October

[Article]

www.whxb.pku.edu.cn

$Ga_xP_y(x+y=8)$ 及其阴离子团簇的结构与性质的 DFT 研究

郭彩红 贾建峰 郭 玲 武海顺*

(山西师范大学化学与材料科学学院,山西临汾 041004)

摘要 用密度泛函理论方法对半导体二元微团簇Ga₂P₂和Ga₄P₅(x+y=8)的几何结构、电子态、能量等进行了计算, 在 B3LYP/6-311+G(2*d*)水平下完成结构优化和频率分析. 讨论了电荷诱导结构发生变化情况, 与中性团簇相比, 在阴离子团簇中, Ga—P 键较 P—P 键有利于形成. 预测了未知 Ga₄P₇、Ga₂P₆、Ga₆P₂和 Ga₂P₁化合物的最稳 定结构存在的可能性, 得出在Ga₄P₂和 Ga₄P₅(x+y=8)中, Ga₄P₄和Ga₄P₄比较稳定. 给出了两种能差即绝热电子亲合 势(ΔE_{AEA})和垂直电离能(ΔE_{VDE}), 并与相关文献作比较. Ga₄P₄和 Ga₅P₃的绝热电子亲合势与实验值相当吻合. 布居 分析表明, 磷化镓团簇的成键属于混合键型.

关键词: 密度泛函理论, Ga,P,和 Ga,P,团簇, 布居分析, 垂直电离能, 绝热电子亲合势 中图分类号: O641

Study on the Structure and Property of the Neutral $Ga_xP_y(x+y=8)$ and Anionic Gallium Phosphide Clusters Using DFT

GUO, Cai-Hong JIA, Jian-Feng GUO, Ling WU, Hai-Shun^{*} (School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, P. R. China)

Abstract Structure, electronic state, and energy of semiconductor binary micro-clusters, Ga_xP_y and $Ga_xP_y^-$, having eight atoms have been computed using density functional theory (DFT) method. Structural optimization and frequency analysis are performed at the B3LYP/6-311+G(2*df*) level. The charged-induced structural changes of these anions have been discussed. The strong Ga—P bond is favored over the P—P bond in $Ga_xP_y^-$ (x+y=8), in comparison with the corresponding neutral cluster. The calculations predict the existence of previously unknown isomers (i.e. $Ga_1P_7^-$, $Ga_2P_6^-$, $Ga_3P_5^-$, $Ga_6P_2^-$, and $Ga_7P_1^-$). Among different Ga_xP_y and $Ga_xP_y^-$ (x+y=8) clusters, Ga_4P_4 and $Ga_4P_4^-$ are more stable. Two types of energy separations are reported in this study, adiabatic electron affinities (ΔE_{AEA}) and vertical detachment energies (ΔE_{VDE}), wherever applicalde, and are compared with those described in other published data in the literature. Adiabatic electron affinities for Ga_4P_4 and Ga_5P_3 are in good agreement with those obtained in the experiments. Mulliken population analyses indicate that the bonding in GaP clusters is of a mixed type.

Keywords: Density functional theory, Ga_xP_y and Ga_xP_y clusters, Mulliken population analysis, Vertical detachment energies, Adiabatic electron affinities

Theoretical and experimental studies on the electronic and geometric properties of main group III-V clusters continue to be an active area of research because of their rich chemistry and physics, and perhaps more importantly because of their potential application in the electronics industry^[1-2]. An important aspect

of the chemistry and physics of small clusters involves understanding the change in their geometric and electronic properties with an increase in size. Furthering the efforts of several research groups on III-V clusters, Neumark and coworkers^[3] experimentally investigated the evolution of electronic structure as a

Received:March 14, 2006; Revised:June 5, 2006. *Correspondent, E-mail:wuhs@mail.sxtu.edu.cn; Tel:0357-2051375, Fax:0357-2051375. 山西省青年基金(20051011)资助项目

C Editorial office of Acta Physico-Chimica Sinica

function of size in gallium phosphide semiconductor clusters. In a subsequent work, the authors reported vibrationally resolved anion photoelectron spectra of the low-lying electronic states of small clusters with up to 5 atoms comprehensively^[4-5]. Before the study conducted by Neumark and coworkers, Weltner and his associates^[6] had investigated the IR absorption spectra of GaP, GaP₂ and Ga₂P isolated in a 4 K argon matrix.

Several theoretical investigations of gallium phosphide clusters have been carried out^[7-19]. Andreoni^[7] employed the Car-Parrinello molecular dynamics method to study the structure, stability, and melting point of $(GaP)_n$ clusters with $n=2\sim5$. Costales et al.^[8] studied the structural and vibrational properties of small stoichiometric $(GaP)_n$ clusters with $n=1\sim3$ within the framework of density functional theory (DFT). The first small GaP fullerene cage was proposed with ab initio molecular dynamics simulations^[16]. Korambath *et al.*^[17] studied the (hyper) polarizability of GaP clusters by ab initio time-dependent Hartree-Fock method. Inspired by the pioneering work of Neumark and coworkers on anion photoelectron spectra of $Ga_x P_y$ clusters^[3] and based on the previous reports on binary semiconductor clusters^[9-15], the structures, electronic states and vibrational frequencies for $Ga_m P_n^ (m+n \leq 5)$ clusters have been investigated in this study using B3LYP/6-31G(d) method^[18]. In the near past, Li et al.^[19] studied the geometric, electronic state of Ga_nP and Ga_nP_2 (*n*=1~7) clusters at the B3LYP/6-31G(d) level.

Although several studies have been carried out on gallium phosphide, the investigations on larger clusters have scarcely been reported, and calculations of Ga_xP_y and $Ga_xP_y^-$ (x+y=8) clusters have neither been systemically studied. In the present study, the calculations on Ga_xP_y and $Ga_xP_y^-$ (x+y=8) species were performed using the B3LYP level of DFT to provide more reliable ground state geometries, the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO) energy gap, and theoretically calculated IR vibrational frequencies at the corresponding optimum structures. A reliable theoretical prediction would be established for those gallium phosphides in the absence of experimental results and in some cases to challenge existing experiments.

The choice of DFT has been fully justified for studies on semiconductor system due to the fact that it is an *ab initio* tool and includes the electron correlation effect which has been found necessary for gallium phosphide clusters at relatively low computational cost^[18-19] and other aspect.

1 Computation method

The basis set followed in this study was the 6-311+G(2*df*) one-particle basis set^[20-21]. Restricted methods were used for all closed-shell systems, whereas unrestricted methods were employed for the open-shell species. Geometrical optimizations were computed using the B3LYP functional. Frequency analyses are also performed at the same theoretical level to check whether the optimized structures are transition states or true minima on the potential energy surfaces of corresponding clusters. All the most stable Ga_xP_y and Ga_xP_y⁻ clusters that were obtained were characterized as true minima without imaginary frequencies. Furthermore, adiabatic electron affinities (ΔE_{AEA}) of Ga_xP_y and vertical detachment energies (ΔE_{VDE}) of Ga_xP_y⁻ were calculated. Some of them are compared with the available experimental values.

The adiabatic electron affinity is defined as the energy difference between the neutral cluster and its corresponding anion, that is $\Delta E_{AEA} = E_{(optimized neutral)} - E_{(optimized anion)}$, where both the neutral cluster and its radical anion are in the lowest electronic states. The vertical detachment energy is defined as the energy difference between the fully optimized anion cluster and the related neutral cluster without relaxation, that is $\Delta E_{VDE} = E_{(neutral at optimized anionic geometry)} - E_{(optimized anion)}$. All calculations were carried out using the Gaussian 03 program^[22].

2 Results and discussion

2.1 Geometry

The ground state geometric sketch figures of Ga_xP_y and $Ga_xP_y^-$ (x+y=8) clusters are shown in Fig.1, where "n" represents neutral clusters and a represents anion clusters. The corresponding geometric parameters of Ga_xP_y and $Ga_xP_y^-$ (x+y=8) are listed in Table 1.

2.1.1 Ga $_1P_7$ and Ga $_1P_7$

The equilibrium geometries of the ${}^{1}A'$ ground state of neutral Ga₁P₇ and the ${}^{2}A'$ ground state of Ga₁P₇ are displayed in Fig.1 (1n and 1a). The neutral Ga₁P₇ structure is similar to the ground state of P₈^[23], the substitution of one P atom by one Ga atom in the wedge-shaped $C_{2\nu}$ configuration of P₈^[23], and the C_{s} could be considered as the distortion of $C_{2\nu}$. There exist two kinds of Ga—P bonds and five kinds of P—P bonds in structure (1n). With the addition of an extra electron to Ga₁P₇ to form Ga₁P₇, the symmetry does not change, but bond distances and bond angles change. For example, bond distances R_{Ga2P4} are

all longer than those of the neutral cluster by about 5.0% and 6.3%, bond angles $\alpha_{P3-Ga2-P7}$ and $\alpha_{P3-Ga2-P4}$ decrease in size by 16.1% and 7.2%, respectively. And P—P bond lengths are all shorter than those of the neutral cluster. Although no experimental or theoretical data are available for either Ga₁P₇ or Ga₁P₇, the calculations in this study should facilitate the analysis of future data.

The theoretical ΔE_{AEA} and ΔE_{VDE} are 2.20 eV and 2.66 eV, respectively. The difference between ΔE_{AEA} and ΔE_{VDE} is attributed to the considerable geometric distortions in geometry between Ga₁P₇ and Ga₁P₇.

2.1.2 Ga_2P_6 and Ga_2P_6

The geometries of the ${}^{1}A_{1}$ ground state of Ga₂P₆ and its ${}^{2}A$ ground state anion are shown in Fig.1 (2n and 2a). As was the case for Ga₂P₆, the optimized structure is a distorted cube structure with a $C_{2\nu}$ symmetry that is similar to the low-lying state of P₈ (O_{h}), which was derived by the substitution of two P atoms with two Ga atoms in the structure of P₈^[23]. With the addition of an extra electron to Ga₂P₆ to form the anion, large distortions occurred in geometry because of John-Teller effect. The Ga₂P₆⁻ anion displays C_{1} wedge- shaped structure, which is similar to structure (1a).

The calculated values of ΔE_{AEA} and ΔE_{VDE} are 1.56 eV and 2.64 eV, respectively. The difference between ΔE_{AEA} and ΔE_{VDE} is due to the strong distortion in geometry between Ga₂P₆ and Ga₂P₆⁻. 2.1.3 Ga₃P₅ and Ga₃P₅⁻

The ground state of Ga₃P₅ has $C_{3e}({}^{1}A_{1})$ structure (3n), which can be derived from the structure of P₈ by the substitution of three P atoms by three Ga atoms. The anion Ga₃P₅⁻ also has C_{3e} symmetry (3a), and the addition of an electron to the neutral isomer results in an increase in bond length R_{P-P} and a decrease in bond angle α_{P2P1P5} . There are two kinds of Ga—P bonds and one kind of P—P bonds in structures (3n) and (3a). The calculations of this study predict that the ΔE_{AEA} and ΔE_{VDE} are 2.00 eV and 2.13 eV, respectively. No photoelectron measurements have yet been performed for this cluster. The values of ΔE_{AEA} and ΔE_{VDE} are close to each other because of the small geometric changes between the neutral and its corresponding anion.

2.1.4 Ga_4P_4 and $Ga_4P_4^-$

The lowest energy structure of Ga_4P_4 has C_2 (¹A) symmetry, which can be derived from the amalgamation of Ga—Ga edges of two trigonal bipyramidal structures of Ga_3P_2 ^[18] and then the

Fig.1 The lowest electronic state geometries of Ga_xP_y and $Ga_xP_y^-$ (x+y=8) clusters n denotes neutral clusters and a denotes anion clusters.

formation of one additional P—P bond. A T_d (¹A₁) isomer locates at 1.11 eV above the ground state. With the addition of an extra electron to the neutral Ga₄P₄ to form the anion Ga₄P₄, the symmetry changes from C_2 to T_d . The ground state of Ga₄P₄ has T_d (²A₁) structure (4a) and is the most energetically favored among isomers. It can be viewed as a fusion of two tetrahedrons of GaP₃ and PGa₃ which are rotated with respect to each other. As was case for Ga₄P₄, bond lengths of 0.2421 nm was obtained using the calculations described in this study for the identical Ga—P bonds.

The calculated values of ΔE_{AEA} and ΔE_{VDE} are predicted to be 2.26 eV and 3.42 eV, respectively. The predicted ΔE_{AEA} for Ga₄P₄ is in satisfactory agreement with the PE spectrum given by Neumark *et al.*^[5]. The PE spectrum gives a ΔE_{VDE} of (2.59±0.15) eV for Ga₄P₄, which is smaller than the predicted values obtained in this study.

2.1.5 Ga_5P_3 and $Ga_5P_3^-$

The ground state of Ga_5P_3 has C_s (${}^1A'$) structure(5n). The HOMO-LUMO gap of structure (5n) is greater than that of any other low-lying states, and the energy of structure (5n) is the lowest of all the low-lying states. These may explain the stabilization of the structure (5n). Strong P—P bond is favored over Ga—P bonds in Ga₅P₃. With an additional electron to the neutral to form Ga₅P₃⁻ (5a), the symmetry does not change; however, the bond distances and bond angles changed. The P—P bond in the anion is shorter than that in the neutral cluster, which indicates that the interaction between the two P atoms is enhanced.

The calculated values of the ΔE_{AEA} for Ga₅P₃ and the ΔE_{VDE} for Ga₅P₃⁻ are 2.22 eV and 2.60 eV, respectively. The theoretical values of ΔE_{AEA} and ΔE_{VDE} are lower than the corresponding experimental values ((2.67±0.15) eV for ΔE_{AEA} and (3.42±0.15) for ΔE_{VDE})^[3]. The energy difference between ΔE_{AEA} and ΔE_{VDE} is attributed to structural relaxation.

2.1.6 Ga_6P_2 and $Ga_6P_2^-$

Li *et al.*^[19] calculated the geometry and energy gap of Ga_6P_2 cluster. They predicted that the ground state of Ga_6P_2 has strong P—P bond at B3LYP/6-31G(*d*) level. However, in the calculation obtained in this study, it has been found that the $D_{3d}({}^{1}A_{1g})$ structure (6n) with strong Ga—P bonds is more stable in energy by 72.7 kJ·mol⁻¹ than the $C_s({}^{1}A')$ structure^[19] at the same level. The HOMO-LUMO energy gap of structure (6n) is also 0.30 eV greater than that of Li's structure. Hence the stabilization of structure (6n) should be accounted for. The ground state of Ga_6P_2

(x+y=8) clusters								
Clusters	Bond type	Bond length(nm)	Clusters	Bond type	Bond length(nm)			
1n°	P(1)-P(3)	0.2295	1a°	P(1)-P(3)	0.2213			
	P(2)-P(3)	0.2304		P(1)-P(5)	0.2236			
	P(2)-P(5)	0.2220		P(1)-P(6)	0.2268			
	P(3)-P(5)	0.2244		Ga(2)-P(3)	0.2487			
	P(5)-P(6)	0.2306		Ga(2)-P(4)	0.2492			
	Ga(8)-P(1)	0.2345		P(3)-P(5)	0.2282			
	Ga(8)-P(2)	0.2368		P(4)-P(5)	0.2250			
2n	P(1)-P(2)	0.2215	2a	Ga(1)-P(2)	0.2348			
	P(1)-P(3)	0.2256		Ga(1)-P(4)	0.2437			
	P(2)-Ga(4)	0.2612		Ga(1)-P(6)	0.2295			
	P(2)-P(6)	0.2263		P(2)-P(3)	0.2256			
	P(3)-P(7)	0.2233		P(2)-Ga(5)	0.2546			
3n	P(1)-P(2)	0.2237		P(3)-P(4)	0.2254			
	P(1)-Ga(6)	0.2427		P(3)-P(7)	0.2308			
	Ga(4)-P(5)	0.2385		P(4)-P(7)	0.2206			
4n	Ga(1)-Ga(2)	0.2738		Ga(5)-P(6)	0.2624			
	Ga(1)-P(4)	0.2599		Ga(5)-P(8)	0.2425			
	Ga(1)-Ga(5)	0.2705		P(6)-P(8)	0.2288			
	Ga(1)-P(7)	0.2354		P(7)-P(8)	0.2262			
	Ga(2)-P(3)	0.2687	3a	P(1)-P(2)	0.2295			
	P(3)-P(4)	0.2163		P(2)-Ga(3)	0.2422			
	P(4)-P(8)	0.2257		Ga(3)-P(4)	0.2411			
5n	P(1)-Ga(3)	0.2467	4a	Ga–P	0.2421			
	P(1)-Ga(4)	0.2662	5a	P(1)-Ga(3)	0.2586			
	P(1)-Ga(5)	0.2658		P(1)-Ga(4)	0.2632			
	P(1)-P(7)	0.2389		P(1)-Ga(5)	0.2549			
	P(2)-Ga(3)	0.2438		P(1)-P(7)	0.2279			
	P(2)-Ga(4)	0.2656		P(2)-Ga(3)	0.2545			
6n	Ga(1)-P(2)	0.2387		P(2)-Ga(4)	0.2582			
	Ga(1)-Ga(3)	0.2795	6a	Ga(1)-P(2)	0.2414			
7n	Ga(1)-Ga(2)	0.2615		Ga(1)-Ga(3)	0.2762			
	Ga(1)-Ga(3)	0.2898	7a	Ga(1)-Ga(3)	0.2716			
	Ga(1)-P(4)	0.2624		Ga(1)-P(4)	0.2593			
	Ga(2)-P(4)	0.2734		Ga(2)-Ga(3)	0.2658			
	Ga(3)-P(4)	0.2537		Ga(2)-P(4)	0.2710			
				Ga(3)-P(4)	0.2685			
[*] n denotes neutral clusters and a denotes anion clusters.								

Table 1 Distances between two atoms in Ga_xP_y and Ga_xP_y

has six identical Ga—Ga bonds and six identical Ga—P bonds. With the addition of an extra electron to the neutral Ga_6P_2 to form Ga_6P_2 , the symmetry remains unchanged; however, the geometric parameters change slightly. Compared with the neutral cluster, the Ga—P bond distance is longer by 1.4% and the Ga—Ga bond distance is shorter by 0.9% in the anion.

The theoretical values of ΔE_{AEA} and ΔE_{VDE} are 2.00 eV and 2.44 eV, respectively. Although no photoelectron measurements are available for this cluster at present, the calculations described

Species Vibrational modefrequency, (cm ⁻¹), and IR intensity		Cluster	Cluster Symmetry	State	Total energies	Zero energy	Energy	gaps(eV)		
~	(km·mol ⁻¹ , in parentheses)			~,,	State	(a.u.)	(kJ·mol ⁻¹)	α^*	$oldsymbol{eta}^*$	
Ga ₁ P ₇	A':116.5(1.1)	A":371.2(6.8)	A':490.5(1.7)	Ga_1P_7	C_s	${}^{1}\!A'$	-4314.61971	32.795	2.82	
Ga ₂ P ₆	A ₁ :50.7(1.2)	B1:278.8(60.6)	A1:513.2(0.3)	Ga_2P_6	C_{2v}	${}^{1}\!A_{1}$	-5898.13897	28.696	3.50	
Ga ₃ P ₅	E:141.5(0.0)	A1:386.3(6.5)	E:442.2(5.0)	Ga_3P_5	C_{3v}	${}^{1}\!A_{1}$	-7481.62957	28.976	2.83	
Ga ₄ P ₄	A:43.4(0.0)	B:140.0(16.2)	B:463.8(8.0)	Ga_4P_4	C_2	${}^{1}\!A$	-9065.12882	23.412	2.62	
Ga ₅ P ₃	A':10.4(0.0)	A":280.8(63.8)	A':364.8(17.5)	Ga_5P_3	C_s	${}^{1}A'$	-10648.61680	18.837	2.62	
Ga ₆ P ₂	$E_{a}:39.3(0.0)$	A ₂₀ :314.6(30.5)	$A_{10}:325.4(0.0)$	Ga_6P_2	D_{3d}	${}^{1}A_{1g}$	-12232.12469	16.878	2.35	
Ga-P.	A:32 7(0 0)	E:319.6(71.7)	F:319 6(71 7)	$Ga_7P_1^-$	C_{3v}	${}^{1}\!A_{1}$	-13815.60456	13.903	2.08	
Gu/1]	11.02.1(0.0)	2.019.0(11.1)	2.019.0(11.1)	$Ga_1P_7^-$	C_s	$^{2}A'$	-4314.70041	31.791	2.75	2.21
$Ga_1P_7^-$	A':115.1(0.7)	A':269.7(7.0)	A":487.5(1.1)	$Ga_2P_6^-$	C_1	^{2}A	-5898.19622	28.394	2.15	1.79
$Ga_2P_6^-$	A:83.6(1.4)	A:399.7(12.3)	A:487.3(5.2)	Ga P	C.	² A	-7481 70310	25 162	1.54	2 78
Ga ₂ P ₅	E:5.2(8.9)	$A_1:352.1(15.0)$	E:379.9(8.9)	0431 5	C_{3v}	A1	-7401.70510	23.102	1.54	2.70
		()		$Ga_4P_4^-$	T_d	${}^{2}A_{1}$	-9065.21198	25.232	3.11	1.74
Ga ₄ P ₄	E:135.9(0.0)	$T_2:349.9(26.3)$	$T_2:349.9(26.3)$	$Ga_5P_3^-$	C_s	$^{2}A'$	-10648.69841	18.045	2.27	2.13
$Ga_5P_3^-$	A'':29.2(0.4)	A':301.8(75.3)	A':380.6(0.5)	$Ga_6P_2^-$	D_{3d}	${}^{2}A_{u}$	-12232.19851	16.640	1.65	1.64
$Ga_6P_2^-$	E_g :36.0(0.0)	$A_{2u}:333.4(55.3)$	$A_{1g}:343.8(0.0)$	$Ga_7P_1^-$	C_{3v}	${}^{2}\!A_{2}$	-13815.68520	14.585	2.36	1.67
$Ga_7P_1^-$	A:43.5(0.0)	E:269.9(35.8)	E:269.9(35.8)	*α and	β denote diffe	erent ort	bitals respectively			

Table 2Harmonic vibrational frequencies and IR intensitiesof the ground state of Ga_xP_y and $Ga_xP_y^-$ (x+y=8) clusters

Table 3Total energies, zero-point vibrational energies, and
energy gaps of $Ga_x P_y$ and $Ga_x P_y$ clusters

Table 4 Mulliken population analyses for the ground electronic state of $Ga_x P_y$ clusters

Structure	Gross populati	on (q)	Natural electron configuration	Charge (e)	
1n	Ga (8)	2.42	4s(1.22) 4p(1.18) 4d(0.01) 7p(0.01)	0.578	
	P (1)	5.24	$3s(1.72) \ 3p(3.47) \ 3d(0.04) \ 5p(0.01)$	-0.251	
	P (2, 7)	5.17	$3s(1.75) \ 3p(3.36) \ 3d(0.05) \ 5p(0.01)$	-0.174	
	P (3, 4)	4.97	$3s(1.73) \ 3p(3.18) \ 3d(0.05) \ 5p(0.01)$	0.019	
	P (5, 6)	5.00	$3s(1.70) \ 3p(3.24) \ 3d(0.05) \ 5p(0.01)$	-0.009	
2n	Ga (4, 8)	2.45	4s(1.89) 4p(0.54) 4d(0.01) 7p(0.01)	0.550	
	P (1, 5)	5.01	$3s(1.69) \ 3p(3.26) \ 3d(0.05) \ 5p(0.01)$	-0.012	
	P (2, 6)	5.50	$3s(1.71) \ 3p(3.72) \ 3d(0.05) \ 4p(0.01) \ 5p(0.01)$	-0.499	
	P (3, 7)	5.04	$3s(1.75) \ 3p(3.22) \ 3d(0.06) \ 5p(0.01)$	-0.039	
3n	Ga (4, 6, 7)	2.58	$4s(1.25) \ 4p(1.30) \ 4d(0.01) \ 6p(0.01) \ 7p(0.01)$	0.436	
	P (1, 3, 8)	5.26	$3s(1.75) \ 3p(3.46) \ 3d(0.04) \ 5p(0.01)$	-0.267	
	P (2)	4.97	$3s(1.57) \ 3p(3.31) \ 3d(0.07)4p(0.01)5p(0.01)$	0.022	
	P (5)	5.51	$3s(1.73) \ 3p(3.74) \ 3d(0.04)$	-0.528	
4n	Ga (1, 5)	2.89	$4s(1.44) \ 4p(1.41) \ 4d(0.02) \ 6p(0.01) \ 7p(0.01)$	0.121	
	Ga (2, 6)	2.52	$4s(1.83) \ 4p(0.67) \ 4d(0.01) \ 6p(0.01)$	0.482	
	P (3, 7)	5.42	$3s(1.73) \ 3p(3.63) \ 3d(0.05) \ 5p(0.01)$	-0.427	
	P (4, 8)	5.17	$3s(1.67) \ 3p(3.43) \ 3d(0.06) \ 4p(0.01)$	-0.175	
5n	Ga (3)	2.74	$4s(1.42) \ 4p(1.29) \ 4d(0.02) \ 6p(0.01)$	0.269	
	Ga (4, 8)	2.48	4s(1.85) 4p(0.61) 4d(0.01) 6p(0.01)	0.518	
	Ga (5)	2.35	4s(1.92) 4p(0.42) 6s(0.01)	0.653	
	Ga (6)	2.71	$4s(1.42) \ 4p(1.29) \ 4d(0.02) \ 6p(0.01)$	0.268	
	P (1, 7)	5.71	$3s(1.73) \ 3p(3.92) \ 3d(0.05) \ 4p(0.01)$	-0.721	
	P (2)	5.78	$3s(1.76) \ 3p(3.97) \ 3d(0.05)$	-0.784	
6n	Р	5.13	$3s(1.74) \ 3p(4.33) \ 3d(0.06)$	-1.136	
	Ga	2.62	$4s(1.59) \ 4p(1.00) \ 4d(0.01) \ 6p(0.02)$	0.379	
7n	Ga (1, 6, 7)	2.86	4s(1.71) 4p(1.12) 4d(0.02) 6p(0.01)	0.138	
	Ga (2)	3.15	4s(1.61) 4p(1.47) 4d(0.05)6p(0.02)	-0.139	
	Ga (3, 5, 8)	2.54	4s(1.79) 4p(0.73) 4d(0.01) 6p(0.01)	0.456	
	P (4)	6.63	$3s(1.68) \ 3p(4.89) \ 4s(0.01) \ 3d(0.05)$	-1.643	

in this study are useful for further experiments.

2.1.7 Ga_7P_1 and $Ga_7P_1^-$

The equilibrium geometries of the ${}^{1}A_{1}$ ground state of neutral Ga₇P₁ and the ${}^{2}A_{2}$ ground state of Ga₇P₁ are given in Fig.1(7n). Li *et al.*^[19] performed B3LYP-DFT calculations of Ga₇P₁ cluster and predicted that the ground state of Ga₇P₁ has $C_{s}({}^{1}A')$ structure. In the calculations described in this study, the energy of the C_{3e} (${}^{1}A_{1}$) structure is nearly equal to that of the $C_{s}({}^{1}A')$ structure, when the same method was used. Thus, the result (7n) is almost identical to that obtained by Li *et al.*^[19]. For the ${}^{2}A_{2}$ ground state of Ga₇P₁, the symmetry does not change; however, the bond distances and bond angles change to a certain extent compared with the neutral Ga₇P₁. the calculations described in this study predict the ΔE_{AEA} and ΔE_{VDE} to be 2.19 eV and 2.53 eV, respectively. Experimental data on the ΔE_{AEA} and ΔE_{VDE} are not available at present.

The foregoing ΔE_{VDE} of $\text{Ga}_x \text{P}_y^{-}$ can be used to facilitate characterization of these novel structures in photoelectron spectroscopy measurements in future.

2.2 Vibrational frequency analysis and stability

A vibrational frequency calculation is important to predict molecular stability. To determine the ground state of clusters, the vibrational frequencies were calculated for these clusters at the B3LYP/6-311+G(2df) level. All the ground states that were reported are actually equilibrium states without imaginary frequencies. Three kinds of infrared vibrational frequencies, which involve the lowest frequency, the strongest IR frequency, and the highest frequency, are reported to aid future assignment of the vibrationally resolved spectrum. The results are listed in Table 2. The calculated energies are tabulated in Table 3.

As shown in Table 3, the HOMO-LUMO energy gaps (ΔE_g) for Ga_xP_y clusters were found to decrease with the increas-

Table 5	Mulliken po	pulation anal	yses for th	e ground electron	ic state of Ga _x P ⁻ _y clusters
					n 7

Structure	Gross popula	tion (q)	Natural electron configuration	Charge (e)
1a	Ga (2)	2.69	$4s(1.42) \ 4p(1.23) \ 5s(0.01) \ 4d(0.01) \ 5p(0.01) \ 6p(0.01)$	0.312
	P (4)	5.37	$3s(1.70) \ 3p(3.62) \ 3d(0.04) \ 4p(0.01)$	-0.375
	P (1, 6)	5.08	$3s(1.68) \ 3p(3.34) \ 3d(0.05) \ 4p(0.01)$	-0.086
	P (3, 7)	5.32	$3s(1.74) \ 3p(3.53) \ 3d(0.04) \ 4p(0.01)$	-0.334
	P (5, 8)	5.04	$3s(1.70) \ 3p(3.28) \ 3d(0.05) \ 4p(0.01)$	-0.048
2a	Ga (1)	2.49	$4s(1.16) \ 4p(1.30) \ 4d(0.01) \ 5p(0.02)$	0.506
	Ga (5)	2.73	$4s(1.49) \ 4p(1.22) \ 4d(0.01) \ 5p(0.01)$	0.263
	P (2)	5.52	$3s(1.72) \ 3p(3.75) \ 3d(0.04) \ 4p(0.01)$	-0.515
	P (3)	5.05	$3s(1.70) \ 3p(3.29) \ 3d(0.05) \ 4p(0.01)$	-0.066
	P (4)	5.25	$3s(1.73) \ 3p(3.46) \ 3d(0.05) \ 4p(0.01)$	-0.250
	P (6)	5.54	$3s(1.73) \ 3p(3.76) \ 3d(0.04) \ 4p(0.01)$	-0.550
	P (7)	5.05	$3s(1.69) \ 3p(3.30) \ 3d(0.05) \ 4p(0.01)$	-0.061
	P (8)	5.31	$3s(1.69) \ 3p(3.57) \ 3d(0.04) \ 4p(0.01)$	-0.328
3a	Ga (3, 7, 8)	2.67	$4s(1.28) \ 4p(1.37) \ 4d(0.01) \ 5p(0.01)$	0.327
	P (2, 5, 6)	5.45	$3s(1.74) \ 3p(3.66) \ 3d(0.04) \ 4p(0.01)$	-0.441
	P (1)	5.01	$3s(1.65) \ 3p(3.28) \ 3d(0.06) \ 4p(0.02)$	-0.013
	P (4)	5.64	$3s(1.73) \ 3p(3.87) \ 3d(0.04)$	-0.644
4a	Ga (1, 2, 7, 8)	2.57	$4s(1.16) \ 4p(1.38) \ 4d(0.01) \ 5p(0.02)$	0.422
	P (3, 4, 5, 6)	5.66	$3s(1.72) \ 3p(3.90) \ 3d(0.04)$	-0.672
5a	Ga (3, 6)	2.79	4s(1.62) $4p(1.15)$ $4d(0.01)$ $5p(0.01)$	0.208
	Ga (4, 8)	2.69	$4s(1.80) \ 4p(0.87) \ 4d(0.01) \ 5p(0.01)$	0.308
	Ga (5)	2.56	$4s(1.87) \ 4p(0.67) \ 5s(0.01) \ 5p(0.01)$	0.447
	P (2)	5.94	$3s(1.75) \ 3p(4.15) \ 3d(0.04)$	-0.948
	P (1, 7)	5.76	$3s(1.70) \ 3p(4.00) \ 3d(0.05) \ 4p(0.01)$	-0.766
6a	Р	5.99	$3s(1.73) \ 3p(4.21) \ 3d(0.05)$	-0.997
	Ga	2.84	$4s(1.54) \ 4p(1.26) \ 4d(0.02) \ 5p(0.02)$	0.166
7a	Ga (1, 5, 6)	2.82	$4s(1.71) \ 4p(1.09) \ 4d(0.01) \ 5p(0.01)$	0.185
	Ga (2)	3.12	4s(1.60) 4p(1.52) 4d(0.03) 5p(0.01)	-0.169
	Ga (3, 7, 8)	3.03	$4s(1.64) \ 4p(1.36) \ 4d(0.02) \ 5p(0.01)$	-0.024
	P (4)	6.31	$3s(1.67) \ 3p(4.59) \ 4s(0.01) \ 3d(0.04)$	-1.315

ing of Ga atom except for Ga_2P_6 cluster. A very large gap is found for Ga_2P_6 cluster. It is found that Ga_2P_6 is more stable than $2GaP_3^{[18]}$ by 227.4 kJ·mol⁻¹. The HOMO-LUMO energy gap for Ga_2P_6 is 1.0 eV larger than that for GaP_3. In consideration of the total energy and HOMO-LUMO energy gap, the existence of Ga_2P_6 cluster is favored. It has also been found that Ga_6P_2 is energetically more stable than $2Ga_3P^{[18]}$ by 155.9 kJ·mol⁻¹. which supports the possibility of the existence of Ga_6P_2 cluster. The above predictions are yet to be confirmed experimentally. With regard to the anion clusters, $Ga_4P_4^-$ cluster has the largest energy gap of 3.11 eV, which may be the reason that it had been observed.

2.3 Mulliken population analysis and natural charge

Table 4 shows the Mulliken populations of the lowest electronic states of Ga_xP_y (x+y=8) that has been considered here. In the electronic states of neutral clusters the P populations are uniformly larger than 5.00 except P(3,4) of Ga_1P_7 and P(2) of Ga_3P_5 , whereas the Ga populations are uniformly smaller than 3.00 except Ga(2) of Ga_7P_1 , consistent with the Ga^*P^- ionic bonding in these species and indicating orbital mixing within the framework DFT. Both Ga 4*s* and 4*p* orbitals lose electronic charge to the P 3*p* orbital, as evidenct from the enhancement of the 3*p* populations of the P atoms in all of the electronic states. Both Ga and P atoms exhibit non-zero *d* populations, which underscore the importance of the polarization functions.

The natural charges provide interesting insights into the distribution of charge within the molecules. the calculations described in this study present the natural charge of all atoms of clusters that have been considered here. Table 5 shows that addition of an electron to the neutral species results in elec tronegative enhancement of Ga atoms and P atoms (close to Ga atoms) for the P-rich clusters. For the Ga-rich clusters, the addition of an electron to the neutral species results in electronegative enhancement of P atoms and Ga atoms (close to P atoms). In the anion clusters, the bondings between Ga and P atoms are enhanced.

3 Conclusions

Geometries, electronic states and energies of Ga_xP_y and Ga_xP_y (x+y=8) clusters have been investigated using DFT with 6-311+G(2*df*) basis set. In comparison with the corresponding neutral clusters, the results show that the strong Ga—P bond is favored over P—P bond in Ga_xP_y (x+y=8) clusters. Two types of energy separations reported in this work are the adiabatic electron affinity (ΔE_{AEA}) and the vertical detachment energy (ΔE_{VDE}) , wherever applicable, and are compared with described in other published data in the lit-erature. ΔE_{AEA} and ΔE_{VDE} are predicted to be 2.20 and 2.66 eV (Ga₁P₇), 1.56 and 2.64 eV (Ga₂P₆), 2.00 and 2.13 eV (Ga₃P₅), 2.26 and 3.42 eV (Ga₄P₄), 2.22 and 2.60 eV (Ga₃P₃), 2.00 and 2.44 eV (Ga₆P₂), 2.19 and 2.53 eV (Ga₇P₁). ΔE_{AEA} for Ga₄P₄ and Ga₅P₃ are in good agreement with the experiment values; however, their ΔE_{VDE} are larger than the experimental values. For other clusters, the prediction of this study are useful for future experimental investigations.

References

- Nakato, Y.; Morita, K.; Tsubomura, H. J. J. Phys. Chem., 1986, 90: 2718
- 2 Ellis, A.; Johnson, P. B.; Zuhoski, S. P. J. Phys. Chem., 1988, 92: 3961
- 3 Taylor, T. R.; Asmis, K. R.; Xu, C.; Neumark, D. M. Chem. Phys. Lett., 1998, 297: 133
- 4 Taylor, T. R.; Asmis, K. R.; Xu, C.; Neumark, D. M. Eur. Phys. J. D, 1999, 9: 317
- 5 Taylor, T. R.; Asmis, K. R.; Xu, C.; Neumark, D. M. J. Chem. Phys., 2001, 115: 4620
- 6 Li, S.; van Zee, R. J.; Weltner, Jr. W. J. Phys. Chem., 1993, 97: 11393
- 7 Andreoni, W. Phys. Rev. B, 1992, 45: 4203
- 8 Costales, A.; Kandalam, A. K.; Pandey, R. J. Phys. Chem. B, 2002, 106: 1940
- 9 Feng, P. Y.; Balasubramanian, K. Chem. Phys. Lett., 1996, 258: 387
- 10 Feng, P. Y.; Balasubramanian, K. Chem. Phys. Lett., 1997, 265: 41
- Feng, P. Y.; Balasubramanian, K. Chem. Phys. Lett., 1997, 265: 547
- 12 Feng, P. Y.; Balasubramanian, K. Chem. Phys. Lett., 1998, 288: 1
- 13 Archibong, E. F.; St-Amant, A. Chem. Phys. Lett., 2000, 316: 151
- 14 Archibong, E. F.; St-Amant, A. Chem. Phys. Lett., 2000, 330: 199
- 15 Archibong, E. F.; St-Amant, A.; Goh, S. K.; Marynick, D. S. Chem. Phys. Lett., 2002, 361: 411
- 16 Tozzini, V.; Buda, F.; Fasolino, A. Phys. Rev. Lett., 2000, 20: 4554
- 17 Korambath, P. P.; Karna, S. P. J. Phys. Chem., 2000, 104: 4801
- 18 Jia, W. H.; Wu, H. S. Acta. Phys. Sin., 2004, 53: 1056
- Li, E. L.; Luo, X. M.; Shi, W.; Wang, X. W. J. Mol. Struct. (THEOCHEM), 2005, 723: 79
- 20 Curtiss, L. A.; McGrath, M. P.; Blaudesu, J. P.; Davis, N. E.; Binning, Jr. R. C.; Rasom, L. J. Chem. Phys., **1995**, **103**: 6104
- 21 Mclean, A. D.; Chandler, G. S. J. Chem. Phys., 1980, 72: 5639
- 22 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; *et al.* Gaussian 03. Pittsburgh PA: Gaussian, Inc., 2003
- 23 Chen, M. D.; Huang, R. B.; Zheng, L. S. J. Mol. Struct. (THEOCHEM), 2000, 499: 195