plates, and new stress intensity factors
for combined modes I and II have been developed for the crack growth. Also the results show the effect of crack length on
the stress distribution and the direction of crack propagation.
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1. Introduction

In structures formed from thin sheets of material, there
is an additional possible mode of instability known as local
buckling. When a thin rectangular sheet is subjected to
loads which can potentially cause failure by buckling,
these loads comprise combinations of compression, shear
and bending forces. Generic to all of these cases is the
existence of stress gradients across the shells.

Previous researchers have carried out work mainly
based on the use of energy methods such as the Raleigh —
Ritz method [1], to determine theoretical buckling loads
for panels under pure shear, compression, and
combinations of these. These cases are summarized in
design guides such as those by young [2], Timoshenko and
Gere [3] and Bruhn [4]. However, this work is fairly
limited in that it assumes a constant stress distribution and
only very simple boundary conditions such as four edges
simply supported, or four edges clamped have been
considered.

Featherstone [5] outlines a programmed work that has
been under taken to compare collapse loads predicted by
theoretical, experimental, and finite element. Analysis
predicted collapse loads for the case of a flat rectangular
plate under combined shear and bending.

A great deal of research has been devoted to a study of
the mechanism of fatigue, and yet there is still not a
complete understanding of the phenomenon and the effect
of fatigue loading on the crack propagation under complex
stress of boundary conditions. Knowledge of the initiation
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site and subsequent growth path of a fatigue crack greatly
assists in determining the mode of failure and severity of
its consequences. In addition, knowledge of the stress
intensity factors at the various stages of growth is used to
ascertain the service life of such components. (Nurse and
patter son) [6]. D.R.Tadjiev et al. [7] studied the fatigue
crack growth prediction under random loading in
specimens of high strength aluminum alloy using modified
root mean square (RMS) model for each specimen to
determine the max. And min stresses under constant
amplitude loading, R.Doglione and M. Bartolone [8]
studied the fatigue crack propagation in a 2195-T8 alloy
plate. They showed that fatigue resistance of this alloy is
comparable to that of the classical competitor alloys and
high lights stress ratio effects on the behavior at the
threshold which causes the stress intensity range (Akth)
decrease as R increases . Yongming Liu et al. [9]
developed a new mixed mode threshold stress intensity
factor using a critical plane based multiaxial fatigue theory
and the Kitagawa diagram. The proposed method is a
nominal approach since the fatigue damage is evaluated
using remote stresses acting on the cracked component
rather than stresses near the crack tip.

An alternative method for determining the fluctuating
of buckling load and its effect on the crack propagation in
thin shells under complex load cases by using combined
methods of max strain and max stress was done in this
research. This has the advantage of allowing more difficult
boundary conditions to be modeled, and loads to be
applied as they exist in situ, thereby recreating varying
stresses fields within the panel. This paper calculates the
buckling loads for plates of four aspect ratios with
different crack of lengths.
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2. Theory

2.1. Fracture Mechanics for Fatigue

Fracture mechanics can only be applicable to fatigue
after the crack initiation phase to enable crack growth to be
predicted. As stated earlier fatigue failure is generally
considered to be a three — stage process:

2.1.1. Sagel The Initiation of a Crack

There is some doubt as to where this occurs, and the
processes of nucleation and stage 1 growth are not fully
understood.

Using electron microscopically techniques for
observing extrusions and intrusions from well defined slip
bands [10] and have been proposed a theory of cross slip
or slip on alternate slip planes and initially the cracks will
be formed [11]. These cracks are likely to be aligned with
the direction of maximum shear within the component i.e.
at 45 to the maximum principle stress. Hence nominally,
the position of maximum tangential stress has been used;
and assumes that surface flaws are homogeneously
distributed and will from the site of a crack initiation. This
method has been used taking into consideration the effect
of friction on the crack propagation [21].

2.1.2. Sage Il Crack Propagation

After initiation, crack propagation occurs as stage II
growth according to [10]. Description of fatigue crack
growth which attempts to include stage 1 and 2 growth in
the determination of crack path would necessitate
knowledge of the transition between stage 1 and 2 growth.
Stage 1 growth occurs immediately which often grow with
a strong shear component. Most cracks move to stage 2
growths with increasing crack length, which is
characterized by macroscopic effects with crack is
characterized by macroscopic effects with crack growth
dominated by mode I displacements.

2.1.3. Sage Il Crack Acceleration

When the crack has grown so that the critical stress
intensity factor Klc is approached, the crack accelerates
more rapidly with non linear relation until Klc is exceeded,
and a final catastrophic failure occurs. This is related to the
amplitude of the stress intensity factor Ak during the cycle
which increases in this stage.

3. Crack Growth Laws

For many materials stage I, growth is described by the
Paris-Erdogan law which is:-

da
— =c(Ak)"
N (AK)

Where ¢ and m material coefficients (m lies between 2
and 7)

This simple relationship can be used to predict life time
of component if the stress amplitude is constant.
However, when stress amplitude varies, then the growth
rate may depart markedly from the simple relation, and
then Forman equation could be used, which also describe
stage III.

The propagation of the crack in stage 2 has been
predicted in this study assuming brittle failure. It has been
shown that stress and strain methods are more reliable than
those based on strain energy criteria. This is especially true
when there is a mixed mode crack [12].

Added to this, the stress and strain based methods ,
found in ASTM standard E647 — 939 [20] have more
readily understood physical basis, which essentially states
that failure will occur in the direction perpendicular to the
largest stress or strain.

In this study, the method used for determining the
direction of crack growth by using maximum principle
strain which comes from mixing two modes, I and II, by
applying fluctuating buckling stress. The method adopted
was based also on the maximum circumferential stress and
its direction with the crack propagation. The values of the
ratio KII to KI was predicted and was improved by
satisfying these values, mathematical approach in [13].
From these ratios of KII / KI, we can find AK, and then
using them to find the crack growth rate in the expression
of formans under mixed bending and torsion stresses.

4. Theoretical Analysis

For a plate with simply supported edges and the crack
propagate by two modes I and II because the buckling of
rectangular plates with mixed boundary conditions under
combination of bending and shear as shown in fig 1(a-b)
could be Equivalent to state two conditions:

4.1. Shear

The problem of shear buckling for long strips and
plates has been studied by many works.Some workers [14]
used Donnells equations to investigate the buckling of long
plates under shear with both simply supported and
clamped edges for the whole curvature range. This work
has shown that the critical stress of a panel in shear
buckling can be written as:

¢ = Ks .z *.E (L)z
2(1-u) b

Where

a= length of longer side of plate

E=young’s modulus

b=length of shorter side of plate

Ks=shear buckling stress parameter

t= thickness of plate

p=Poisson’s ratio.

Ks varies a according to the boundary condition and
aspect ratio. It has been looked at the case of a rectangular
plate with one edge clamped using a Fourier series to
represent the deflection of the plate in the energy equations
[15]. Values of Ks are shown in table (1).

4.2. Bending

To solve the problem of a rectangular plate with simply
supported edges, it has been used the principle of
conservation of energy and a deflection in the form of a
double trigonometric function [3]. For pure bending, the
critical load can be calculated by the formula:

Kb .# *.E t .,
o, = (—)
12 (1-u2 b
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Where

Kb= bending buckling stress parameter.

Kb varies according to the boundary condition and aspect
ratio values of Kb are shown in table (2)

Built in

g
simply :,.I:

Y,
YU _ shear

@)

chﬁ

A—XY

(b)
Figure 1(a),(b). Applied stress distribution on the edges of the
plate.
Table 1. values of Ks for rectangular plate with one edge clamped
a/b 25 2 1.5 1.25 1.11 1.0
Ks 7.96 6.72 7.59 8.57 9.66 10.98

Table 2 .values of Kb for rectangular plate with simply supported
ab | 06 | 075| 0.8 | 09 1 1.5 2. 25

Kb | 241|242 | 244 | 256 | 2.56 | 2.41 | 2.39 |2.38

5. Equationsfor the Relation of Fatigue Buckling and
Crack Propagation:

The relation between fatigue buckling and crack
propagation can be divided to three groups:
1) For the displacement of the crack
Propagation in the x-direction:

U= U model + Unogert = Uj+ Uy, (1)
_du_au, 8uH

Tox ox | ax

LE=E, HE @

For plane stress, Hooke's law applied as:

Ee,=0,-v(o,) 3)
for mode 1I:
o, = K, Cos g(l-Sin ﬂSn ﬁ)
2 7zr 2 2 2
K, 6 Y
o, = Cos—1+Sm—Sjn— 4
y S 2 ( 2 ) “
y = K gn 9 cos —Cos ﬁ
2zr 2 2
substituteq4)ir(3)-
K
Ee, = COSr(l SlrkSrF) v(—Co&(Hsm SW)(S)
e Pom
For mode I :
o, = —Ku gn g(2 +Cos & cos ﬁ)
27 2 2 2
6
0y=£9n g(Cos gCos ﬁ) ©
27w 2 2
T, = Ky Cos g(l-Sin gSln ﬁ)

RNy 2 2

Substitute eq(6) in eq(4) :-

-K, o K, . o 7
Ee,= sin—(2+cos— COS* V——=sin— co%cos—
Xl m ( 2 ) m ( 2 )
From eq 2 we could obtain:
€x= E \/PiCO&(l Sm981n—) V(FCosﬁ(HSn Sn—)))
KII
—Sn CosﬁCo% 8
( F Tom ( M)-(8)
For Combined mode I and II of the
Y=1( Cos(l slmslm) U K Co£(1+9n‘?3n3f))) ©
2(% \)F A, K 6 J; K, 6
214V +V)  Ki |
VT E Ty = E FS CosCosE+FCOS(1 SlrEth)](l()

propagation of the crack it can be seen that mode II
change the crack displacement in the x direction only, that
is mean:

V=V where V is the displacement in the y direction
So that we could find in polar coordinate:

1 1 1 .
egzz(eX +ey)+§ (€, —ey)cos2t9+5 %y SIn20 [
By substituting eq 8, 9 and 10 in equation 11
Kn 6 6 30 1 K 6 6 30 630
W——==9n-(Cos-Cos—)))+— (—==Cos-[l_Sin-Sn—-1-Sin—Sn—]
2

Jor 2 2 27 2BV 2 2 2 2

& Cod [1+ S S - 1+ Sin S +—— 0 S+
-V -1+Sin- — (==
or 2 2270 E | m 2

6 % Ky 6 0 30 1+v
Cos-Cos—)-—=39 rr (Cosr Co%)))’.:om% —9nig
2 2 JE E

1 (9 36. K

€ CO&[I Sin— Sln—] V(—

"2E \/ 20 \om
0. 1 K,

SmeSm—eH Sm sin —]))+ sm9(2+cos cos )—
2 2E o 2

(Cosg [1+
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LSI’IQCOSQCOS—+ Ky Cosg(l—SingSinﬁJ
2 2 N 2 2 2

N2m 2 2m
1 2k| 0 v2k 6 ky @ 0 36
0 = Cos — - Cos —) + — (- ——==8Sn —(2 + Cos —Cos —)
x/27rr 2rxr 2 2rxr 2 2 2
( k” an L (cos HCos 30 ) + - i cos 9 —2an Lan 32,
— i - - - Z (- - -~
2rr 2 2 2 2E ~2a7r 2 2 2
- vk 0 0 36 1 ki ] 36
Cos [29 —S8n —]) + — (- —=19 (ZCos —Cos —) -
2rr 2 2 2E 2rr 2 2 2
I(|| 0 36 1+ v 6 6
V(— (Cos — Cos —))) Cos 26 + Sn 26 Sn —Cos —
N2 2 2 zr 2 2

36 k||
Cos — + ——==Cos
2

] 6 36
— (1 - 9n —Sn —)]
2xr 2 2 2

Also we could find 7!9 as:

1 1 . 1
2_79 = .[2—(‘9X - &, )Sin2 0-2—7WCOS 260 ]

K, 6 0 36 k
Cos —(-2Sin —S89n —/)-v !
2E /2 2( n 2 ) \/271'

)+E( \/kszSin g(2C03 gCos ) U(F

Sn 26 -

[

Cos 26| Sn —Cos —Cos 7+

\/27rr

To find the maximum value of €6 , equation (12) is
differentiated with respect to & using math-Lab 2002
program for differentiating, and the derivative is equated
to zero. The roots of this equation give values of & at
which max or min of the strain, which are the principal
strains in the polar coordinates. The first root is found to
be the maximum. The same roots substituted in equation
(13) must be given a zero value of shear strain 79 .

These gives two set of equation which relates the ratio

K, and @ for combined effect of mode Il and 1 for
k_ crack propagation.

! 2- It could be related between mixed mode I — IT
loading involves axial loading in the y direction of a crack
inclined as result of rotation a bout the z axis as shown in
fig 2-a. Even in this instance, analytical method done by

[16] shows that: -
Kl = (69n*8 +noCos* )/ ma

(14)
KIl =(0Cos*8+noSn*A)VWma

(R B ,/L'

n g(Cos
2

1+l} 36 I(||

N2 7xr

(12)

Cos g[29n gS’n ﬂ]
2 2 2

Z 36
ECOS 7)))

7] .0 360
Cos —(1-Sin —Sn —/)]. 13
2( in 2 5 )] 13)

(b)
Figure 2. (a),(b).

Which could be done for very sharp and small crack?

Now by calculating the principle stresses from the
condition shown in fig (2-a) and using Mohr's circle
construction

O' +O' 2
o X \/(oy o)’ +TXY 15)
22 2

Where Oy = 0 and OX = bending buckling stress

And T, = shear buckling stress

By using the values of O,,0,, the ratio of the stress
intensity factories of mode I and II can be calculated from
eq (14) as shown in fig (2-b):-

Kl =(0,9n* 8+ 0,Cos’ f)ra
Kl = (0,CosBSinB + o,Cospanf)m}

(16)
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From group (1) and group (2) of the solution, relation
between KII/KI can be obtained for crack propagation and
the condition of external loading in which the stress
intensity Factor depend on them. The plus minus in eq (16)
depend on the value of 62 as compression or tension.

3):- In this group of solution, we used the fatigue equations
of cycling loading by taking the fluctuating of buckling
from tension to compression, so that the buckling bending
stress will be change its direction, and from Mohers circle
the principle stresses may be determined for the maximum
and minimum limits of cyclic stresses, by taking the max
principal stress in determining the max stress intensity
factor as shown by [17] .

Kmax = y(o-lmax Sil’lz IB+ O-Zmaxcoszﬂ)'\/% """ (17 - a)

And for min.stress intensity factor

K. =V0,.Snp+0, CoSAWm.....(7-b)
Where y is a correction factor for finite plate and there
values depend on the aspect ratio of the plate given in (16).
Knowing that O, . have mines sign because it is
compression, the relation expressing crack growth rates in
terms of AK+KC and a measure of K mean was
proposed by [18] in the form:

da_  cAK” (18)
dN ~ (1-R)K, - AK

Where ¢, n=material constants
K, = fracture toughness

K
R =load ratio ( Y
max

Ak= kmax - kmin

6. Determination of Stress Intensity Factors

The determination of the mode I and II stress intensity
factors was performed by solving eq (12) and eq (16) and
is fitted to the mathematical approach of [13] in the form:

KI + (&)2 =1

ch kuc
The determination of the mode I and II stress
intensity factors was performed by solving eq (12)
and eq (16) and is fitted to the mathematical
approach of [13] in the form:
Where

Using a Newton-Raphson iteration scheme, and then it is
calculated approximately from the model dimensions and
the loads applied.

This work is done for very small crack propagated in the
direction of applying buckling load.

7. Results

For the case studies in this research, they taken are
from aircraft standard specification duralumin _Bs3L100
Grade 2014 T, of rectangular plate with width b=100 mm
and thickness t=0.55m for aspect ratio 1,100 mm wide x
100 mm long. And aspect ratios 1.5, 2, 2.5 with crack
length 2a=2, 4, 6,8,10 mm under fluctuation of
compression and tension buckling stress, where the result
gives the effect of this fluctuation on the stress intensity

factor (Ak).
1200.00 —\
\ — — shear buckling load
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Figure 3. a comparison of theoretical buckling loads for varying
boundary conditions.
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Figure 4.crack length versus u displacement for combined mode I
and II from the crack tip.

In fig (3) the theoretical buckling load, for the case of
pure shear only and pure bending only, mixed shear and
bending stress with different aspect ratios.

It can be shown that shear stress have pronounced
effect on the mixed shear and bending, but this effect will
be decreased with increasing aspect ratio, so that it become
nearer to the bending condition only. The value of bending
stress is more pronounced on the crack propagation since
in equations (14, 15 ,and 16 ). This stress is more effective
on the value of KI since they multiplied by cos?0 rather
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than KII which multiplied by ( sinf cos6 ) for very small
values of 6.

From the strain method used in this study, the behavior
of the displacement (u) in front of the crack tip with
different crack length could be shown in fig(4). The
behavior of the displacement will be decreased with
increasing aspect ratio, and the rate of decreasing also
increased with increasing the crack length. It can be shown
also that with increasing the crack length for the same
aspect ratio, the displacement will be increased, but the
rate of increasing in the displacement are decreased with
increasing aspect ratio.

5.00 —

5
=1
=]

normalized si:jress intensity factors

2.00

2.00 4.00 6.00 a.00 10.00
crack length (mm)
figure 5. Normailized Stress intensity factors as a function of
crack length for aspect ratio 1.
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I : | : | |
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crack length (mm})
figure 6.normalized stress intensity factors as a function of crack
length for aspect ratio 1.5.

In figures (5),(6),(7) , and (8), the data obtained from
this process were the normalized stress intensity factors

K1/K0 and KII/KO , where KO = O/ 77d and O is the

applied or normal stress. For different crack length, the
values of KI/KO and KII/KO will be increased with
increasing crack length, but these values decreased with
increasing aspect ratio. It is worthntoing that the values of
KII have small values for aspect ratio of 2.5 which means
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normalized stress intensity factors
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figure 7.normalized stress intensity factors as a function of crack
length for aspect ratio 2.
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figure 8.normalized stress intensity factors as a function of crack
length for aspect ratio 2.
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figure 9.fatigue crack propagation in aliminum plate with
(2a=2mm) showing the effect of Ak vs.da/dn.

that the mode I fracture is more effective than mode II
fracture with increasing aspect ratio of the thin plate. The
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figure 10.fatigue crack propagation in aliminum plate with
(2a=4mm) showing the effect of Ak vs.da/dn.
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figure 11.fatigue crack propagation in aliminum plate with
(2a=8mm) showing the effect of Ak vs.da/dn.

1000000 —
E lonoon —
- E
o =
=] .
=
u
.Emn.nn -
E E
£ qppp
=3 3
= ]
E .
-.E .
1.oo T T IIIIII| T T IIIIII|
1.00 10.00 100.00
Ak ({Mpa m)

figure 12.fatigue crack propagation in aliminum plate with
(2a=8mm) showing the effect of Ak vs.da/dn.

results show that the variation in the values of KI and KII
depends not only on the values of the normal and shear

stresses, but also on other factors like aspect ratio, and the
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figure 13.fatigue crack propagation in aliminum plate with
(2a=10mm) showing the effect of Ak vs.da/dn.
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Figure 14. (a) fatigue crack in aluminum plate with aspect ratio =

1 showing the effect of Ak vs.da/dn, (b) fatigue crack in aluminum
plate with aspect ratio = 1.5 showing the effect of Ak vs.da/dn,

(c) fatigue crack in aluminum plate with aspect ratio = 2 showing
the effect of Ak vs.da/dn, (d) fatigue crack in aluminum plate with
aspect ratio = 2.5 showing the effect of Ak vs.da/dn.

ratio of crack length to the aspect ratio which is shown in
these figures.

Calculating the fatigue crack propagation, by using
Forman equation in four cases of aspect ratios (1, 1.5, 2,
2.5) which results in four points connected by spline
fitting, gives good observation about the relation between
Ak versus da/dN for cycling buckling loads for
thin plates, figures (9, 10 and 11) .

It can be seen the effect of increasing the crack length
causes increasing in the value of Ak and increasing in the
Forman cycling load

d
dTZ\‘I[(l -RX, - AK]mm / cyc.Mpa ~/m.

It can be seen that increasing the aspect ratio causes an

increase in the 98 but the rate of increasing will be
dN

decreased when we transfer from aspect ratio 2 to 2.5, and
this is because the effect of stress ratio will be more
effective than the change in Ak on the value of da/dN.
Also from figures (12) and (13) increase the crack length

and increasing the aspect ratio to values 2 and 2.5 cause
very high values of da/dN which are corresponding to the
effect of increasing of mode I (KI) and decreasing in the
mode II (KII) in these boundary condition.

It could bee shown from figures (14-a, b, c, d) that the
variation of aspect ratio for crack lengths (2a=2,4,6,8,10
mm) causes nonlinearity in the behavior of Ak versus
(da/dn [(1-R) ke-Ak] mm/cyc.MPa Vm, and the rate of
increasing will not be changed uniformly because the
effect of combined mode I and II and the complexity of the
fluctuating of buckling loads and its effect on the fatigue
crack growth for high aspect ratio.

8. Conclusions

It has been shown that the method developed for
redistricting crack paths using combined maximum
principle strain and maximum principle stress give good
results when compared with experimental results that have
been obtained previously by some researchers for thin
plate with small crack initiation [19]. Then this method has
been used for predicting the crack growth for many aspect
ratio and its effect on the values of cycling loading da/dN.
The results show that increasing aspect ratio and crack
length causes very high values of da/dN and assist that the
crack propagate under mode I rather than mode II. Also in
this research it takes into consideration the variation of Ak
with different aspect ratios for the same applied fluctuating
stresses.

References

[1] W.Ritz, “jairnal fur reine und angewandte Mathematic”.
Vol. 135(1), 1909, 1-61.

[2] Young W C. Roarks formulas for stress and strain. London:
McGraw-Hill; 1989.

[3] Timoshenko S P, Gere J M. Theory of elastic instability.
London: McGraw- Hill; 1961.

[4] Bruhm E F. Analysis and design of flight vehicle structures.
Indianapolis: Jacobs publishing Inc.; 1973 .

[5] C.A. Feathereston, C. Ruiz, “Buckling of flat plates under
bending and shear”. Journal of Mechanical Engineering
science, Vol. 212, 1998, 249-261.

[6] A.D.Nurse, E.A.Patterson” Determination of predominantly
mode it stress intensity factors from isochromatic data”.
Fatigue and fracture of Engng Mater. Structure, 16(12),
1993,1339-1354

[71 D.R.Tadjive, S.T.Ki , fatigue crack growth prediction in
7475-T7351 Aluminum Alloy under Random loading using
modified root mean square model “, Yeungnam university ,
South Korea , 2003,712-749 .

[8] R.Doglione , M. Bartolone, “Fatigue crack propagation in
2195-T8 Aluminum alloy plate”. 9th International conference
on Aluminium Alloys (ICAA9) , Institute of materials
Engineering Australasia , 2004, 616-621 .

[9] Y.Liu, S.Mahadevan,” Threshold stress intensity factor
and crack growth rate prediction under mixed — mode
loading”. Engineering Fracture Mechanics , Vol. 74 , 2006,
332-345.

[10] P.J. Forsyth, “A two stage process of fatigue crack growth”.
In proceedings of the crack propagation symposin, canfield,
Bedfordshire, 1961, 76-94.

[11] A.H. Cottrell, “Theoretical aspects of radiation damage and
brittle fracture in steel pressure vessels”. Iron Steel Institute,
Special Report No.69 , 1961, 281-296.



© 2009 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 3, Number 3 (ISSN 1995-6665) 214

[12] S.K. Maiti, R.A.Smith, “Criteria of brittle fracture in biaxial [17] Hertzbeg W R. Deformation and fracture mechanics of
tension”. Engineering Fracture Mechanics , Vol. 19, No.5, Engineering materials. John Wiley and Sons; 1996.
1984,739-804 . [18] [18] R.G. Forman, V.E. Kearrey,R.M.Engle, J.Basic

[13] Hellan K. Introduction to fracture mechanics. London: Mc Engineering Trans .ASME89459 , 1967.

Graw —Hill; 1985. [19] Ewalds H L, Wanhilll R J. Fracture mechanics. Edward

[14] Batdorf S B. A simplified method of elastic stability analysis Arnold publication; 1989.
for thin cylindrical shells I- Donnells equation. NACA TN [20] ASTM standard E647-93. 1993 Annual Book of ASTM
1341; 1947. Standards. Philadelphia, PA; 1993.

[15] LT. Cook, K.C. Rockey, “Shear buckling of rectangular [21] R.I. Burguete, E.A.Patterson,”The effect of friction on crack
plates with mixed boundary conditions”. Aeronauta , 14 propagation in the dovetail fixings of compressed discs”. J.
,1963 . Mechanical Eng. Science, Vol. 212, Part ¢, 1998, 171 .

[16] P.C.Paris., G.C.sih ,. ASTM STP 381, 1965, 30.






